При скрещивании гороха образующего желтые семена аа с горохом

Обновлено: 18.09.2024

Среди заданий по генетике можно выделить 6 основных типов, встречающихся в ЕГЭ. Первые два (на определение числа типов гамет и моногибридное скрещивание) встречаются чаще всего в части А экзамена (вопросы А7 , А8 и А30 ).

Задачи типов 3 , 4 и 5 посвящены дигибридному скрещиванию, наследованию групп крови и признаков, сцепленных с полом. Такие задачи составляют большинство вопросов С6 в ЕГЭ .

Задания шестого типа представляют собой задачи смешанного типа. В них рассматривается наследование двух пар признаков: одна пара сцеплена с Х-хромосомой (или определяет группы крови человека), а гены второй пары признаков расположены в аутосомах. Этот класс задач считается самым трудным для абитуриентов.

Ниже изложены теоретические основы генетики, необходимые для успешной подготовки к заданию С6, а также рассмотрены решения задач всех типов и приведены примеры для самостоятельной работы.

Основные термины генетики

Ген — это участок молекулы ДНК, несущий информацию о первичной структуре одного белка. Ген — это структурная и функциональная единица наследственности.

Аллельные гены (аллели) — разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки — признаки, которые не могут быть в организме одновременно.

Гомозиготный организм — организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.

Гетерозиготный организм — организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.

Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.

Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.

Генотип — совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом.

Фенотип — совокупность всех признаков организма.

Законы Г. Менделя

Первый закон Менделя — закон единообразия гибридов F1

Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков — цветом семян: один сорт имел желтую окраску, второй — зеленую. Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания Менделем была предложена следующая схема:

А — желтая окраска семян
а — зеленая окраска семян

Р (родители) АА аа
Г (гаметы) А а
F1 (первое поколение) Аа
(все растения имели желтые семена)

Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу.

Второй закон Менделя — закон расщепления

Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено F2.

Р (F1) Aa Aa
Г А; a А; a
F2 АА; Аа; Аа; аа
( 75% растений имеют доминантный признак, 25% — рецессивный)

Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении 3:1 , а по генотипу — 1:2:1 .

Третий закон Менделя — закон независимого наследования

Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.

В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой — зеленые и морщинистые.

А — желтая окраска семян, а — зеленая окраска семян,
В — гладкая форма, в — морщинистая форма.

Р ААВВ аавв
Г АВ ав
F1 АаВв
100% (желтые гладкие).

Затем Мендель из семян F1 вырастил растения и путем самоопыления получил гибриды второго поколения.

В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1 . 9/16 всех семян имели оба доминантных признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный (желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный (зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые и морщинистые).

При анализе наследования каждой пары признаков получаются следующие результаты. В F2 12 частей желтых семян и 4 части зеленых семян, т.е. соотношение 3:1 . Точно такое же соотношение будет и по второй паре признаков (форме семян).

Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях.

Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.

При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.

Анализирующее скрещивание

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1 , то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови (система АВ0)

Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена (i 0 , I А , I В ), кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа i 0 i 0 ; вторая I А i 0 и I А I А ; третья I В I В и I В i 0 и четвертая I А I В .

Наследование признаков, сцепленных с полом

У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — Y и Х.

У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом ХХ, мужской пол — ХY. Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным — самки (ХY).

В ЕГЭ включены задачи только на признаки, сцепленные с Х-хромосомой. В основном они касаются двух признаков человека: свертываемость крови (Х Н — норма; X h — гемофилия), цветовое зрение (Х D — норма, X d — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): Х Н Х Н — здорова; Х Н X h — здорова, но является носительницей; Х h Х h — больна. Мужской пол по этим генам является гомозиготным, т.к. Y-хромосома не имеет аллелей этих генов: Х Н Y — здоров; X h Y — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.

Типичные задания ЕГЭ по генетике

Определение числа типов гамет

Определение числа типов гамет проводится по формуле: 2 n , где n — число пар генов в гетерозиготном состоянии. Например, у организма с генотипом ААввСС генов в гетерозиготном состоянии нет, т.е. n = 0 , следовательно, 2 0 = 1 , и он образует один тип гамет (АвС). У организма с генотипом АаВВсс одна пара генов в гетерозиготном состоянии (Аа), т.е. n = 1 , следовательно, 2 1 = 2 , и он образует два типа гамет. У организма с генотипом АаВвСс три пары генов в гетерозиготном состоянии, т.е. n = 3 , следовательно, 2 3 = 8 , и он образует восемь типов гамет.

Задачи на моно- и дигибридное скрещивание

На моногибридное скрещивание

Задача: Скрестили белых кроликов с черными кроликами (черный цвет — доминантный признак). В F1 — 50% белых и 50% черных. Определите генотипы родителей и потомства.

Решение: Поскольку в потомстве наблюдается расщепление по изучаемому признаку, следовательно, родитель с доминантным признаком гетерозиготен.

Р Аа (черный) аа (белый)
Г А, а а
F1 Аа (черные) : аа (белые)
1 : 1

На дигибридное скрещивание

Доминантные гены известны

Задача: Скрестили томаты нормального роста с красными плодами с томатами-карликами с красными плодами. В F1 все растения были нормального роста; 75% — с красными плодами и 25% — с желтыми. Определите генотипы родителей и потомков, если известно, что у томатов красный цвет плодов доминирует над желтым, а нормальный рост — над карликовостью.

Решение: Обозначим доминантные и рецессивные гены: А — нормальный рост, а — карликовость; В — красные плоды, в — желтые плоды.

Проанализируем наследование каждого признака по отдельности. В F1 все потомки имеют нормальный рост, т.е. расщепления по этому признаку не наблюдается, поэтому исходные формы — гомозиготны. По цвету плодов наблюдается расщепление 3:1 , поэтому исходные формы гетерозиготны.

Р ААВв
(нормальный рост, красные плоды)
ааВв
(карлики, красные плоды)
Г АВ, Ав аВ, ав
F1 АаВВ (нормальный рост, красные плоды)
АаВв (нормальный рост, красные плоды)
АаВв (нормальный рост, красные плоды)
Аавв (нормальный рост, желтые плоды)

Доминантные гены неизвестны

Задача: Скрестили два сорта флоксов: один имеет красные блюдцевидные цветки, второй — красные воронковидные цветки. В потомстве было получено 3/8 красных блюдцевидных, 3/8 красных воронковидных, 1/8 белых блюдцевидных и 1/8 белых воронковидных. Определите доминантные гены и генотипы родительских форм, а также их потомков.

Решение: Проанализируем расщепление по каждому признаку в отдельности. Среди потомков растения с красными цветами составляют 6/8 , с белыми цветами — 2/8 , т.е. 3:1 . Поэтому А — красный цвет, а — белый цвет, а родительские формы — гетерозиготны по этому признаку (т.к. есть расщепление в потомстве).

По форме цветка также наблюдается расщепление: половина потомства имеет блюдцеобразные цветки, половина — воронковидные. На основании этих данных однозначно определить доминантный признак не представляется возможным. Поэтому примем, что В — блюдцевидные цветки, в — воронковидные цветки.

3/8 А_В_ - красные блюдцевидные цветки,
3/8 А_вв — красные воронковидные цветки,
1/8 ааВв — белые блюдцевидные цветки,
1/8 аавв — белые воронковидные цветки.

Решение задач на группы крови (система АВ0)

Задача: у матери вторая группа крови (она гетерозиготна), у отца — четвертая. Какие группы крови возможны у детей?

Решение:

Р I А I В I А i 0
Г I А , I В I А , i o
F1 I А I А , I А i 0 , I В i 0 , I А I В
(вероятность рождения ребенка со второй группой крови составляет 50%, с третьей — 25%, с четвертой — 25% ).

Решение задач на наследование признаков, сцепленных с полом

Такие задачи вполне могут встретиться как в части А, так и в части С ЕГЭ.

Задача: носительница гемофилии вышла замуж за здорового мужчину. Какие могут родиться дети?

Решение:

Р Х Н X h Х Н Y
Г Х Н , X h Х Н , Y
F1 Х Н Х Н девочка, здоровая ( 25% )
Х Н X h девочка, здоровая, носительница ( 25% )
Х Н Y мальчик, здоровый ( 25% )
X h Y мальчик, больной гемофилией ( 25% )

Решение задач смешанного типа

Задача: Мужчина с карими глазами и 3 группой крови женился на женщине с карими глазами и 1 группой крови. У них родился голубоглазый ребенок с 1 группой крови. Определите генотипы всех лиц, указанных в задаче.

Решение: Карий цвет глаз доминирует над голубым, поэтому А — карие глаза, а — голубые глаза. У ребенка голубые глаза, поэтому его отец и мать гетерозиготны по этому признаку. Третья группа крови может иметь генотип I В I В или I В i 0 , первая — только i 0 i 0 . Поскольку у ребенка первая группа крови, следовательно, он получил ген i 0 и от отца, и от матери, поэтому у его отца генотип I В i 0 .

Р АаI В i 0 (отец) Ааi 0 i 0 (мать)
Г АI B , Аi 0 , aI B , ai 0 Аi 0 , ai 0
F1 ааi 0 i 0 (родился)

Задача: Мужчина дальтоник, правша (его мать была левшой) женат на женщине с нормальным зрением (ее отец и мать были полностью здоровы), левше. Какие могут родиться дети у этой пары?

Решение: У человека лучшее владение правой рукой доминирует над леворукостью, поэтому А — правша, а — левша. Генотип мужчины Аа (т.к. он получил ген а от матери-левши), а женщины — аа.

Мужчина-дальтоник имеет генотип X d Y, а его жена — Х D Х D , т.к. ее родители были полностью здоровы.

Часть 1. Выберите один верный ответ из четырех предложенных.

  1. Организм с генотипом аа называется
  1. дигомозиготой
  2. гетерозиготой
  3. гомозиготой по доминантному признаку
  4. гомозиготой по рецессивному признаку
  1. У особи с генотипом АаBb в результате гаметогенеза может образоваться … типа гамет.
  1. 4
  2. 3
  3. 2
  4. 1
  1. При скрещивании организмов с генотипами АаBb Х АаBb проявится закон
  1. сцепленного наследования
  2. расщепления
  3. независимого наследования
  4. доминирования
  1. Гемофилия и дальтонизм наследуются как … признаки.
  1. доминантные, аутосомные
  2. доминантные, сцепленные с Х – хромосомой
  3. рецессивные, аутосомные
  4. рецессивные, сцепленные с Х – хромосомой
  1. Особь с генотипом ааВВ образует гаметы
  1. ааВ
  2. ааВВ
  3. аВВ
  4. аВ
  1. Определите генотип родительских растений гороха, если при их скрещивании образовалось 50 % растений с желтыми и 50 % - с зелеными семенами (рецессивный признак)
  1. АА Х аа
  2. Аа Х Аа
  3. АА Х Аа
  4. Аа Х аа
  1. Из оплодотворенной яйцеклетки развивается мальчик, если после оплодотворения в зиготе окажется хромосомный набор
  1. 22 аутосомы + Y
  2. 22 аутосомы + Х
  3. 44 аутосомы + XY
  4. 44 аутосомы + ХХ
  1. Количество возможных генотипов при следующем скрещивании – Аа Х Аа-
  1. 1
  2. 2
  3. 3
  4. 4
  1. Аллельными называются
  1. разные взаимодействующие гены
  2. сцепленные гены
  3. различные состояния одного и того же гена, расположенные в одних и тех же локусах гомологичных хромосом
  4. повторяющиеся гены
  1. Человек с I группой крови и положительным резус – фактором имеет генотип
  1. I 0I0 Rh+ Rh +
  2. I 0I0 rh- rh-
  3. I AI0 Rh+ Rh +
  4. I AI0 rh- rh-
  1. Выберите три верных ответа из шести предложенных

Законы Г. Менделя:

  1. сцепленного наследования
  2. единообразия гибридов первого поколения
  3. гомологических рядов
  4. расщепления признаков
  5. независимого наследования признаков
  6. биогенетический закон
  1. Установите соответствие между законами Г. Менделя и Т. Моргана и их характеристиками.

А) закон сцепленного наследования 1) Г. Мендель

Б) закон расщепления 2) Т. Морган

В) закон единообразия гибридов

Г) использование плодовой мушки – дрозофилы

Д) абсолютность закона нарушает процесс кроссинговера

Е) использование растительных объектов

  1. Установите правильную последовательность этапов проведения моногибридного скрещивания.

А) математическая обработка данных

Б) отбор чистых линий растений, дающих желтые и зеленые семена

В) скрещивание растений гороха первого поколения с желтыми семенами

Г) скрещивание разных сортов

Д) выведение чистых линий растений гороха с разной окраской семян

Е) формулирование правил наследования признаков

Гены окраски шерсти кошек расположены в Х – хромосоме. Черная окраска определяется геном Х В, рыжая – геном Х b, гетерозиготы имеют черепаховую окраску. От черной кошки и рыжего кота родились: один черепаховый и один черный котенок. Составьте схему решения задачи. Определите генотипы родителей и потомства, возможный пол котят.

Часть 1. Выберите один верный ответ из четырех предложенных.

  1. Согласно второму закону Менделя расщепление по генотипу происходит в соотношении
  1. 1 : 1
  2. 1 : 2 : 1
  3. 3 : 1
  4. 9 : 3 : 3 : 1
  1. При скрещивании организма с генотипом Аа Х Аа доля гетерозигот составляет
  1. 0 %
  2. 25 %
  3. 50 %
  4. 75 %

3. Нормальный рост (А) у овса доминирует над гигантизмом (а), а раннеспелость (В) – над позднеспелостью (b). Выберите генотип дигетерозиготного растения.

4. Какие виды гамет образуются у организма с генотипом АаВb при независимом наследовании генов?

5. При скрещивании гетерозиготных растений гороха с желтыми гладкими семенами и растений с зелеными (а) морщинистыми семенами (b) число фенотипов в потомстве будет равно

6.Определите процентное соотношение особей по генотипу в F1 при скрещивании двух гетерозиготных особей.

2) 50 % Аа : 50 % аа

3) 25 % АА : 50 % Аа : 25 % аа

4) 25 % Аа : 50 % АА : 25 % аа

7. Укажите генотип особи, гомозиготной по двум парам доминантных генов.

8. Определите фенотип растения томата с генотипом АаВb, если пурпурный стебель доминирует над зеленым, а рассеченные листья – над цельными.

1) пурпурный стебель с цельными листьями

2) зеленый стебель с рассеченными листьями

3) пурпурный стебель с рассеченными листьями

4) зеленый стебель с цельными листьями

9. Какой фенотип можно ожидать у потомства двух морских свинок с белой шерстью (рецессивный признак)

2) 25 % белых особей и 75 % черных

3) 50 % белых особей и 50 % черных

4) 75 % белых особей и 25 % черных

10.Укажите генотип кареглазой женщины, отец которой был голубоглазым дальтоником

1. Выберите три верных ответа из шести.

В генетике используются следующие термины:

1) аллельные гены

6) рецессивный признак

2. Установите соответствие между генетическим обозначением и генотипом.

А) АА 1) гетерозигота

Б) Вb 2) гомозигота

3. Установите правильную последовательность этапов проведения дигибридного скрещивания при независимом наследовании признаков.

А) математическая обработка данных

Б) отбор чистых линий растений, дающих желтые гладкие и зеленые морщинистые семена

В) скрещивание растений гороха первого поколения, дающего желтые гладкие семена

Г) скрещивание разных сортов

Д) выведение чистых линий растений гороха с разной окраской и формой семян

Е) формулирование правил наследования признаков при дигибридном скрещивании.

У здоровой матери, не являющейся носителем гена гемофилии, и больного гемофилией отца (рецессивный признак h) родились две дочери и два сына. Определите генотипы родителей, генотипы и фенотипы потомства, если признак свертываемости крови сцеплен с полом.

ПОМОГИТЕ ПОЖАЛУЙСТА!!
1.Провели анализирующее скрещивание гороха с желтыми семенами, имеющего генотип Аа. Каким будет потомство?
2. Провели анализирующее скрещивание ночной красавицы с розовыми цветами. Каким будет потомство?

В плазме крови содержатся специальные белки, участвующие в иммунных реакциях, агглютинации. И называются они агглютининами. Их существует всего два вида. Условно их назвали - альфа и бета. Но встречаются они у всех по-разному - у кого-то есть сразу два вида белков, у кого-то один из них, а у кого-то - ни одного. В эритроцитах есть агглютиногены - их функция заключается в замещении отсутствующих агглютининов. Условно - А и Б. То есть если в плазме нет альфы, то в эритроцитах есть А, если в плазме нет беты - в эритроцитах есть В. Если в плазме нет ни альфы, ни беты - в эритроцитах есть А и Б, если в плазме есть и альфа и бета - в эритроцитах агглютиногенов нет.

То есть во всех четырех группах мы имеем по сути два нужных нам белка.

Бо мишци зсихаються з виком, рист зменшуэться, тому й з'являються зморшки

1
1)Медведка. В почвенной среде. Что бы удобно было рыть землю.
2)Муха. В наземно-воздушной. Что бы удобнее было взлетать.
3)Жук-плавунец. В водной среде. Что бы удобнее было плавать в воде.
4)Кузнечик. В наземно-воздушной среде. Что бы было удобнее прыгать.
2
Сходство в том, что все они живут в воде или около воды. Дышат легкими. Примерно одинаковое расположение глаз. Обтекаемая форма головы и тела , что бы удобнее было плавать

думаю что верным является ответ С

45. Пероксисома – это: а)органоид одномембранного строения; б)органоид двухмембранного строения; в) органоид немембранного строе

Органоид, присущий только растительной клетки: а) митохондрии, б) вакуоли с клеточным соком, в) клеточный центр, г) рибосомы. По

Помогите пожалуйста Тела нейронов и их дендриты сосредоточены в спином и головном мозге. Серое вещество - находится в центре __


Моногибридное скрещивание. Мендель начал свои исследования закономерностей наследования с моногибридного скрещивания. Он выбрал две чистые линии растений гороха, которые отличались только по одному признаку: у одних окраска горошин была всегда жёлтая, а у других – всегда зелёная (при условии самоопыления). Если пользоваться современной терминологией, то можно сказать, что клетки растений гороха одного сорта содержат по два гена, кодирующих только жёлтую окраску, а другого сорта – по два гена, кодирующих только зелёную окраску семян. Гены, ответственные за проявление одного признака (например, формы или цвета семян), получили название аллельных генов. Если организм содержит два одинаковых аллельных гена (например, оба гена зеленого цвета семян или, наоборот, оба гена жёлтого цвета), то такие организмы называют гомозиготными. Если же аллельные гены различны (например, если один из них определяет жёлтую окраску семян, а другой – зелёную), то такие организмы называют гетерозиготными. Чистые линии образованы только гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака. В опытах Менделя, например, это был один из двух возможных цветов семян гороха – или всегда жёлтый, или всегда зелёный.

Правило единообразия гибридов первого поколения. Г. Мендель начал свои исследования со скрещивания растений гороха, исходно отличающихся только цветом горошин (жёлтым или зелёным). В первом поколении семена у всех растений оказались исключительно жёлтыми. Когда Г. Мендель повторил свои опыты по моногибридному скрещиванию, но использовал в них растения, отличающиеся друг от друга по другому признаку, по форме семян (гладкие или морщинистые), то все гибридные растения первого поколения имели гладкие семена. Проявляющиеся у гибридов признаки (желтизну или гладкость семян) Мендель назвал доминантными, а подавляемые признаки (зелёный цвет или морщинистую форму семян) – рецессивными. Доминантный признак принято обозначать прописными латинскими буквами (А, Б, С), а рецессивные – строчными (а, b, с).

На основе полученных в своих экспериментах данных Г. Мендель сформулировал правило единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.

Правило расщепления. Г. Мендель продолжил свои опыты, вырастив растения гороха из семян, полученных в первом поколении. Затем он скрестил эти растения и обнаружил, что у растений второго поколения большинство горошин, а именно 3 /4, были жёлтыми, а меньшая часть, а именно 1 /4, – зелёными. Конечно, Г. Мендель подсчитывал число жёлтых и зелёных горошин в потомстве от многих пар скрещиваемых растений гороха, чтобы добиться статистической надёжности полученного результата.

Явление, при котором скрещивание приводит к образованию части потомства с доминантным, а части – с рецессивным признаком, получило название расщепления.

Затем Г. Мендель подтвердил характер расщепления в опытах с другими признаками растений гороха и обосновал правило расщепления: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют 1 /4 часть от всего числа потомков второго поколения.


Рис. 57. Цитологические основы моногибридного скрещивания

Цитологические основы закономерностей наследования при моногибридном скрещивании. Как можно схематически представить себе закономерности наследования признаков, открытые Г. Менделем, используя современные понятия?

Символ обозначает женскую особь, символ – мужскую, X – скрещивание, Р – родительское поколение, F1 – первое поколение потомков, F2 – второе поколение потомков, А – доминантный ген, отвечающий за жёлтый цвет горошин, а – рецессивный ген, отвечающий за зелёный цвет семян гороха (рис. 57).

В результате мейоза в гаметах родительских особей будут присутствовать по одному гену, отвечающему за наследование цвета семян: в случае женской гаметы – А, в случае мужской – а. В первом поколении (F1) соматические клетки будут гетерозиготными (Аа), поэтому половина гамет гибридов первого поколения будет содержать ген А, а другая половина – а. В результате случайных комбинаций гамет во втором поколении (F2) возникнут следующие комбинации: АА, Аа, аА, аа. Растения с тремя первыми комбинациями генов будут иметь жёлтые семена, а с четвёртой – зелёные.

Аллельные гены. Гомозиготы. Гетерозиготы. Доминантные и рецессивные гены. Правило единообразия. Правило расщепления. Закон чистоты гамет.

1. Почему Г. Мендель опылял растения гороха искусственно?

2. Какие организмы называются гомозиготными по какому-либо признаку?

§ 40. Множественные аллели. Анализирующее скрещивание

1. Какое доминирование называется неполным?

2. Что такое фенотип; генотип?

Неполное доминирование. Иногда один аллельный ген не до конца подавляет действие второго. При этом возникают промежуточные признаки, и признак у гомозиготной по доминантному гену особи будет не таким, как у гетерозиготной особи. Это явление получило название неполного доминирования. Поясним его на примере.


Рис. 58. Схема наследования признака в случае неполного доминирования

При скрещивании растения ночной красавицы, имеющего пурпурные цветки (АА), с растением, имеющим белые цветки (аа), все растения – гибриды первого поколения будут иметь розовые цветки (рис. 58). При скрещивании двух особей ночной красавицы из первого поколения во втором поколении происходит расщепление, но не 3: 1 (как при полном доминировании), а в другом соотношении – 1:2:1, т. е. 1 /4 растений с белыми цветками (аа), 2 /4 – с розовыми (Аа) и 1 /4 – с пурпурными (АА) (см. рис. 58).

Явление неполного доминирования встречается часто, например при наследовании цвета шерсти крупного рогатого скота, строения перьев птиц. Встречается это явление и у человека при наследовании брахидактилии – укорочения фаланг пальцев. У здорового человека имеется два доминантных гена ВВ, и развитие скелета происходит нормально. У гетерозигот (Вb) наблюдается укорочение фаланг пальцев, а у рецессивных гомозигот (bb) проявляются множественные нарушения в развитии скелета, и такие люди погибают ещё в раннем детстве. Таким образом, ген В не полностью подавляет действие гена b, и у гетерозигот вследствие этого развивается брахидактилия.

Сверхдоминирование. Изредка при взаимодействии двух аллельных генов наблюдается явление сверхдоминирования. При сверхдоминировании доминантный признак сильнее проявляется у гетерозигот (Аа), чем у доминантных гомозигот (АА). В частности, были выведены сорта томатов с набором аллельных генов Аа, который определяет их более высокую урожайность по сравнению с особями, имеющими набор АА.

До сих пор мы рассматривали случай наследования одного признака, определяемого одним геном. Но любой организм имеет громадное количество признаков, причём это не только внешние, видимые особенности, но и признаки биохимические (строение молекул, активность ферментов, концентрация веществ в тканях, крови и т. д.), анатомические (форма и размер внутренних органов) и т. п. Любой признак, каким бы простым он ни казался, определяется множеством физиологических и биохимических процессов, каждый из которых, в свою очередь, зависит от действия ферментов.

Совокупность всех внешних и внутренних признаков и свойств организма называют фенотипом.

Совокупность всех генов организма называют генотипом.

Фенотипические признаки, определяемые теми или иными генами, в различных условиях существования проявляются по-разному.

По фенотипу не всегда можно определить, какие гены содержит данная особь. Например, у растения гороха, имеющего жёлтые семена, генотип может быть как АА, так и Аа. А вот рецессивный признак – зелёный цвет семян – проявляется только у гомозиготных растений с генотипом аа. Иными словами, всегда можно определить генотип особи с рецессивным признаком.

Анализирующее скрещивание. Для установления генотипа особей, которые не различаются по фенотипу, используют так называемое анализирующее скрещивание. При этом особь, генотип которой нужно установить, скрещивают с особью, гомозиготной по рецессивному гену (аа). Например, для того чтобы выяснить, какие из растений гороха с жёлтыми семенами имеют генотип АА, а какие – Аа, их следует скрестить с растением с зелёными семенами (аа). Если потомство будет иметь только жёлтые горошины, значит, исследуемое растение было доминантной гомозиготой (АА). Если же в потомстве наблюдается расщепление на растения с жёлтыми и зелёными горошинами в соотношении 1:1, то изучаемое растение было гетерозиготно (Аа).

Генофонд. Итак, благодаря множественному аллелизму каждый вид имеет целый набор аллельных генов, хотя каждая особь благодаря диплоидности содержит в каждой аллели только два гена. Совокупность всех вариантов всех генов, входящих в состав генотипов особей какого-либо вида, получила название генофонда вида. Можно также говорить о генофонде популяции или иной группы особей вида.

Множественный аллелизм. Кодоминирование. Неполное доминирование. Сверхдоминирование. Фенотип. Генотип. Анализирующее скрещивание. Генофонд вида.

1. Что такое множественный аллелизм?

2. Какие виды доминирования вам известны?

3. Какое практическое значение может иметь изучение видов доминирования?

4. В чём отличие двух понятий: фенотип и генотип?

5. Какой метод используется для установления генотипа особей, не различающихся по фенотипу?

6. Как наследуется брахидактилия?

§ 41. Дигибридное скрещивание. Закон независимого наследования признаков

1. Какое скрещивание называется моногибридным?

2. Сильно ли различается набор генов в клетках корня и клетках листа одной и той же особи клёна?

Дигибридное скрещивание. В природе не встречаются две абсолютно одинаковые особи какого-либо вида живых существ – все организмы отличаются друг от друга по многим признакам. Исключение могут представлять растения, развивающиеся в результате самоопыления (например, пшеница, горох, картофель и др.), а также однояйцевые близнецы животных и человека, хотя говорить об абсолютной схожести таких особей также нельзя.

Скрещивание особей, у которых учитывают отличия друг от друга по двум признакам, называется дигибридным, если по трём – то тригибридным и т. д. В общем случае скрещивание особей, отличающихся по многим признакам, называется полигибридным.

Закон независимого наследования признаков. Г. Мендель приступил к изучению результатов дигибридного скрещивания после того, как установил закономерности моногибридного скрещивания. Для этого он исследовал характер расщепления при скрещивании двух чистых линий гороха, различающихся по двум признакам: цвету семян (жёлтые или зелёные) и их форме (гладкие или морщинистые). При таком скрещивании признаки определяются различными парами генов: одна пара генов отвечает за цвет семян, другая – за их форму. При этом жёлтая окраска горошин (А) доминирует над зелёной (а), а их гладкая форма (B) – над морщинистой (b).

По закону единообразия гибридов первого поколения семена гороха в поколении F1 были жёлтыми и гладкими. Для того чтобы было легче понять, как будет проходить комбинация признаков при скрещивании двух гибридов из первого поколения, американский исследователь Реджинальд Пеннет предложил заносить результаты опыта в таблицу, которую назвали решёткой Пеннета (рис. 59). В результате слияния четырёх видов гамет, возникающих у растений из F1 (AB, Аb, аВ, аb), во втором поколении (F2) возникает 9 различных генотипов. Но эти девять генотипов проявляются в виде четырёх фенотипов: жёлтые – гладкие, жёлтые – морщинистые, зелёные – гладкие и зелёные – морщинистые, причём соотношение фенотипов будет 9:3:3:1. Если же подсчитать, каким будет соотношение между жёлтыми и зелёными горошинами, то оно будет равняться 3:1. Такое же соотношение будет и между гладкими и морщинистыми семенами. То есть выполняется правило расщепления. Отсюда следует, что при дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга. Этот факт получил название закона независимого наследования признаков. Закон справедлив в тех случаях, когда гены рассматриваемых признаков располагаются в разных негомологичных хромосомах.

Решётка Пеннета. Закон независимого наследования признаков.

1. Какое скрещивание называется дигибридным?

2. В чём сущность закона независимого наследования признаков?

3. В каком случае закон независимого наследования признаков несправедлив?

4. Сколько фенотипов гороха наблюдал Г. Мендель во втором поколении при дигибридном скрещивании гороха?


Рис. 59. Схема наследования признаков при дигибридном скрещивании

§ 42. Хромосомная теория наследственности

1. Что такое хромосомы? Какова их роль?

2. Знал ли Г. Мендель о существовании хромосом?

3. Можно ли назвать гены, определяющие цвет семян гороха, и гены, определяющие цвет венчика цветков гороха, аллельными?

В 1902 г. американец Уильям Сеттон предположил, что элементы наследственности, которые мы сегодня называем генами, могут располагаться в хромосомах. Но вместе с тем стали накапливаться сведения о том, что в некоторых случаях расщепления по правилам Менделя не происходит. Например, у душистого горошка два признака – форма пыльцы и окраска цветков – не дают независимого расщепления в потомстве в соотношении 3:1, и потомки остаются похожими на родительские особи. При последующем анализе оказалось, что гены этих двух признаков лежат в одной хромосоме.

Действительно, генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным подсчётам, у человека 30–40 тыс. генов, а видов хромосом всего 23. Все это огромное количество генов размещается в этих хромосомах.

Каковы же принципы наследования генов, расположенных на одной хромосоме? Современная хромосомная теория наследственности создана выдающимся американским генетиком Томасом Морганом (1866–1945).

Первое положение этой теории гласит: ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группы сцепления генов.

Второе положение утверждает, что аллельные гены (гены, отвечающие за один признак) расположены в строго определённых местах (локусах) гомологических хромосом.

Наконец, согласно третьему положению, гены располагаются в хромосомах линейно, т. е. друг за другом.

Основным объектом, с которым работали Морган и его ученики, была плодовая мушка дрозофила, имеющая диплоидный набор из 8 хромосом. Эксперименты показали, что гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, т. е. наследуются сцепленно. Это явление получило название закона Моргана.

Кроссинговер. Однако в тех же опытах было описано и отклонение от этого закона. Среди гибридов второго поколения обязательно было малое число особей с перекомбинацией тех признаков, гены которых лежат в одной хромосоме. Как это можно объяснить?

Для этого необходимо вспомнить ход мейоза, а именно то, что в профазу первого мейотического деления гомологичные хромосомы конъюгируют и могут обмениваться гомологичными участками. Этот процесс, как мы помним, называется кроссинговер; он очень важен для повышения разнообразия потомков. Кроссинговер также был открыт Т. Морганом и его сотрудниками, поэтому хромосомную теорию можно дополнить ещё одним, четвёртым, положением: в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т. е. может происходить кроссинговер.

Таким образом, при кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцепленно, так как часть из них заменяется на аллельные гены гомологичной хромосомы. Иными словами, сцепление генов является неполным.

Хромосомные карты. Явление кроссинговера помогло учёным установить расположение каждого гена в хромосоме, создать генетические карты хромосом. Морган и его сотрудники сделали вывод о том, что чем дальше друг от друга расположены на хромосоме два гена, тем чаще они будут расходиться в разные хромосомы в процессе кроссинговера. Если два гена А и D расположены на противоположных концах одной хромосомы (рис. 60), то они разойдутся в разные хромосомы при любом варианте кроссинговера. Но если речь идёт о двух генах Б и С, расположенных в хромосоме рядом, то они могут разойтись по разным хромосомам только в том случае, если точка перекреста окажется на одном-единственном участке между этими двумя генами. Вероятность такого события не очень велика. Таким образом, вероятность расхождения двух генов по разным хромосомам в процессе кроссинговера зависит от расстояния между ними в хромосоме. Следовательно, подсчитав частоту кроссинговера между какими-либо двумя генами одной хромосомы, отвечающими за различные признаки, можно точно определить расстояние между этими генами, а значит, и начать построение генетической карты, которая представляет собой схему взаимного расположения генов, составляющих одну хромосому.


Рис. 60. Возможные варианты кроссинговера, происходящие между гомологичными хромосомами (вероятность расхождения двух генов в различные хромосомы тем выше, чем дальше друг от друга они расположены)

Хромосомная теория наследственности. Закон Моргана. Кроссинговер. Генетические карты.

1. Что представляет собой ген?

2. В каких случаях справедливо правило независимого наследования признаков?

Читайте также: