Для каких живых организмов характерно двойное оплодотворение картофель лук

Обновлено: 18.09.2024

Оплодотворение

1. У каких животных встречается наружное оплодотворение?
2. У каких растений наблюдается двойное оплодотворение?
3. В какой части цветка развивается яйцеклетка?

Оплодотворение и его типы.

Процесс слияния гамет получил название оплодотворения. В результате оплодотворения хромосомы яйцеклетки и сперматозоида оказываются в одном ядре, образуется зигота — первая клетка нового организма.

По месту прохождения оплодотворения различают два его типа.

Внешнее оплодотворение происходит вне организма самки, обычно в водной среде. Оно характерно для рыб, земноводных, большинства моллюсков, некоторых червей.

Ядро сперматозоида в цитоплазме яйцеклетки увеличивается примерно до размера ядра яйцеклетки. Ядра двигаются навстречу друг другу и сливаются. Таким образом, в образовавшейся клетке — зиготе — восстанавливается диплоидный набор хромосом, и начинается ее дробление.

Итак, у человека для оплодотворения необходим только один сперматозоид. Однако оплодотворение возможно лишь в том случае, когда в половые пути женщины попадает одновременно около 300 млн сперматозоидов! Даже если их будет 2 млн, то оплодотворения не произойдет. Зачем же нужно такое количество сперматозоидов?

Оплодотворение

Сперматозоидам приходится проходить долгий и трудный путь по матке и яйцеводу. Далеко не всем сперматозоидам удается его преодолеть. Если сопоставить размеры сперматозоида и человека, то последнему, чтобы пройти путь, аналогичный пути сперматозоида, необходимо будет пробежать 10 км. Кроме того, по яйцеводу сперматозоиды движутся навстречу току жидкости, что создает для них дополнительные препятствия. Наконец, для выделения достаточного количества гиалуронидазы, растворяющей оболочку яйцеклетки, также необходимо множество сперматозоидов.

Двойное оплодотворение.

Особый вид оплодотворения характеризует наиболее многочисленную и процветающую группу растений — покрытосеменные. Он получил название двойного оплодотворения.

В пыльниках тычинок из материнских клеток в результате мейоза образуются гаплоидные микроспоры. Каждая микроспора делится, образуя две также гаплоидные клетки — вегетативную и генеративную, которые формируют пыльцевое зерно. Пыльцевое зерно покрыто двумя оболочками. Пыльцевое зерно представляет собой мужской гаметофит. При попадании пыльцевого зерна на рыльце пестика (рис. 53) вегетативная клетка прорастает, образуя пыльцевую трубку, которая в своем росте стремится к завязи. Генеративная клетка перемещается в пыльцевую трубку, делится, образуя два неподвижных спермия.

Двойное оплодотворение

В завязи из материнской клетки в результате мейоза образуются четыре гаплоидные мегаспоры. Три из них отмирают, а одна продолжает делиться, формируя зародышевый мешок с несколькими гаплоидными клетками, одна из которых является яйцеклеткой. Две гаплоидные клетки сливаются, образуя центральную диплоидную клетку. Зародышевый мешок является женским гаметофитом. После того как пыльцевая трубка прорастает в семязачаток, один из спермиев оплодотворяет яйцеклетку и образуется диплоидная зигота. Другой спермий сливается с центральной клеткой зародышевого мешка. Таким образом, у покрытосеменных растений при оплодотворении происходит два слияния, т. е. двойное оплодотворение. В результате первого из них возникает зигота, из которой развивается диплоидный зародыш семени, а в результате второго — триплоидная центральная клетка, из которой затем формируется эндосперм (запасающая питательная ткань), за счет которого питается развивающийся зародыш нового растения. Этот процесс был открыт русским ботаником С. Г. Навашиным в 1898 г.

Роль бесполого и полового размножения.

Сравнивая два способа размножения — бесполое и половое, можно заключить, что бесполое размножение приводит к появлению особей, которые являются генетическими копиями родителя. Этот способ идеален для размножения в стабильных, не меняющихся условиях окружающей среды. Напротив, половое размножение способствует перекомбинации родительских генов и, следовательно, разнообразию потомства. Такой способ размножения очень важен для эволюционного прогресса вида в постоянно меняющихся условиях существования.

Оплодотворение. Зигота. Двойное оплодотворение. Микроспоры. Пыльцевое зерно. Мегаспоры. Зародышевый мешок.


1. Какой процесс называется оплодотворением?
2. Какой набор хромосом имеет зигота?
3. Почему у покрытосеменных растений процесс оплодотворения называется двойным? В чем преимущество двойного оплодотворения у покрытосеменных?
4. Какой набор хромосом в клетках эндосперма покрытосеменных?

Партеногенез.

Особой формой полового размножения является партеногенез, встречающийся у некоторых растений, насекомых, червей, рептилий и птиц. При таком способе размножения происходит развитие полноценных особей из неоп- лодотворенной яйцеклетки. Партеногенез, как правило, наблюдается у животных с высоким уровнем смертности или у видов, живущих в таких условиях, где встреча самки с самцом затруднена. Например, партеногенетически развиваются трутни — самцы пчел. Ученые доказали возможность искусственной активации яйцеклетки человека и развития из нее детского организма без оплодотворения, однако при этом невозможно ожидать появления полноценного ребенка, и такие опыты запрещены.

Особенности оплодотворения у некоторых животных. Обычно оплодотворение происходит вскоре после попадания сперматозоидов в организм самки. Однако у летучих мышей спаривание происходит осенью, всю зиму сперматозоиды живут в организме мыши, а оплодотворение имеет место только весной, когда созревают яйцеклетки.

Некоторые морские черепахи спариваются один раз в несколько лет, однако после этого спаривания самки откладывают в течение многих лет яйца с нормально развивающимися зародышами.

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

половой процесс у покрытосеменных растений, при котором оплодотворяются как яйцеклетка, так и центральная клетка зародышевого мешка (См. Зародышевый мешок). Д. о. открыл русский учёный С. Г. Навашин в 1898 на 2 видах растений — лилии (Lilium martagon) и рябчике (Fritillaria orientalis). В Д. о. участвуют оба спермия, привносимые в зародышевый мешок пыльцевой трубкой; ядро одного спермия (См. Спермии) сливается с ядром яйцеклетки, ядро второго — с полярными ядрами или со вторичным ядром зародышевого мешка. Из оплодотворённой яйцеклетки развивается Зародыш, из центральной клетки — Эндосперм. В зародышевых мешках с трёхклеточным яйцевым аппаратом содержимое пыльцевой трубки обычно изливается в одну из синергид (См. Синергиды), которая при этом разрушается (в ней видны остатки ядра синергиды и вегетативного ядра пыльцевой трубки); вторая синергида впоследствии отмирает. Далее оба спермия вместе с измененной цитоплазмой пыльцевой трубки перемещаются в щелевидный промежуток между яйцеклеткой и центральной клеткой. Затем спермии разобщаются: один из них проникает в яйцеклетку и вступает в контакт с её ядром, другой — проникает в центральную клетку, где контактирует со вторичным ядром или с одним, а иногда и с обоими полярными ядрами. Спермии теряют свою цитоплазму ещё в пыльцевой трубке или при проникновении в зародышевый мешок; иногда спермии в виде неизмененных клеток наблюдаются и в зародышевом мешке.

При Д. о. ядра зародышевого мешка находятся в интерфазе (См. Интерфаза) и обычно значительно крупнее ядер спермиев, форма и состояние которых могут вырьировать. У скерды и некоторых др. сложноцветных ядра спермиев имеют вид двойной скрученной или извитой хроматиновой нити, у многих растений они удлинённые, иногда извитые, более или менее хроматизированные, не имеющие ядрышек; обычно спермии представляют собой округлые интерфазные ядра с ядрышками, иногда не отличающиеся по структуре от женских ядер.

По характеру объединения мужских и женских ядер предложено (Е. Н. Герасимова-Навашина) различать два типа Д. о.: премитотическое — ядро спермия погружается в женское ядро, хромосомы его деспирализуются; объединение хромосомных наборов обоих ядер происходит в интерфазе (в зиготе); постмитотическое — мужское и женское ядра, сохраняя свои оболочки, вступают в профазу (См. Профаза), в конце которой начинается их объединение; интерфазные ядра, содержащие хромосомные наборы обоих ядер, образуются лишь после первого митотического деления зиготы. При Д. о. в яйцеклетке сливаются 2 гаплоидных ядра, поэтому ядро зиготы диплоидно. Число хромосом в ядрах эндосперма зависит от числа полярных ядер в центральной клетке и от их плоидности (См. Плоидность); у большинства покрытосеменных 2 гаплоидных полярных ядра и эндосперм у них триплоиден. Следствие Д. о. — Ксении проявление доминантных признаков эндосперма отцовского растения в эндосперме гибридных семян. Если в зародышевый мешок проникает несколько пыльцевых трубок, спермий первой из них участвуют в Д. о., спермий остальных — дегенерируют. Случаи диспермии, т. е. оплодотворения яйцеклетки двумя спермиями, очень редки.

Лит.: Навашин С. Г., Избр. труды, т. 1, М.— Л., 1951; Магешвар и П., Эмбриология покрытосеменных, пер. с англ., М., 1954; Поддубная Арнольди В. А., Общая эмбриология покрытосеменных растений, М., 1964; Steffen К., Fertilisation, в кн.: Maheshwari P. (ed.). Recent advances in the embryology of angiosperms, Delhi, 1963.

Двойное оплодотворение; 1 — у рябчика: один из спермиев (а) в контакте с ядром яйцеклетки, второй (б) — с одним из полярных ядер (второе полярное ядро не изображено); 2 — у подсолнечника: а — пыльцевая трубка; б — синергиды (одна из них повреждена пыльцевой трубкой); в — яйцеклетка; г — спермий в контакте с ядром яйцеклетки; д — центральная клетка; е — второй спермий в контакте со вторичным ядром зародышевого мешка.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Для каких животных характерно наружное оплодотворение?

У каких организмов существует двойное оплодотворение?

Для осуществления полового размножения организму недостаточно просто сформировать половые клетки – гаметы, надо обеспечить возможность их встречи. Процесс слияния сперматозоида и яйцеклетки, сопровождающийся объединением их генетического материала, называют оплодотворением. В результате оплодотворения образуется диплоидная клетка – зигота, активация и дальнейшее развитие которой приводит к формированию нового организма. При слиянии половых клеток разных особей осуществляется перекрёстное оплодотворение, а при объединении гамет, продуцируемых одним организмом, – самооплодотворение.

Существует два основных типа оплодотворения – наружное (внешнее) и внутреннее.

Наружное оплодотворение. При наружном оплодотворении половые клетки сливаются вне организма самки. Например, рыбы мечут икру (яйцеклетки) и молоку (сперму) прямо в воду, где происходит наружное оплодотворение. Подобным образом осуществляется размножение у земноводных, многих моллюсков и некоторых червей. При наружном оплодотворении встреча яйцеклетки и сперматозоида зависит от самых разных факторов внешней среды, поэтому при таком типе оплодотворения организмы обычно образуют огромное количество половых клеток. Например, озёрная лягушка откладывает до 11 тыс. яиц, атлантическая сельдь вымётывает около 200 тыс. икринок, а рыба-луна – почти 30 млн.

Внутреннее оплодотворение. При внутреннем оплодотворении встреча гамет и их слияние происходит в половых путях самки. Благодаря согласованному поведению самца и самки и наличию специальных совокупительных органов мужские половые клетки поступают непосредственно в женский организм. Так происходит оплодотворение у всех наземных и некоторых водных животных. В этом случае вероятность успешного оплодотворения высока, поэтому половых клеток у таких особей гораздо меньше.

Количество половых клеток, которые образует организм, зависит также от степени заботы родителей о потомстве. Например, треска вымётывает 10 млн икринок и никогда не возвращается к месту кладки, африканская рыбка тиляпия, вынашивающая икру во рту, – не более 100 икринок, а млекопитающие, обладающие сложным родительским поведением, обеспечивающим заботу о потомстве, рождают всего одного или нескольких детёнышей.

У человека, как и у всех остальных млекопитающих, оплодотворение происходит в яйцеводах, по которым яйцеклетка движется по направлению к матке. Сперматозоиды преодолевают огромное расстояние до встречи с яйцеклеткой, и лишь один из них проникает в яйцеклетку. После проникновения сперматозоида яйцеклетка формирует на поверхности толстую оболочку, непроницаемую для остальных сперматозоидов.

Если оплодотворение произошло, яйцеклетка завершает своё мейотическое деление (§ 20) и два гаплоидных ядра сливаются в зиготе, объединяя генетический материал отцовского и материнского организмов. Образуется уникальная комбинация генетического материала нового организма.

Яйцеклетки большинства млекопитающих сохраняют способность к оплодотворению в течение ограниченного времени после овуляции, как правило, не более 24 часов. Сперматозоиды, покинувшие мужскую половую систему, живут тоже очень недолго. Так, у большинства рыб сперматозоиды погибают в воде уже спустя 1–2 минуты, в половых путях кролика живут до 30 часов, у лошадей 5–6 суток, а у птиц до 3 недель. Сперматозоиды человека во влагалище женщины гибнут спустя 2,5 часа, но те, которые успевают добраться до матки, сохраняют жизнеспособность в течение двух и более суток. Существуют в природе и исключительные случаи, например сперматозоиды пчёл сохраняют способность к оплодотворению в семяприёмнике самок в течение нескольких лет.

Оплодотворённая яйцеклетка может развиваться в теле материнского организма, как это происходит у плацентарных млекопитающих, или во внешней среде, как у птиц и пресмыкающихся. Во втором случае она покрывается специальными защитными оболочками (яйца птиц и пресмыкающихся).

У некоторых видов организмов встречается особая форма полового размножения – без оплодотворения. Такое развитие называют партеногенезом (от греч. partenos – девственница, genesis – возникновение) или девственным развитием. В этом случае дочерний организм развивается из неоплодотворённой яйцеклетки на основе генетического материала одного из родителей, и образуются особи только одного пола. Естественный партеногенез даёт возможность резкого увеличения численности потомства и существует в тех популяциях, где контакт разнополых особей затруднён. Партеногенез встречается у животных разных систематических групп: у пчёл, тлей, низших ракообразных, скальных ящериц и даже у некоторых птиц (индеек).

Одним из главных механизмов, который обеспечивает оплодотворение строго внутри вида, является соответствие числа и строения хромосом женских и мужских гамет, а также химическое сродство цитоплазмы яйцеклетки и ядра сперматозоида. Даже если чужеродные половые клетки и соединяются при оплодотворении, это, как правило, приводит к ненормальному развитию зародыша или к рождению стерильных гибридов, т. е. особей, неспособных к деторождению.

Двойное оплодотворение. Особый тип оплодотворения характерен для цветковых растений. Он был открыт в конце XIX в. русским учёным Сергеем Гавриловичем Навашиным и получил название двойного оплодотворения (рис. 67).

Во время опыления пыльца попадает на рыльце пестика. Пыльцевое зерно (мужской гаметофит) состоит всего из двух клеток. Генеративная клетка делится, образуя два неподвижных спермия, а вегетативная клетка, прорастая внутрь пестика, формирует пыльцевую трубку. В завязи пестика развивается женский гаметофит – зародышевый мешок с восемью гаплоидными ядрами. Два из них сливаются, формируя центральное диплоидное ядро. В результате дальнейшего деления цитоплазмы зародышевого мешка образуется семь клеток: яйцеклетка, центральная диплоидная клетка и пять вспомогательных.


Рис. 67. Двойное оплодотворение у цветковых растений

После того как пыльцевая трубка прорастает в основание пестика, спермии, находящиеся внутри неё, проникают в зародышевый мешок. Один спермий оплодотворяет яйцеклетку, – возникает диплоидная зигота; из неё в дальнейшем развивается зародыш. Другой спермий сливается с ядром крупной центральной диплоидной клетки, образуя клетку с тройным хромосомным набором (триплоидную), из которой затем формируется эндосперм – питательная ткань для зародыша. Таким образом, у покрытосеменных растений в оплодотворении участвует два спермия, т. е. осуществляется двойное оплодотворение.

Искусственное оплодотворение. Большое значение в современном сельском хозяйстве имеет искусственное оплодотворение, приём, который широко применяется в селекции при выведении и улучшении пород животных и сортов растений. В животноводстве при помощи искусственного осеменения можно получить многочисленное потомство от одного выдающегося производителя. Сперма таких животных хранится в специальных низкотемпературных условиях и сохраняет жизнеспособность в течение долгого времени (десятки лет).

Искусственное опыление в растениеводстве позволяет осуществлять определённое, заранее запланированное скрещивание и получать сорта растений с необходимым сочетанием родительских свойств.

К 2010 г. с помощью экстракорпорального оплодотворения было зачато уже около 4 млн детей. Однако использование донорской спермы, донорских яйцеклеток и даже суррогатных матерей порождает целый ряд этических и социальных проблем. Многие люди, опираясь на религиозные и моральные соображения, выступают против любых вмешательств в размножение человека, в том числе против экстракорпорального и искусственного оплодотворения.

Вопросы для повторения и задания

1. Что такое оплодотворение?

2. Какие типы оплодотворения вы знаете?

3. В чём заключается процесс двойного оплодотворения?

4. Каково значение искусственного оплодотворения в растениеводстве и животноводстве?

Подумайте! Выполните!

1. Как вы считаете, в чём преимущество двойного оплодотворения у покрытосеменных растений по сравнению с оплодотворением у голосеменных?

2. Достаточно ли знать, что в размножении участвует только одна особь, чтобы сделать вывод о том, что это размножение – бесполое?

3. Объясните, почему при экстракорпоральном оплодотворении часто рождаются близнецы.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Повторите и вспомните!

Растения

Опыление. Двойному оплодотворению у цветковых растений предшествует опыление – перенос пыльцы (пыльцевых зёрен) на рыльце пестика. Опыление осуществляется различными способами. Если пыльца цветка попадает на рыльце пестика этого же цветка, происходит самоопыление. Перенос пыльцы на рыльце пестика другого цветка называют перекрёстным опылением.

Самоопыление характерно для небольшого числа цветковых растений. Учёные считают, что самоопыление возникло вторично, когда какие-то обстоятельства стали препятствовать осуществлению перекрёстного опыления. Биологически самоопыление менее выгодно, поскольку при этом не происходит обмен генетической информации между различными особями вида.

Перекрёстное опыление распространено у покрытосеменных растений гораздо шире, чем самоопыление. Биологически перекрёстное опыление более благоприятно, чем самоопыление, потому что оно даёт возможность объединять генетическую информацию разных особей. Появляются потомки, отличающиеся от родительских особей. Это способствует приспособлению вида к изменяющимся условиям обитания.

Перекрёстное опыление может осуществляться различными способами. Условно их можно разделить на две группы: абиотическое опыление (при помощи ветра или воды) и биотическое (при помощи животных). В роли опылителей могут выступать разные животные: насекомые, птицы, млекопитающие.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Глава III С чего начинается развитие. Оплодотворение

Глава III С чего начинается развитие. Оплодотворение Оплодотворение традиционно считают началом развития. И действительно, только после слияния гаплоидного яйца и гаплоидного сперматозоида образуется диплоидная зигота — фактически самый ранний зародыш. У большинства

7. Оплодотворение у животных

7. Оплодотворение у животных Оплодотворение — процесс слияния мужских и женских половых клеток, в результате которого образуется зигота. Зигота — оплодотворенная яйцеклетка. Она всегда имеет диплоидный набор хромосом. Из зиготы развивается зародыш, который дает начало

Оплодотворение

Оплодотворение После того как мы рассмотрели строение половых органов и способ их функционирования, перейдем к самой сути всей сложной системы воспроизведения. А так как мы на сорок недель старше, чем думаем (с учетом времени внутриутробного развития), то прежде всего

8.2.1.1. Искусственное оплодотворение в собаководстве

8.2.1.1. Искусственное оплодотворение в собаководстве Применение искусственного оплодотворения в собаководстве в настоящее время сдерживается в основном отсутствием соответствующих нормативных документов по учету происхождения животных и определенным консерватизмом

3.1. ОПЛОДОТВОРЕНИЕ

3.1. ОПЛОДОТВОРЕНИЕ Оплодотворение — процесс слияния половых клеток самца (спермия) и самки (яйцеклетки) и образования зиготы, которая обладает двойной наследственностью и дает начало новому организму.Естественный тип осеменения собак — маточный. Во время полового акта

Оплодотворение

Оплодотворение У кобелей в момент эякуляции увеличивается луковичная часть головки полового члена и заполняет все пространство переднего отдела влагалища. Эрекция вестибулярных кавернозных тел самки ущемляет половой член и тем предотвращает выделение спермы через

Оплодотворение

Оплодотворение Оплодотворение – это процесс объединения мужской и женской гамет. При этом формируется генотип особи, несущий информацию от обоих родителей. Оплодотворение влечет за собой два важных следствия: активация яйцеклетки (стимуляция ее к развитию) и

Совокупление и оплодотворение

Совокупление и оплодотворение Для того, чтобы правильно организовать спаривание, нужно представлять себе физиологические процессы, лежащие в его основе. У животных, размножающихся половым путем, процессу оплодотворения предшествует осеменение. При внутреннем

Оплодотворение яйцеклетки

Оплодотворение яйцеклетки Фолликулы (нечто вроде пузырьков, в которых зреют яйцеклетки) постепенно начинают выступать на поверхность яичника, они продуцируют гормоны, которые подготавливают матку к приему оплодотворенного яйца. Давление на стенки яичника

Оплодотворение яйцеклетки

Оплодотворение яйцеклетки Фолликулы (нечто вроде пузырьков, в которых зреют яйцеклетки) постепенно начинают выступать на поверхность яичника, они продуцируют гормоны, которые подготавливают матку к приему оплодотворенного яйца. Давление на стенки яичника

21. Оплодотворение

21. Оплодотворение Вспомните!Какой набор хромосом имеет зигота?Для каких животных характерно наружное оплодотворение?У каких организмов существует двойное оплодотворение?Для осуществления полового размножения организму недостаточно просто сформировать половые

Искусственное оплодотворение — риск?

Искусственное оплодотворение — риск? Фундаментальные исследования в эпигенетике прежде всего преследовали цель изучить те комплексные изменения, которые происходят в клетках в момент оплодотворения на самом раннем этапе развития любой жизни. Результаты создают повод


Видеоурок способствует формированию представлений о способах опыления цветковых растений, выявляет приспособления к различным способам опыления. Основная цель урока – рассмотреть особенности двойного оплодотворения и его преимущества. В ходе видеоурока подробно рассказывается о процессах микроспорогенеза и макроспорогенеза, их сущности.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Двойное оплодотворение покрытосеменных растений"

Размножение – это одно из обязательных свойств любого живого организма. Оно заключается в увеличении числа особей.

Различают бесполое и половое размножение растений.

Бесполое размножение подразделяют на спорообразование и вегетативное.

Половое размножение происходит при помощи особых половых клеток –гамет.

При бесполом размножении быстро увеличивается численность вида, все потомки имеют абсолютно такой же генотип, что и родительская особь. А также не происходит увеличения генетического разнообразия, которое может оказаться очень полезным при изменении условий существования вида.

По этой причине большинство живых организмов на Земле размножаются половым путём.

Сущность полового размножения заключается в слиянии генетической информации родителей, благодаря чему генетическое разнообразие в потомстве увеличивается.

У покрытосеменных растений половое размножение связано с цветком.

Важные части цветка – это пестик и тычинка. С их участием происходят сложные процессы полового размножения –опыление и оплодотворение.

Но сперва в будущем цветке начинают образовываться половые клетки.

В жизненном цикле цветковых растений наблюдается смена поколений.

У растений выделяют диплоидное поколение – бесполое, или спорофит, и гаплоидное поколение – половое, или гаметофит.

Гаметы образуются в результате митоза, а споры – в результате мейоза. И гаметы, и споры образуются в цветке, поэтому цветок является органом и бесполого, и полового размножения.

Пыльцевое зерно является спорой (микроспорой), а не мужской гаметой, так как в нем самом развиваются мужские гаметы.

У цветковых растений мужские гаметофиты столь малы, что помещаются внутри оболочки пыльцевого зерна и состоят всего лишь из нескольких клеток.

Женский гаметофит цветковых (зародышевый мешок) помещается внутри семяпочки и состоит в наиболее распространённом случае из 7 клеток (содержит 8 – либо 7 после слияния двух ядер в центральной клетке и образования вторичного ядра).

Посмотрим, как образуется мужской гаметофит.

Итак, Микроспорогенез

В субэпидермальной ткани молодого пыльника обособляется специальная спорогенная ткань, называемая археспорием. Каждая первичная археспориальная клетка после ряда делений становится материнской клеткой пыльцы (микроспороцитом), которая проходит все фазы мейоза.

В результате двух мейотических делений возникают четыре гаплоидные микроспоры. Последние лежат четвёрками и называются клеточными тетрадами.

При созревании клеточные тетрады распадаются на отдельные микроспоры с образованием внутренней (интина) и наружной (экзина) оболочек. Наружная оболочка, как правило, грубая, поверхность её либо гладкая, либо шероховатая, приспособленная для переноса пыльцы и прилипания её к рыльцу пестика.


Этим заканчивается микроспорогенез, вслед за образованием одноядерной микроспоры начинается микрогаметогенез.

Первое митотическое деление микроспоры приводит к образованию вегетативной и генеративной клеток. В дальнейшем вегетативная клетка и её ядро не делятся. В ней накапливаются запасные питательные вещества, которые в последующем обеспечивают деление генеративной клетки и рост пыльцевой трубки в столбике пестика.

Генеративная клетка, содержащая меньшее количество цитоплазмы, вновь делится. Это деление может осуществляться ещё в пыльцевом зерне или в процессе его прорастания в пыльцевой трубке. В результате образуются две мужские половые клетки, которые, в отличие от сперматозоидов животных, называются спермиоклетками, или спермиями.

Таким образом, из одной споры (микроспоры) с гаплоидным набором хромосом в результате двух митотических делений образуются три ядра: два из них – спермии и одно – вегетативное. При образовании пыльцевой трубки это вегетативное ядро переходит в пыльцевую трубку.

Процесс деления генеративной клетки и образование спермиев в пыльцевой трубке были впервые подробно изучены российским и советским цитологом и эмбриологом растений Сергеем Гавриловичем Навашиным в 1910 г. на лилейных растениях.

После образования гамет пыльник созревает, и пыльца высыпается. Она несёт только генетическую информацию.

Посмотрим, как происходит мегаспорогенез и мегагаметогенез цветковых.

У покрытосеменных растений женский гаметофит – это зародышевый мешок, который закладывается и развивается внутри семяпочки.

Развитию женского гаметофита у высших покрытосеменных растений предшествует мегаспорогенез.

В субэпидермальном слое молодой семяпочки обособляется археспориальная клетка, чаще она только одна. Клетка археспория растёт, превращаясь в материнскую клетку мегаспоры.

В результате двух делений мейоза материнской клетки мегаспоры образуется тетрада мегаспор. Каждая из клеток тетрады по числу хромосом является гаплоидной. Однако только одна из них продолжает развиваться, остальные три дегенерируют, судьба этих клеток напоминает судьбу редукционных телец при созревании яйцеклеток у животных.

На следующем этапе осуществляется мегагаметогенез. Оставшаяся функционировать мегаспора продолжает расти и затем её ядро претерпевает ряд делений. При этом сама клетка не делится, а делится только ядро.

У разных систематических групп растений число делений ядра мегаспоры может варьировать от одного до трёх. У большинства растений (70 % видов покрытосеменных) этих делений, как правило, в результате возникает восемь наследственно одинаковых ядер, вовремя этих делений ядра занимают полярное положение, четыре из них оказываются лежащими ближе к микропиле (место проникновения спермиев), а четыре других – в противоположном конце зародышевого мешка, называемого халазальным. Дальше эти ядра обособляются в самостоятельные клетки, имеющие значительные количества цитоплазмы.


В дальнейшем от каждой из двух полярных четвёрки ядер к центру отходит по одному ядру, которые сливаются, образуя вторичное (центральное) ядро зародышевого мешка. Затем цитоплазма обособляется вокруг ядер гаметофита, который из ядерной стадии развития переходит в клеточную. Три ядра, оставшиеся вблизи халазального полюса, преобразуются в три клетки (антиподы), которые питают гаметофит. Три ядра вблизи микропиле отделяются клеточными перегородками, образуя отдельные клетки: крупную центральную яйцеклетку и две боковые клетки синергиды. Вся цитоплазма, расположенная между антиподами с одной стороны и клетками яйцевого комплекса с другой (яйцеклетка и две синергиды), называется центральной клеткой. В ней находится диплоидное вторичное (центральное) ядро.

На этом этапе женский гаметофит уже полностью сформирован и состоит из шести гаплоидных клеток (одной яйцеклетки, двух синергид и трёх антипод) и одной диплоидной (центральной). Его строение внешне напоминает мешочек, поэтому женский гаметофит покрытосеменных называется зародышевым мешком.

Пылинка попадает на рыльце пестика, и происходит опыление.

Опыление – это перенос пыльцевых зёрен на рыльце пестика, у голосеменных пыльцевые зерна при опылении попадают непосредственно на семязачаток.

Имеется два основных типа опыления: самоопыление (автогамия) (когда растение опыляется собственной пыльцой) и перекрёстное опыление (аллогамия).

При самоопылении исключён обмен генетической информацией, поскольку пыльцевые зерна попадают на рыльце пестика либо с одной из тычинок этого же цветка, либо с другого цветка, расположенного на том же растении. Это приводит к появлению чистых линий гомозиготных популяций в пределах одного вида, неспособных обмениваться мутировавшими генами, поэтому процессы видообразования в этих популяциях идут самостоятельно.

Перекрёстное опыление – это перенос пыльцы одного растения на рыльце другого. Этот тип опыления встречается более часто, чем самоопыление, между разными особями одного вида происходит обмен аллелями, что приводит к увеличению доли гетерозиготных организмов.

Безусловно, перекрёстное самоопыление имеет большие преимущества по сравнению с самоопылением, поскольку возникшие мутации свободно распространяются в пределах популяции.

Способы опыления у перекрёстноопыляемых цветковых растений весьма разнообразны. Их можно разделить на две группы. Первая: перенос пыльцы осуществляется главным образом насекомыми, а также некоторыми позвоночными (птицами и летучими мышами). Соответственно, различают энтомофилию, орнитофилию и зоофилию. Растения, опыляемые животными, обычно имеют яркоокрашенные крупные цветки. Мелкие цветки, как правило, собраны в соцветия, что зрительно их увеличивает. Для привлечения опылителей служит нектар или большое количество пыльцы, которую опылители охотно поедают.


Вторая группа: пыльца переносится абиотическими факторами – ветром и реже водой, в связи с чем различают анемофилию и гидрофилию.

После попадания пыльцы на рыльце начинается прорастание пыльцевого зерна.

Экзина мужского гаметофита прорывается в области борозды или поры прорастания, и начинает формироваться пыльцевая трубка, которая растёт, проникает в рыльце, через столбик движется по направлению к завязи, где находится семязачаток.

Трубка растёт на кончике. В растущую пыльцевую трубку из пыльцевого зерна перемещается ядро клетки-трубки, а также спермин.

Обычно развитие пыльцевой трубки происходит при уже сформированных семязачатках в завязи. Достигнув завязи, пыльцевая трубка через микропиле проникает внутрь одного из находящихся там семязачатков.

Там пыльцевая трубка направляется к яйцевому аппарату, проникает в одну из синергид и освобождает спермин. Один из спермиев сливается с яйцеклеткой, в результате чего образуется зигота.

Другой спермий сливается с полярными ядрами центральной клетки, образуя триплоидное ядро (с тройным набором хромосом). Зигота даёт начало зародышу, а из триплоидной центральной клетки образуется ткань эндосперма.

Таким образом оплодотворение, при котором одна мужская гамета сливается с яйцеклеткой, а вторая ― с вторичным ядром, называется двойным оплодотворением.

Механизм оплодотворения цветковых –двойное оплодотворение, открыто отечественным учёным Сергеем Гавриловичем Навашиным в 1898 году.

Таким образом, оплодотворённый семязачаток развивается в семя, из зиготы возникает зародыш, из триплоидной центральной клетки – эндосперм, а из внешней части семязачатка (интегументов) образуется семенная кожура, из стенок завязи цветка – стенки плода.


Эндосперм цветковых полностью отличается от первичного эндосперма голосеменных. У них первичный эндосперм представляет собой гаплоидную вегетативную ткань женского гаметофита, где накапливаются питательные вещества семени.

Эндосперм у покрытосеменных происходит из триплоидной центральной клетки, в образовании которой участвуют вторичное ядро женского гаметофита и ядро спермия.

У одних цветковых (например, злаков) эндосперм сильно разрастается и занимает большую часть семени, оттесняя на периферию маленький зародыш.

У других (к пример у бобовых) весь эндосперм поглощается зародышем и используется его семядолями, которые становятся самыми большими структурами зрелого семени.

Читайте также: