Какова роль живых организмов в почвообразовании как влияют растения на почвообразование

Обновлено: 05.10.2024

Живые организмы и почва — неразрывные звенья единой и цельной экосистемы — биогеоценоза. Живые организмы почвы находят здесь и убежище, и питание. В свою очередь, именно обитатели почвы снабжают ее органическими компонентами, без которых почва не имела бы такого важнейшего качества как плодородность.

Фауна почв имеет свое особое наименование — педобионты. К педобионтам относятся не только животные и беспозвоночные, но и микроорганизмы почвы.

Население почвы весьма обширно — в одном кубическом метре грунта могут содержаться миллионы живых организмов.

Почва как среда обитания

Значительное содержание растений в почве создает питательную среду для огромного числа насекомых, которые, в свою очередь, становятся добычей для кротов и других подземных животных. Насекомые почвы представлены значительным количеством разнообразных видов.

Почва как среда жизни неоднородна. Для различных видов существ она предоставляет разнообразные условия обитания. Например, наличие воды в почве создает особую систему миниатюрных водоемов, в которых проживают нематоды, коловратки, различные простейшие.

Почвенная среда

Категории почвенной фауны

Другая категория почвенной жизни — микрофауна. Это существа размером в 2-3 мм. В эту категорию попадают преимущественно членистоногие, не обладающие способностью к рытью ходов — они пользуются существующими грунтовыми полостями.

Более крупные размеры имеют представители мезофауны — личинки насекомых, многоножки, дождевые черви и др. — от 2 мм до 20 мм. Данные представители способны самостоятельно прорывать себе ходы в грунте.

Существует еще группа животных, которые не являются постоянными обитателями почвы, но при этом некоторую часть жизни проводят в подземных убежищах. Это такие норные животные как суслики, кролики, тушканчики, барсуки, лисы и другие.

Почва и черви

Почва и черви


Наиболее важную роль в процессе образования биогумуса, обеспечивающего плодородность почвы, играют дождевые черви. Продвигаясь в толще грунта, они заглатывают земляные элементы вместе с органическими частицами, пропуская через свою пищеварительную систему.

В результате такой переработки дождевыми червями утилизируется огромное количество органических отходов и производится снабжение почвы гумусом.

Другая очень существенная роль дождевых червей — разрыхление почвы, благодаря чему улучшается ее влагопроницаемость и снабжение воздухом.

Дождевые черви, несмотря на свои малые размеры, выполняют грандиозный объем работ. Например, на участке размером в 1 гектар за год дождевые черви перерабатывают более ста тонн земли.

Микрофлора почвы

Биологический фактор очень важен в почвообразовании. Ведь сам процесс формирования почвы начинается с поселения на горной породе живых организмов. Благодаря их жизнедеятельности образуется гумус, накапливаются органические вещества , и грунт обретает плодородие.

Основную роль в почвообразовании играют следующие группы организмов:

  • Растения
  • Микроорганизмы и грибы
  • Животные

О них мы расскажем в этой статье.

Группы организмов, активно влияющие на процесс формирования почвы

Роль растений в почвообразовании

Растения самостоятельно создают органические вещества путем фотосинтеза и являются их основным источником в почве. От особенностей флоры во многом зависит состав почвенного покрова, его характеристики и плодородие.

По своему строению растения условно разделяются на:

  • Низшие (не имеют четкой дифференциации тканей)
  • Высшие (ткани дифференцированы)

В ботанике эти понятия считаются немного устаревшими. Но для понимания особенностей почвообразования они до сих пор используются.

Низшие растения

К низшим растениям относятся:

Роль водорослей в почвообразовании

Водоросли – это первые растения, которые поселяются на разрушенной горной породе и формируют тонкий плодородный слой. Они содержат хлорофилл и путем фотосинтеза образуют органические вещества. Водоросли выделяют щелочи , снижающие кислотность горной породы и почвы.

Эти растения бывают:

Сначала на породе поселяются одноклеточные организмы. В зрелой почве встречаются и многоклеточные водоросли, нити которых покрывают поверхность покрова, проникают в горную породу и разрушают ее.

Сине-зеленые и некоторые другие виды водорослей способны фиксировать азот. Благодаря этим растениям в почве накапливается фосфор. Они становятся источником питания бактерий, грибов и некоторых мелких беспозвоночных. Диатомовые водоросли принимают активное участие в превращении кремния и кальция.

Масса водорослей в 1 га сформировавшейся почвы – от 0,5 до 1,5 т. Чаще всего они покрывают тонкой пленкой верхний слой покрова. Особенно ярко это проявляется на поливных землях в тропической и субтропической зонах. Иногда слой водорослей там может достигать 2-8 мм. Их слизистые оболочки и нити скрепляют частицы грунта , предотвращают ветровую и водную эрозию. На скудных пустынных грунтах они играют едва ли не главную роль в накоплении органического вещества.

С микроорганизмами водоросли могут создавать симбиозы – бактерии поставляют растениям углекислый газ и питаются продуктами их жизнедеятельности. Это стимулирует развитие микрофлоры в почве, ускоряет распад органических веществ и образование гумуса.

В зрелой почве встречаются многоклеточные водоросли, нити которых покрывают поверхность

Роль лишайников в почвообразовании

Лишайники – это специфические организмы, образованные симбиозом гриба и водоросли. Они способствуют разрушению породы и первичному накоплению мелкозема (примитивной почвы, обладающей плодородием). Днем лишайники ведут аутотрофный образ жизни благодаря фотосинтезу водоросли. Ночью эти растения гетеротрофны, используют для питания минералы и органику из субстрата.

Когда водоросль активна, лишайники выделяют в окружающую среду щелочные продукты жизнедеятельности, в период активности гриба – кислые. В результате рН за сутки меняется от 2,5 до 8,5. Это разрушающе действует на горную породу, нарушаются кристаллические связи, высвобождаются минералы, в камнях появляются трещины. Биологическому выветриванию способствуют и органические кислоты, которые выделяют растения. Гифы (нитевидные образования) гриба , входящего в состав лишайника, проникают в мелкие трещины и механически разрушают породу.

Первыми на грунте поселяются накипные (корковые) лишайники. Они плотно связаны с субстратом, отделить их от камня можно только ножом или скальпелем. После их разложения на накопившемся мелкоземе появляются листовые и кустистые лишайники, которые почти полностью покрывают породу. Под ними создаются благоприятные условия для роста водорослей, мха, сохранения тонкого слоя плодородного грунта.

После разложения лишайников образуется почва, в которой содержится до 40% гумуса. Он представлен в основном фульвокислотами, обладает кислой реакцией и низким плодородием. Лишайниковые примитивные почвы встречаются в северной тундре, на лавовых вулканических полях.

Лишайники поселяются прямо на камнях

Лишайники постепенно разрушают прочную горную породу

Высшие растения

Группа высших растений включает:

  • Деревья и кустарники
  • Травы
  • Мох

После отмирания органов высших растений образуется опад. Он поступает в грунт и разлагается до простых органических и минеральных соединений. Из опада формируется гумус, обеспечивающий плодородие почвы.

Роль деревьев и кустарников в почвообразовании

Лесная растительность составляет основную массу флоры на земле. Она представлена многолетними деревьями и кустарниками. В почвообразовании принимают участие не все части растений. Основную роль играют опавшая листва и хвоя, мелкие ветки. Из них образуется лесная подстилка, которая постепенно разлагается и превращается в гумус. Из разложившегося опада в почву возвращается около 100 кг минеральных веществ на 1 га.

Органические вещества в лесах поступают в верхние слои грунта. Испарение воды здесь замедленное. При высокой влажности и большом количестве осадков питательные вещества вымываются в нижние слои п р офиля. Поэтому лесные почвы обладают низким или средним плодородием.

Тип почвы во многом зависит от вида деревьев, которые преобладают в конкретной климатической зоне.

В северных таежных лесах растут в основном хвойные. Их опад богат восками, дубильными веществами и органическими кислотами, в нем мало азота, кальция и магния. Он разлагается медленно при участии грибов, выделяющих кислые продукты жизнедеятельности. В хвойных лесах образуются подзолистые почвы. В их гумусе преобладают фульвокислоты, его слой тонкий, с примесями кремнезема. рН подзолистых почв 4-6, плодородие у них низкое.

В смешанных лесах кроме хвои в грунт попадают листья деревьев. Они богаты основаниями, азотом, кальцием, магнием. Это способствует снижению кислотности и ощелачиванию почвы. В гумусе, наряду с фульвокислотами, содержится много гуминовых кислот, улучшающих плодородие. В смешанных лесах формируются дерново-подзолистые почвы.

Опад широколиственных лесов богаче, чем хвойных и смешанных. Он содержит много азота, кальция, фосфора. Листья разлагаются при помощи бактерий, питательные вещества лучше фиксируются в подстилке и меньше вымываются в нижние слои профиля. Слой гумуса тут толстый, состоит в основном из гуминовых кислот. В таких лесах формируются серые и бурые лесные почвы со средним и высоким плодородием.

Лесная подстилка разлагается, со временем превращаясь в гумус

Хвойный опад

Роль травянистых растений в почвообразовании

Травянистые растения покрывают обширные территории степей, лесостепей, саванн. В основном это однолетние или двухлетние виды, которые полностью отмирают в течение 1-3 сезонов. Источником гумуса являются корни, масса которых значительно превосходит надземную часть. Органические вещества попадают непосредственно в почву, что способствует об р азованию мощного плодородного слоя. В грунт после разложения растений возвращается около 1000 кг/га минеральных веществ.

Травяной опад быстро разлагается. В нем содержится много минералов, азота, кальция, калия и других питательных элементов. Корни трав образуют плотный дерновой слой, в котором задерживается влага. Поэтому полезные вещества не вымываются в нижние слои профиля. Основную часть гумуса составляют гуматы и гуминовые кислоты. Почва обладает нейтральной или слабощелочной реакцией, высоким плодородием. В местах с травянистой растительностью формируются черноземы.

Травянистые растения

Корни травянистых растений уходят глубоко в почву

Роль мха в почвообразовании

Мох появляется на горной породе уже на начальных этапах почвообразования, после водорослей и лишайников. Он растет на мелкоземе, созданном этими низшими растениями. После его появления на рухляке начинают интенсивно развиваться бактерии, появляются первые беспозвоночные (мелкие черви и насекомые), создаются условия для заселения трав, кустов и деревьев.

Нижняя часть стебля мха образует примитивную дернину. Она задерживает влагу и питательные вещества, формирует слой гумуса (иногда мощностью до 15-20 см). В примитивной мохово-лишайниковой почве содержится до 10-40% перегноя.

Мох хорошо впитывает воду и аккумулирует питательные вещества, прежде всего калий, кальций и серу. На втором месте среди химических элементов находятся фосфор и магний, на третьем – натрий и марганец. Немного меньше в почве закрепляются алюминий и кремний. Поскольку разложение мхов идет с участием бактерий, в гумусе много гуминовых кислот , высокое содержание азота – до 0,45-0,95% (в лесной подстилке – 0,20-0,25%).

Мох – это влаголюбивое растение. Его стебли способны впитывать воду. Поэтому мох часто растет в переувлажненных долинах и способствует их заболачиванию. Он играет одну из основных ролей в образовании торфа.

мох

Роль микроорганизмов и грибов в почвообразовании

Микроорганизмы заселяют верхние 20 см плодородного слоя грунта. В 1 г насчитывается от 200 млн (в глинистой почве) до 1-3 млрд (в черноземах) клеток. В 1 га масса микроорганизмов составляет 1-5 т.

Основную роль в почвообразовании играют бактерии и грибы. Они превращают сложные органические вещества в более простые, способствуют образованию гумуса. Одна из важных функций микрофлоры – фиксация азота в грунте.

Микроорганизмы участвуют в разрушении минеральных веществ и горной породы.

При этом задействуются следующие механизмы:

  • Растворение минералов сильными кислотами, образующимися в процессе нитрификации и окисления серы
  • Действие органических кислот, выделяемых грибами и бактериями в процессе брожения
  • Взаимодействие с аминокислотами, которые выделяют бактерии
  • Разрушение минералов соединениями, образующимися при разложении микроорганизмами растительных остатков (полифенолами, флавоноидами, танинами и другими)
  • Разрушение минералов продуктами микробного синтеза (полисахаридами и другими соединениями)

Бактерии и грибы также синтезируют минеральные вещества. Процесс связан с обменом веществ и химических элементов в микроорганизмах (железа, калия, алюминия, фосфора, серы, кальция). Например, благодаря бактериям, накапливающим алюминий , образуются бокситы. Эти микроорганизмы могут обогащать почвы соединениями кальция, глиноземами, кремнеземами, железом.

Каждый вид микроорганизмов играет свою особую роль в почвообразовании. Дальше мы рассмотрим основные две группы – грибы и бактерии.

Роль грибов в почвообразовании

Грибы – это одноклеточные или многоклеточные организмы с гетеротрофным типом питания. Они разлагают лигнин, клетчатку, дубильные вещества, протеины. Во внешнюю среду грибы выделяют ферменты и кислоты, которые участвуют в разрушении минералов.

Многоклеточные грибы образуют разветвленный мицелий. Его нити пронизывают и укрепляют плодородный грунт, формируют его зернистую структуру. На начальных этапах почвообразования гифы (нитевидные образования) проникают в микротрещины породы и разрушают ее. Многие виды вступают в симбиоз с высшими растениями. От них они получают органические вещества, отдавая взамен азот и минералы. Ряд грибов паразитирует на вредителях корней (насекомых, нематодах).

Больше всего грибов в лесной подстилке. Они хорошо чувствуют себя в кислой среде. Продукты их жизнедеятельности способствуют формированию подзолистых почв.

Роль бактерий в почвообразовании

Бактерии играют едва ли не главную роль в разложении органических и минеральных веществ, синтезе вторичных минералов, образовании гумуса. Они бывают автотрофными и гетеротрофными, аэробными (нуждаются в свободном кислороде) и анаэробными (получают кислород из продуктов окисления).

Аэробное разложение проходит в верхних слоях грунта и на хорошо разрыхленной земле. Оно приводит к полному распаду органики, выделению энергии. Образуются минеральные вещества , доступные для растений.

Анаэробный распад характерен для затопленных участков, глубинных слоев грунта. Проходят брожение и неполный распад остатков растений с образованием сложных органических и минеральных соединений. Если такие процессы преобладают, образуются болотистые или глеевые почвы с кислой реакцией.

Основные функции бактерий в почве:

  • Фиксация азота
    Этот элемент поступает в почву из воздуха и образуется после разложения белка. Главные фиксаторы азота – фотобактерии, клубневые бактерии (живут у корней бобовых растений), азотобактерии.
  • Нитрификация и денитрификация
    Бактерии превращают аммиак в азотистую и азотную кислоту. После этого азот становится доступным для усвоения растениями. Эту функцию выполняют псевдомонады, почкующиеся бактерии.
  • Разложение сложных углеводов (лигнина, целлюлозы, полисахаридов)
    В процессе участвуют цитофаги, спорообразующие бациллы и сахаролитические бактерии.
  • Разложение белков
    В аэробных условиях распад белков обеспечивают энтеробактерии, в анаэробных – клостридии.
  • Сбраживание пуринов и пиримидинов
    Этот процесс в анаэробных условиях обеспечивают пуринолитические бактерии.
  • Окисление органических кислот
    Окисление происходит сульфатредуцирующими бактериями.
  • Минерализация органических веществ
    Она обеспечивается артробактериями.
  • Распад гуминовых веществ
    Сложные гуминовые вещества распадаются благодаря нокардиям.

Вся деятельность микроорганизмов сводится к тому, чтобы превратить сложные органические вещества в простые элементы, доступные для растений. Без их участия отмершие остатки не разлагались бы , образование почвы стало бы невозможным.

Роль животных в почвообразовании

Почва – это место обитания сотен видов животных, от одноклеточных амеб и инфузорий до млекопитающих. Их роль в почвообразовании хоть и не основная, но очень важная.

Всех почвенных животных условно можно разделить на 4 группы:

  • Микрофауна (размеры до 0,2 мм)
    Группа включает одноклеточные организмы, миниатюрных насекомых, нематод, эхинококки, личинки.
  • Мезофауна (от 0,2 мм до 4 мм)
    Сюда входят мелкие насекомые, их личинки, некоторые виды червей.
  • Макрофауна (от 4 мм до 80 мм)
    Группа включает дождевых и других крупных червей, муравьев, жуков, термитов, моллюсков.
  • Мегафауна (больше 80 мм)
    Сюда входят очень крупные насекомые и черви, земляные крабы, земноводные, пресмыкающиеся (змеи, ящерицы, земляные черепахи), млекопитающие (роющие норы кроты, мыши, кролики, барсуки, лисы, тушканчики, травоядные животные).

Одну из важнейших функций в почвообразовании играют дождевые черви. Эти животные питаются полуразложившейся органикой, пропуская через себя огромные массы грунта (от 50 до 400 т/га). По мнению ученых, практически весь чернозем проходит через организм дождевых червей. За год на гектаре образуется около 25 т копролитов (выделений червей).

Черви в почве

Вместе с копролитами в почву попадают продукты жизнедеятельности червей, богатые полисахаридами, аминокислотами. Они становятся средой для обитания грибков и бактерий. Микроорганизмы разлагают органические вещества до простых химических элементов, доступных для растений.

Кроме переработки грунта, дождевые черви улучшают его структуру. Они роют многочисленные ходы, обеспечивая хорошую аэрацию. Частицы, пропущенные через кишечник, становятся липкими. Вокруг них формируются специфичные комки почвы , хорошо сохраняющие питательные вещества.

Простейшие регулируют численность бактерий, принимают участие в переработке простых органических соединений. Мелкие и крупные беспозвоночные животные, как и дождевые черви, перерабатывают сложные органические соединения, пушат грунт, обогащают его продуктами своей жизнедеятельности.

Рептилии, земноводные и млекопитающие играют меньшую роль в почвообразовании. Главную функцию выполняют грызуны, которые роют норы, перемешивают разные слои профиля, включая их в почвообразование. Животные обогащают грунт экскрементами. После смерти их тушки становятся источником протеинов, аминокислот и азотистых соединений. Травоядные не живут непосредственно в грунте, но они удобряют землю своими экскрементами, стимулируют рост корневой системы трав, съедая их верхнюю часть.

норка крота

корова ест траву

Все живые организмы в почве участвуют в непрерывном обороте органических и минеральных веществ. Это обеспечивает стабильное плодородие покрова – все находится в равновесии. Но оно нарушается при обработке почвы. Ведь с полей убирается зеленая масса растений , гербициды и пестициды уничтожают сорняки, почвенных насекомых, червей, некоторые микроорганизмы. Поэтому сельскохозяйственные земли нуждаются в постоянном внесении удобрений. Подробнее об этом вы можете узнать на нашей странице Деятельность человека как фактор почвообразования.

Растительность (высшая и низшая) создает в природе биологический круговорот зольных веществ и обогащает почву органическими остатками. Она является основ­ным фактором почвообразования.

Сущность процесса почвообра­зования проявляется в природе через растительные формации. Растительные формации представляют собой комбинации выс­ших и низших растений, взаимодействующих в определенных условиях среды.

На территории России выделяют следующие группировки рас­тительных формаций (Н. Н. Розову): 1) деревянистые (таеж­ные леса, широколиственные леса, леса влажных субтропиков); переходные деревянисто-травянистые (ксерофитные леса); травянистые (суходольные и заболоченные луга, степи умерен­ного пояса, субтропические кустарниковые степи); 4) пустынные; 5) лишайниково-моховые (тундра, верховые болота).

Каждая группа растительных формаций характеризуется свои­ми особенностями: составом органических веществ, особенностя­ми их поступления в почву и разложением, а также взаимодейст­вием продуктов распада с минеральной частью почвы.

Различия растительных формаций — основная причина много­образия почв в природе. В одних и тех же условиях таежно-лесной зоны под хвойными сомкнутыми лесами развиваются подзо­листые, а на лугах формируются дерновые почвы.

В зависимости от биологических особенностей по количеству и качеству создаваемой биомассы, воздействию на процесс почво­образования зеленые растения подразделяются на деревянистые и травянистые.

Деревянистые растения (деревья, кустарники, полукустарни­ки) — многолетние, живущие десятки и сотни лет. Ежегодно у них отмирает только часть наземной массы (хвоя, листья, ветви, пло­ды), и она откладывается на поверхности почвы в виде опада или лесной подстилки. Деревянистые растения характеризуются соз­данием огромной биомассы, главным образом наземной, но их ежегодный опад меньше прироста, и поэтому с опадом в почву возвращается сравнительно небольшое количество зольных эле­ментов и азота. В опаде деревьев, особенно хвойных, содержится много клетчатки, лигнина, дубильных веществ, смол. Продукты разложения лесной подстилки взаимодействуют с почвой в рас­творе при промывании толщи почвы осадками.

Продолжительность жизни травянистых растений колеблется от нескольких недель (эфемеры) до 1—2 лет (злаки) и 3—5 лет (бобовые). Однако корни и корневища живут до 7—15 лет и больше.

В процессах почвообразования эффект от травянистых расте­ний больше, чем от деревянистых, хотя количество биомассы, создаваемое травянистыми ассоциациями, меньше. Это объясня­ется непродолжительностью жизни травянистых растений и быст­рой оборачиваемостью всех компонентов, вовлекаемых ими в биологический круговорот в системе растения — почва. Почва ежегодно обогащается органическими остатками трав в виде наземной массы (при условии, если она не отчуждается) и корней. Корневые остатки, в отличие от наземной массы, раз­лагаются непосредственно на месте, в почве, и продукты их раз­ложения взаимодействуют с ее минеральной частью.

Остатки травянистых растений по сравнению с лесным опадом содержат меньше клетчатки, больше белков, зольных элемен­тов и азота. Для травянистых остатков характерна нейтральная или слабощелочная реакция.

Мхи — растительные организмы, лишенные корневой системы и усваивающие элементы питания всей поверхностью органов. Они широко встречаются под пологом леса и на болотах. Мхи при­крепляются к любому субстрату ризоидами. Они могут поглощать и удерживать большое количество влаги, поэтому процесс разло­жения растительных остатков протекает медленно, с постепенным накоплением торфа и заболачиванием. В образовании, верховых болот особо следует отметить роль сфагновых (белых) мхов.

Микроорганизмы. Из микроорганизмов в почве широко пред­ставлены бактерии, грибы, актиномицеты, водоросли и простей­шие. Наибольшее количество микроорганизмов встречается в верхних ее слоях, где сосредоточивается основная масса органи­ческого вещества и корней живых растений.

Микроорганизмы способствуют разложению органических остатков в почве.

По отношению к воздуху различают микроорганизмы аэроб­ные и анаэробные. Аэробные — это организмы, которые в процес­се жизнедеятельности потребляют кислород; анаэробы — живут и развиваются в бескислородной среде. Необходимую для жизне­деятельности энергию они получают в результате сопряженных окислительно-восстановительных реакций. На реакции разложе­ния и синтеза, идущие в почве, влияют различные ферменты, вы­рабатываемые микроорганизмами. В зависимости от типа почв, степени их окультуренности общее количество микроорганизмов в 1 г дерново-подзолистых почв может достигать 0,6—2,0 млрд., черноземов — 2—3 млрд.

Бактерии — наиболее распространенный вид почвенных микро­организмов. По способу питания они делятся на автотрофные, усваивающие углерод из углекислого газа, и гетеротрофные, использующие углерод органических соединений.

Бактерии-аэробы окисляют различные органические вещества в почве, в том числе осуществляют процесс аммонификации — разложения азотистых органических веществ до аммиака, окис­ление клетчатки, лигнина и пр.

Разложение органических остатков гетеротрофными анаэроб­ными бактериями называется процессом брожения (брожение углеводов, пектиновых веществ и др.). Наряду с брожением в анаэробных условиях происходит денитрификация — восстановле­ние нитратов до молекулярного азота, что может привести к зна­чительным потерям азота в почвах с плохой аэрацией.

Грибы и актиномицеты (лучистые грибы). Количество грибов в 1 г почвы может достигать 200—500 тыс. Грибы относятся к сапрофитам — организмам, использующим углерод органических остатков. Грибы — аэробные организмы, они хорошо развиваются при кислой реакции среды, разлагают углеводы, лигнин, клетчат­ку, жиры, белки и другие соединения.

Животные. Почва представляет собой благоприятную среду для обитания многих видов животных, в том числе червей, насе­комых, позвоночных животных. Большинство животных, исполь­зуя органические остатки для питания, измельчают их, перемещают и перемешивают с минеральной частью почвы.

Важнейшая основа почвообразовательного процесса – малый биологический круговорот веществ, осуществляемый в результате жизнедеятельности трех групп организмов:

Зеленые растения

Зеленым растениям принадлежит ведущая роль в почвообразовательном процессе, они извлекают из породы зольные элементы и азот, синтезируют в процессе фотосинтеза органическое вещество, которое вместе с зольными элементами через опад и отпад попадает в почву и на почву. Основной их функцией как почвообразователей следует считать биологический круговорот веществ – поступление из почвы элементов питания и воды, синтез органической массы и возврат ее в почву после завершения жизненного цикла.

Что приводит к постепенному развитию почвенного профиля и плодородия. Зеленые растения участвуют в трансформации минералов почвы – разрушении одних и синтезе других новых, в формировании сложениях всей корнеобитаемой части профиля, а также в регулировании водно-воздушного и теплового режимов.

Характер участия зеленых растений в почвообразовании различен, он зависит от типа растительности и интенсивности биологического круговорота.

Лесная растительность участвует в почвообразовании в виде опада хвои и листьев на поверхности почвы и при промывном режиме. В результате формируются низкоплодородные кислые подзолистые почвы с невысоким содержанием зольных элементов и грубого гумуса.

В широколиственных лесах в биологический круговорот поступает значительное содержание зольных элементов и азота, кроме того в таком лесу в гумусообразовании участвует травянистая растительность, в результате образуется более мягкий гумус. Формируются дерново-подзолистые, бурые лесные, серые почвы.

В травянистой растительности на лугах и в степях, богаты зольными элементами и азотом, хорошо развит дерновый процесс, сопровождающий накопление насыщенного кальцием гумуса гуматного типа. В результате образуются черноземные почвы, самые плодородные из всех почв, а на лугах – луговые, лугово-дерновые, обладающие высоким плодородием.

Для пустынь и полупустынь с эфемерным растительным покровом характерна высокая, но кратковременная биогенность почвообразовательного процесса, в результате образуются бедные гумусом почвы серо-бурые, бурые пустынные почвы.

Для моховой – лишайниковой растительности из-за низкой интенсивности биологического круговорота веществ си высокой влагоемкости мхов характерно превращение растительных мхов в торф.

Можно сделать вывод, что каждая растительная форма обладает своими особенностями и взаимодействием продуктов распада с минеральной частью почвы, что влияет на направленность почвообразовательных процессов, она служит индикатором изменений почвенных условий.

Микроорганизма

Им принадлежит главная роль в процессе гумификации и минерализации растительных остатков и гумуса, в разрушении и новообразовании почвенных минералов. Они оказывают влияние на состав почвенного воздуха, трансформация органических веществ, образование различных простых солей из компонентов минеральных и органических соединений почвы, участие в нарушении и новообразовании почвенных минералов и миграции и аккумуляции продуктов почвообразования.

Бактерии – в зависимости от способа питания разделяются на: гетеротрофные и автотрофные. Осуществляют процессы превращения органических и минеральных соединений в почвах.

Актиномицеты (лучистые грибы) – используют в качестве источника углерода разнообразные органические соединения. Они могут разлагать клетчатку, лигнин, перегнойные вещества почвы. Участвуют в образовании гумуса.

Грибы – нитевидные гетеротрофные сапрофитные микроорганизмы. Они активно участвуют в процессе минерализации и гумификации органических веществ. Их деятельность способствует образованию фульво-кислотного гумуса, способность разрушать минералы.

Многие виды грибов находятся в симбиозе с высшими растениями и способствуют снабжению растений питательными веществами.

Водоросли – содержат в своих клетках хлорофилл, выделяют в воду кислород, участвуют в процессе выветривания пород и первичном процессе почвообразования.

Лишайники – состоят из гриба и водоросли. Гриб обеспечивает водоросли водой и растворенными в ней минеральными веществами, водоросли же вырабатывают углеводы, которые использует гриб.

Симбиоз – сожительство грибов и водорослей, в результате чего образуются лишайники, или сожительство грибов с растениями.

Все группы микроорганизмов наиболее активны при реакции среды, близкой к нейтральной.

Процесс превращения веществ микроорганизмами осуществляется при участии разнообразных групп ферментов.

Группы ферменты:

Гидролаз – осуществляют гидролитическое расщепление белков, углеводов, липидов, смол, лигнина, дубильных веществ до относительно простых органических соединений.

Оксидоредуктазы - катализируют процессы окисления и восстановления органических соединений.

Микроорганизмы участвуют в процессах разложения и новообразования почвенных минералов.

Численность и активность почвенных микроорганизмов зависит от агротехники, так как различные виды обработки почвы, мелиорации, удобрения изменяя питательный режим, водные, воздушные могут оказывать отрицательное значение на их деятельность. А также не мало важным фактором, определяющим состав и численность микроорганизмов, является реакция почвенной среды. Кислые и сильнощелочные почвы неблагоприятны.

Животные

К животному миру, принимающему активное участие в жизни почвы, относятся различные представители простейших, беспозвоночных и позвоночных животных.

(Микрофауна размером менее 0,2 мм) Простейшие – к ним относятся жгутиковые, корненожки, и инфузории. По способу питания в большей степени гетротрофы. Они питаются микроорганизма, населяющими почву. Вопрос о роли простейших еще до конца не выяснен. Возможно, что простейшие поедая старые бактериальные клетки, облегчают размножение оставшимся и приводят к появлению значительного числа молодых.

(мезофауна размером от 0,2 – 0,4 мм) Беспозвоночные – дождевые черви, энхитреиды, членистоногие (клещи, ногохвостки). Они используя в пищу растительные остатки тем самым ускоряют биологический круговорот; проделывая ходы и норки, улучшают физические свойства почвы.

(Макрофауна размером 4-80 мм) Насекомые – жуки, муравьи и т.д. проделывают в почве ходы, они разрыхляют почву. Перерабатывая растительные остатки они обогащают почву гумусом.

(Мегафауна размером более 80мм) Позвоночные – грызуны. Роют в почвенной толще, перемешивая и выбрасывая на поверхность огромное количество земли. В степных районах землерои сильно перемешивают верхние горизонты с нижними, выбрасывая на верх почву нижних горизонтов, что образует своеобразный микрорельеф.

Влияние гранулометрического, минералогического, химического состава почвообразующих пород на почвообразование, агрономические свойства почв и плодородие, приёмы обработки и внесение удобрений.

Гранулометрический состав почвы оказывает сильное влияние на ее агрономические свойства. Песчаные и супесчаные почвы называют легкими. Вода сквозь них быстро просачивается, легко испаряется. Такие почвы имеют мало влаги, но много воздуха. Поверхность их быстро нагревается и остывает. Питательные вещества легко вымываются. Органические вещества быстро минерализуются. Поэтому, на почвах легкого механического состава необходимо вносить органические удобрения большими дозами, а минеральные – малыми.

Легко- и среднесуглинистые почвы – умеренно тяжелые. Они имеют сравнительно оптимальные физические свойства: хорошо связывают воду, но и достаточно насыщены воздухом. Хорошо окультуриваются. Элементов питания для нормальной жизнедеятельности растений содержат сравнительно достаточно. Их органические остатки быстро образуют гумус.

Тяжелосуглинистые, глинистые почвы – тяжелые. Они слабопроницаемы для воды и воздуха, способны удерживать много влаги, которая в значительной степени может оставаться недоступной для растений. Эти почвы часто переувлажнены, холодные. Кроме того, они сильно уплотняются, и при высыхании на их поверхности образуются трещины. Глинистые почвы содержат значительные количества элементов питания, но растения не всегда могут их использовать.

Таким образом, гранулометрический состав во многом определяет плодородие почвы; от него зависят многие важные физические и физико-химические свойства. Информация о механическом составе почвы необходима при решении многих практических вопросов. Так, она нужна при определении доз и способов внесения удобрений, извести, сроков и приемов обработки почвы, подбора сельскохозяйственных культур и почвообрабатывающей техники, глубины заделки семян и удобрений, сроков посева и др.

Механический состав почв можно улучшить путем глинования легких и пескования тяжелых. В естественных условиях с механическим составом почвы связано формирование определенных фитоценозов. Так, на песчаных местообитаниях обычно произрастает сосна, вереск, лишайники из рода кладония цетрария; из зеленых мхов – мох Шребера, Дикранум; из разнотравья – бессмертник, ястребинка волосистая, икотник серо-зеленый, эспарцет песчаный, вейники и др. Не выносят песчаных почв ель, дуб, слива, вишня и др.

В агроэкосистемах не все культурные растения одинаково реагируют на механический состав почвы. На почвах легкого механического состава неплохо удаются люпины, овес, рожь, картофель (последний на этих почвах дает клубни более высоких вкусовых качеств).

Гранулометрический состав определяет многие физические свойства и водно-воздушный режим почв, а также химические, физико-химические и биологические свойства.

Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величиныёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую прочность. Тяжёлые почвы могут иметь проблемы с воздухосодержанием, лёгкие — с водным режимом.

Разные фракции обычно представлены различными минералами. Так, в крупных преобладает кварц, в мелких — каолинит, монтмориллонит. По фракциям различается способность образовывать с гумусоморганоминеральные соединения.

Влияние гранулометрического состава на продуктивность растений

Продуктивность растений на почвах различного гранулометрического состава может существенно различаться, что объясняется различием в свойствах почв. Оптимальный гранулометрический состав зависит от условий влагообеспеченности и технологии возделывания. В засушливых условиях низкий запас влаги в лёгких почвах (супесях и песках) и слабый капиллярный подъём приводят к существенному снижению урожайности. В условиях хорошего и избыточного увлажнения такие почвы лучше аэрируются и растения на них чувствуют себя лучше. Низкий запас элементов питания в лёгких почвах можно легко устранить при внесении удобрений, которые имеют высокую эффективность на таких почвах вследствие малой буферности.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.006)

Читайте также: