Организму человека необходимы микроэлементы использование которых в комплексных удобрениях

Обновлено: 05.10.2024

Минеральный состав внутриклеточной жидкости строго поддерживается на определенном уровне.

Элементы вместе с водой являются строительным материалами, кофакторами и катализаторами биохимических реакций, стабилизаторами белков и ферментов, обеспечивая постоянство осмотического давления, кислотно-щелочного баланса, процессов всасывания, секреции, кроветворения, костеобразования, свертывания крови. Благодаря присутствию элементов осуществляется процесс мышечного сокращения, нервной проводимости и внутриклеточного дыхания. Химические элементы в организме находятся в виде различных соединений и солей, их влияние на организма обусловлено дозой элемента. Для каждого элемента существует свой физиологический рабочий диапазон концентраций, обеспечивающий нормальное протекание физиологических реакций в организме.

Микроэлементы составляют лишь 0,02% организма, но способны изменять протекание важнейших биологических реакций. Анализ волос или мочи позволяет выявить избыточное накопление микроэлементов или их дефицит. Содержание микроэлементов в волосах отражает микроэлементный статус организма в целом, поэтому пробы волос являются интегральным показателем минерального обмена. Волосы помогают диагностировать хронические заболевания, когда они себя еще ничем не проявляют.

Железо (Fe)

Железо является жизненно необходимым элементом для организма. Железо входит в состав гемсодержащих белков (гемоглобин и миоглобин) и участвует в переносе кислорода. Железо также входит в состав цитохромов (сложные белки, относящиеся к классу хромопротеидов), участвующих в процессах тканевого дыхания.

Общее содержание железа в организме человека составляет 3-5 г. Из этого количества 57% находится в гемоглобине крови, 23% — в тканях и тканевых ферментах (ферритин и гемосидерин), а остальные 20% — депонированы в печени, селезенке, костном мозге, мышцах и представляют собой "физиологический резерв" железа. Железо существует в двух формах: окисленной (Fe3+) и воcстановленной (Fe2+). Восстановленная форма лучше усваивается организмом. Только 10 % поступившего железо всасывается в кишечнике.

  • мужчины: 8–10 мг/сут;
  • женщины: 15–20 мг/сут;
  • беременных женщины: 30–40 мг/сут;
  • дети: 4–18 мг/сут.

Недостаток железа приводит к тяжелым расстройствам, наиболее важным из которых является железодефицитная анемия. Железодефицитная анемия может привести к сердечной недостаточности.

Избыточное накопление железа приводит к отложению металла в органах (печень, поджелудочная железа, суставы, сердце). Явления отравления железом выражаются рвотой, диареей, падением артериального давления, параличом ЦНС и воспалением почек. При лечении железом могут развиться запоры, так как железо связывает сероводород, что ослабляет моторику кишечника. Избыток железа в организме может привести к дефициту меди, цинка, хрома и кальция, а также к избытку кобальта.

Йод необходим на всех этапах жизнедеятельности. Период младенчества и раннего детства являются критическими в отношении дефицита йода. Йод входит в состав гормонов щитовидной железы тироксина (T4) и трийодтиронина (T3). Йод необходим для роста и дифференцировки клеток всех тканей организма человека, внутриклеточного дыхания, регуляции трансмембранного транспорта натрия и гормонов.

Общее количество йода в организме составляет 25 мг, из них 15 мг аккумулирует щитовидная железа. Значительное количество йода содержится в печени, почках, коже, волосах, ногтях, яичниках и предстательной железе.

  • взрослые: 100–150 мкг/сут;
  • беременные: 175–200 мкг/сут;
  • дети: от 60 до 150 мкг/сут.

При недостаточном поступлении йода у взрослых увеличиваются размеры щитовидной железы, замедляется основной обмен, наблюдается падение артериального давления. У детей недостаток йода сопровождается резкими изменениями всей структуры тела: ребенок отстает в умственном и физическом развитии.

Избыток йода в организме наблюдается при гипертиреозе. Развивается Базедова болезнь, сопровождающаяся экзофтальмом, тахикардией, раздражительностью, мышечной слабостью, потливостью, исхуданием, склонностью к диарее. Повышение основного обмена ведет к гипертермии, дистрофическим изменениям кожи и ее придатков, раннему поседению, депигментации кожи на ограниченных участках (витилиго), атрофии мышц.

Марганец (Mn)

Важен для репродуктивных функций и нормальной работы центральной нервной системы. Марганец участвует в синтезе нейромедиаторов, улучшает мышечные рефлексы, обеспечивает развитие соединительной и костной ткани, увеличивает утилизацию жиров, усиливает эффекты инсулина.

3–5 % поступившего марганца всасывается. Наиболее богаты марганцем трубчатые кости и печень, поджелудочная железа. Марганец содержится в клетках, богатых митохондриями.

  • взрослые: 2–5 мг/сут;
  • для детей в 2 раза выше.

При недостатке марганца нарушаются процессы окостенения во всем скелете, трубчатые кости утолщаются и укорачиваются, суставы деформируются. Нарушается репродуктивная функция яичников и яичек.

Избыток марганца усиливает дефицит магния и меди.

Медь принимает участие в поддержание эластичности связок, сухожилий, кожи и стенок легочных альвеол, стенок капилляров, а также прочности костей. Медь входит в состав защитных оболочек нервных волокон, участвует в процессах пигментации, так как входит в состав меланина. Медь влияет на углеводный обмен, посредством усиления процессов окисления глюкозы и торможения распада гликогена мышц и печени. Медь обладает противовоспалительными действиями, помогает при борьбе с бактериальными агентами. Медь является кофактором ферментов антиоксидантной защиты и помогает нейтрализовать действие свободных радикалов.

Общее содержание меди в организме человека составляет примерно 100–150 мг. Лучше всего организм усваивает двухвалентную медь. В тонком кишечнике всасывается до 95% меди, поступившей с пищей. Основное "депо" меди в организме — печень, поскольку синтезирует белок-переносчик меди церулоплазмин.

  • взрослые: 1 мг/сут;
  • дети: от 0,5 до 1 мг/сут.

При недостатке меди в организме наблюдаются: задержка роста, анемия, дерматозы, депигментация волос, частичное облысение, потеря аппетита, сильное исхудание, понижение уровня гемоглобина, атрофия сердечной мышцы. Избыток меди приводит к дефициту цинка и мoлибдена, а также марганца.

Молибден (Мо)

Способствует метаболизму углеводов и жиров, является важной частью фермента, отвечающего за утилизацию железа, в связи с чем помогает предупредить анемию. Принимает участие в обмене мочевой кислоты, включении фтора в состав эмали зубов, гемопоэзе.

Биодоступность молибдена составляет 50%. Молибден не депонируется в организме, а распределяется между клетками крови.

  • взрослые: 45–100 мкг/сут;
  • дети: от 0,5 до 1 мг/сут.

Селен (Sе)

Элемент антиоксидантной защиты, хорошо сочетается с витамином Е. Селен помогает поддерживать должную эластичность тканей. Селен усиливает иммунитет, поэтому активно используется в онкологической практике, в лечении гепатитов, панкреатитов, кардиомиопатий. Селен защищает организм от тяжёлых металлов.

Всасывается в тонком кишечнике, депонируется в почках, печени, костном мозге.

  • женщины: 50 мкг/сут;
  • беременные: 65 мкг/сут;
  • мужчины: 70 мкг/сут;
  • дети: 10-50 мкг/сут.

При дефиците селена в организме усиленно накапливаются мышьяк и кадмий, которые, в свою очередь, еще больше усугубляют его дефицит.

Избыток селена приводит к гепато- и холецистопатиям, изменениям работы нервно-мышечного аппарата (боли в конечностях, судороги, чувство онемения). Избыток может привести к дефициту кальция.

Цинк (Zn)

Цинк входит в состав более 300 ферментов, чем объясняет его влияние на углеводный, жировой и белковый обмен веществ, на окислительно-восстановительные процессы, регуляцию активности генов. Цинк связан с правильным функционированием репродуктивной, неврологической, иммунной систем, ЖКТ и кожи. Присутствие микроэлемента важно для нормального сперматогенеза, органогенеза, работы нейромедиаторов и панкреатических ферментов, правильного развития тимуса, эпителизации ран в процессе заживления и ощущения вкуса.

В организме содержится около 1,5–3 г цинка. Цинк всасывается в тонком кишечнике. Медь является антагонистом цинка, и конкурирует с цинком за всасывание в кишечнике. 99% цинка находится внутриклеточно, 1% — в плазме. Цинк присутствует во всех органах и тканях, но в большей степени цинк депонируют предстательная железа, семенники, мышцы, кожа, волосы.

Физиологическая потребность в цинке составляет: 12 мг/сут для взрослых, 3–2 мг/сут для детей.

Наиболее богаты цинком дрожжи, пшеничные, рисовые и ржаные отруби, зерна злаков и бобовых, какао, морепродукты, грибы, лук, картофель.

При дефиците цинка наблюдается задержка роста, перевозбуждение нервной системы и быстрое утомление. Поражение кожи происходит с утолщением эпидермиса, отеком кожи, слизистых оболочек рта и пищевода, ослаблением и выпадением волос. Недостаточное поступление цинка приводит к бесплодию. Дефицит цинка может приводить к усиленному накоплению железа, меди, кадмия, свинца.

При цинковом отравлении наступает фиброзное перерождение поджелудочной железы. Избыток цинка задерживает рост и нарушает минерализацию костей.

В организме 1,5 г кобальта. Биодоступность кобальта 20%. В организм кобальт депонируется в печени, костной ткани и мышцах.

Физиологическая потребность в кобальте составляет: 10 мкг/сут для взрослых.

Кобальт содержится в печени, молоке, овощах.

Дефицит кобальта связан с В12-дефицитной анемией, вегетарианством или паразитарной инвазией. Избыток кобальта наблюдается при интоксикации кобальта (вредное производство, разрушение ортопедических имплантантов).

Никель (Ni)

Никель пролонгирует эффекты инсулина, участвует в окислении аскорбиновой кислоты, ускоряет образование дисульфидных групп.

Никель всасывается в кишечнике, биодоступность от 1 до 10 %. Запасы никеля находятся в поджелудочной железе, легких, сердце.

Физиологическая потребность в никеле составляет: 100–200 мкг/сут для взрослых.

Богаты никелем чай, гречиха, морковь и салат.

Дефицит никеля не описан. Избыток никеля наблюдается при его токсическом поступлении, злокачественных новообразованиях легких, ожогах, инсультах и инфарктах. Избыток может проявлять потерей пигментацией кожи.

Задание №3493.
Расстановка знаков препинания. ЕГЭ по русскому

Расставьте знаки препинания: укажите цифру(-ы), на месте которой(-ых) в предложении должна(-ы) стоять запятая(-ые).

Организму человека (1) необходимы микроэлементы (2) использование (3) которых (4) в комплексных удобрениях (5) увеличивает питательную ценность плодов и овощей.

Пояснение:
Организму человека ()1 необходимы микроэлементы(,)2 использование ()3 которых ()4 в комплексных удобрениях ()5 увеличивает питательную ценность плодов и овощей.

Показать ответ
2


Задание 19 № 5117

Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых) в предложении должна(-ы) стоять запятая(-ые).

Организму человека (1) необходимы микроэлементы (2) использование (3) которых (4) в комплексных удобрениях (5) увеличивает питательную ценность плодов и овощей.

Пояснение (см. также Правило ниже).

Приведем верное написание.

Организму человека необходимы микроэлементы, использование которых в комплексных удобрениях

увеличивает питательную ценность плодов и овощей.

Запятая 2 выделяет придаточное предложение.

Запятая должна стоять на месте 2.

Правило: Задание 19. Знаки препинания в сложноподчинённом предложении

ЗАДАНИЕ 19 ЕГЭ (2016 год): РАССТАНОВКА ЗНАКОВ ПРЕПИНАНИЯ В СЛОЖНОПОДЧИНЁННОМ ПРЕДЛОЖЕНИИ.

Особенности выполнения задания 18.

Цель задания:Рас­ставь­те знаки пре­пи­на­ния: ука­жи­те все цифры, на месте ко­то­рых в пред­ло­же­нии долж­ны сто­ять за­пя­тые. При такой формулировке ответ может содержать как одну, так и более цифр. Написание ука­жи­те все цифры(У) очень сильно облегчает задание и делает его более лёгким, чем остальные. Поэтому на РЕШУЕГЭ формулировка будет только такой.

От учащихся требуется проявить умение расставлять знаки препинания в сложноподчинённом предложении.

Для выработки навыка осмысленной постановки знаков препинания необходимо:

1. Понимать, что такое СПП , для этого обратимся к разделу Справки Ссылка;

2. Уметь определять основы главного и придаточного предложений;

3. Понимать, что союзное слово который далеко не всегда стоит в начале придаточного предложения и оно может быть в разном роде, числе падеже, с предлогом или без, что перед ним могут стоять другие члены придаточного предложения;

4. Учитывать, что главное предложение может быть осложнено однородными членами, в частности, сказуемыми;

5. Иметь в виду, что иногда в главном предложении могут быть причастные обороты, необособляемые запятыми, и искать запятую для их обособления не нужно. Таких запятых просто не будет.

Рассмотрим предложения из каталога РЕШУЕГЭ. Начнём с самых простых.

Рас­ставь­те знаки пре­пи­на­ния: ука­жи­те все цифры, на месте ко­то­рых в пред­ло­же­нии долж­ны сто­ять за­пя­тые.

Мо­гу­чая даль­не­во­сточ­ная тайга (1) уди­ви­тель­ной кра­со­той (2) ко­то­рой (3) мы лю­бо­ва­лись (4) пред­став­ля­ла без­бреж­ный зе­ле­ный океан.

[Мо­гу­чая даль­не­во­сточ­ная тайга какая? ,( уди­ви­тель­ной кра­со­той ко­то­рой мы лю­бо­ва­лись ), пред­став­ля­ла без­бреж­ный зе­ле­ный океан ].

Верный ответ 1 и 4.

В сти­хо­тво­ре­нии (1) Пуш­кин вспо­ми­на­ет своё двух­лет­нее из­гна­ние и няню (2) шагов (3) ко­то­рой (4) он уже ни­ко­гда не услы­шит.

[В сти­хо­тво­ре­нии Пуш­кин вспо­ми­на­ет своё двух­лет­нее из­гна­ние и няню], какую? ( шагов ко­то­рой он уже ни­ко­гда не услы­шит .)

Более сложный случай — предложение очень распространённое.

Го­род­ское и сель­ское ду­хо­вен­ство (1) от­дель­ные пред­ста­ви­те­ли (2) ко­то­ро­го (3) ещё до ре­во­лю­ции про­яв­ля­ли себя как ин­тел­ли­ген­ты (4) в какой-то мо­мент снова вы­де­ли­ло из своей среды ряд за­ме­ча­тель­ных пред­ста­ви­те­лей ин­тел­ли­ген­ции.

Го­род­ское и сель­ское ду­хо­вен­ство , какое? ( от­дель­ные пред­ста­ви­те­ли ко­то­ро­го ещё до ре­во­лю­ции про­яв­ля­ли себя как ин­тел­ли­ген­ты ), в какой-то мо­мент снова вы­де­ли­ло из своей среды ряд за­ме­ча­тель­ных пред­ста­ви­те­лей ин­тел­ли­ген­ции.

Го­род­ское и сель­ское ду­хо­вен­ство в какой-то мо­мент снова вы­де­ли­ло из своей среды ряд за­ме­ча­тель­ных пред­ста­ви­те­лей ин­тел­ли­ген­ции. От­дель­ные пред­ста­ви­те­ли духовенства (=ко­то­ро­го) ещё до ре­во­лю­ции про­яв­ля­ли себя как ин­тел­ли­ген­ты.

Следует обратить внимание на предложения, в которых главная часть имеет однородные члены.

Верный ответ 2 и 4.


Микроэлементы – это химические элементы, необходимые для протекания жизненно важных процессов в живых организмах и содержащиеся в них в очень небольших количествах (менее 0,001%). Несмотря на ничтожное содержание они крайне необходимы растениям.

Микроэлементы являются активным веществом микроудобрений.

Содержание:

Микроэлементы распространены в земной коре в концентрациях, не превышающих 0,1 %, а в живом веществе они обнаруживаются в количестве 10 -3 –10 -12 %. К группе микроэлементов относят металлы, неметаллы, галогены. Единственная их общая черта – низкое содержание в живых тканях.

Микроэлементы принимают самое активное участие во многих жизненных процессах, происходящих в растениях на молекулярном уровне. Путем воздействия на ферментную систему либо в непосредственной связи с биополимерами растений они стимулируют или ингибируют протекание физиологических процессов в тканях.

Элементы

Для корректировки содержания микроэлементов в почве практикуют некорневые подкормки в течение вегетации, предпосевную обработку семян и посадочного материала, а также внесение в почву необходимых веществ в виде удобрений.

Физические и химические свойства

Микроэлементы различны по своим физическим и химическим свойствам. Среди них встречаются металлы (цинк, медь, марганец, кобальт, ванадий, молибден), неметаллы (бор), галогены (йод).

Классификация микроэлементов

Химические элементы подразделяются на необходимые для растений и полезные им.

Необходимые

  • без элемента не может завершиться жизненный цикл растения;
  • физиологические функции, выполняемые с участием конкретного элемента, не осуществляются при его замене на другой элемент;
  • элемент обязательно вовлекается в метаболизм растения.

Однако существует ряд условностей в использовании данного термина. Дело в том, что сложности с его применением возникают уже при сравнении необходимости того или иного элемента для жизни высших и низших растений и, тем более, животных и человека. Так, например, не доказана необходимость бора для некоторых грибов, спорна необходимость наличия кобальта для осуществления физиологических функций целого ряда растений. К бесспорно необходимым элементам относят марганец, цинк, медь, молибден, бор, хлор, никель.

Полезные

– это питательные элементы, обладающие способностью стимулировать рост и развитие растений, но не в полной мере соответствующие трем требованиям, приведенным выше. К этой группе относятся и те элементы, которые необходимы только в определенных условиях и только для определенных видов растений. В настоящее время из микроэлементов полезными для растений считаются кобальт, селен, кремний, алюминий, йод и другие. [2]

В настоящее время жизненно необходимыми для растений считаются только около десяти микроэлементов, еще несколько – необходимыми узкому кругу видов. Для остальных элементов известно, что они могут оказывать стимулирующее действие на растения, но их функции не установлены. [5]

Некоторые физические и химические свойства микроэлементов, согласно данным: [3] [9]

Микроэлемент

Физическое состояние при нормальны условиях

порошок черного цвета

металл серебристого цвета

металл серебристого белого цвета

твердый, тягучий, блестящий металл

металл красного, в изломе розового цвета

Содержание микроэлементов в природе

Микроэлементы содержатся в небольших количествах практически повсеместно: в горных породах, почве, растениях и, естественно, в организме человека и животных.

Бор. В небольших количествах в составе различных соединений можно встретить во всех почвах, воде, в составе растительных и животных организмов. [5]

Йод. Образует мало самостоятельных минералов, но присутствует во многих в виде изоморфных примесей. [5]

Марганец. Один из наиболее распространенных в литосфере элементов. Преобладает в почвообразующих породах. [2]

Кобальт. Содержание в литосфере незначительно. Присутствует в растениях, при этом, бобовые культуры богаче кобальтом, чем злаковые. [6]

Медь. В земной коре – 0,01 %. Встречается в свободном состоянии в виде самородков, иногда очень значительных размеров. [7]

Цинк. Широко распространен в природе. В породах цинк содержится в виде простого сульфида, а также замещает магний в силикатах. [2]

Ванадий. Относится к рассеянным элементам и в свободном виде в природе не встречается. [7]

Молибден. Связан с гранитными и другими кислыми магматическими породами. Содержание его в этих породах колеблется в пределах 1–2 мг/кг. [5]

Факторы, определяющие концентрацию микроэлементов в почвах

Содержание микроэлементов в почвах зависит от многих факторов и подчинено ряду закономерностей:

  • Чем больше микроэлементов в горной породе, тем больше их и в почве. Эта неизменная, за некоторым исключением, закономерность (например, йод) проистекает из того факта, что основным источником поступления микроэлементов в почву являются материнские горные породы. Известно, что в процессе длительного почвообразования происходит перераспределение химических элементов исходных горных пород, но при этом специфические свойства и химические особенности микроэлементов горных пород практически навсегда сохраняются в почвах. [1]
  • Концентрация микроэлементов в почвообразующих породах увеличивается с возрастанием содержания физической глины и уменьшается с увеличением содержания песка и супеси. Это объясняется тем, что в состав глин включен монтмориллонит, содержащий большую концентрацию микроэлементов, чем включенный в состав песка кварц. Обычно в пределах одного почвенного района закономерность возрастания содержания микроэлементов от песков к глинистым породам увеличивается, но между породами в различных областях можно наблюдать значительные различия.
  • Один из определяющих факторов содержания микроэлементов в породах – карбонатность.
  • Почвы с реакцией, близкой к нейтральной, содержат больше микроэлементов.
  • Почвообразующие породы, расположенные в зоне активного воздействия грунтовых вод и подверженные процессу заболачивания, приобретают некоторые особенности по содержанию микроэлементов.
  • Почвы с повышенным накоплением органического вещества, как правило, и микроэлементами обеспечены в достаточной степени. Это связано с тем, что в растительных остатках и плазме микроорганизмов находится значительное количество микроэлементов. Гумусовые вещества обладают большей адсорбционной способностью и поглощают ионы микроэлементов из окружающей среды.
  • Содержание в почве водорастворимых солей оказывает большое влияние на наличие в ней микроэлементов.
  • Специфика условий почвообразования также накладывает свой отпечаток на количественное содержание микроэлементов в почвах.
  • Концентрация микроэлементов в грунтовых водах сильно влияет на их содержание в почве. В данном случае наблюдается тесная взаимосвязь, поскольку и колебание концентрации микроэлементов в почвенно-грунтовых водах – следствие разнообразия почвенного покрова и почвообразующих пород. [1]

Содержание микроэлементов в различных типах почв

Озерно-ледниковые глины

Моренные и лессовидные суглинки

содержат в 2–2,5 раза больше кобальта, стронция и хрома, чем пески. Содержание ванадия, бора и марганца в тех же породах уже в 3–4 раза больше, чем в песчаных.

Оглееные пески

Оглееные суглинки

Пески с нейтральной

Карбонатные супеси

Солонцы, солонцеватые и засоленные почвы

Однако по общим запасам микроэлементов в почве нельзя судить об их доступности для растений. Микроэлементы могут присутствовать в почве в формах, недоступных растениям. В связи с этим важно учитывать не столько общее содержание микроэлементов, сколько наличие их усвояемых форм. [1]

Содержание валовых и усвояемых форм микроэлементов в основных типах почв СНГ. (мг/кг) числитель – валовое содержание, знаменатель – усвояемые формы, согласно данным: [1] Дерново-

подзолистая

0,08–0,38

0,05–5,0

0,12–20,0

50,0–150

0,04–0,97

0,12–3,0

Чернозем

0,38–1,58

4,5–10,0

0,10–0,25

1,0–75

0,02–0,33

1,10–2,2

Серозем

0,23–0,62

2,5–10,0

0,09–1,12

1,5-125

0,03-0,15

0,9-1,5

Каштановая

0,30–0,90

8,0–14,0

0,06–0,14

1,5–75

0,09–0,62

0,1–6,0

Бурая

0,38–1,95

6,0–12,0

0,03–0,20

1,5–75

0,06–0,12

0,57–2,25

Роль в растении

Биохимические функции

Роль микроэлементов для растений многогранна. Они призваны улучшать обмен веществ, устранять функциональные нарушения, содействовать нормальному течению физиолого-биохимических процессов, влиять на процессы фотосинтеза и дыхания. Под действием микроэлементов возрастает устойчивость растений к бактериальным и грибковым заболеваниям, неблагоприятным факторам окружающей среды (засухе, повышению или понижению температуры, тяжелой зимовке и прочим).

Установлено, что микроэлементы входят в состав большого числа ферментов, играющих важную роль в жизни растений. Все биохимические реакции синтеза, распада, обмена органических веществ протекают только при участии ферментов.

Бор, молибден, цинк

в составе микроудобрений повышают активность ферментов пероксидазы и полифенолоксидазы как в семядолях, так и в корнях гороха, но не изменяют их активности в проростках. При этом, и у гороха, и у кукурузы пероксидазная окислительная система преобладает над полифенолоксидазной.

Микроэлементы с ферментами могут быть связаны прочно и непрочно. Непрочные связи присущи тем элементам, которые способны оказывать сходное действие на направленность фотосинтеза, окислительно-восстановительных процессов, обмен углеводов, накопление витаминов и ряд других процессов. Это микроэлементы, вступающие в биохимические реакции как двухвалентные металлы. Примером могут служить цинк и кобальт. [1]

Роль в растении и главные функции некоторых необходимых питательные микроэлементов, согласно данным: [5]

Микроэлемент

В какие компоненты входит

Процессы, в которых участвует

Метаболизм и перенос углеводов,

Синтез нуклеиновых кислот,

Утилизация фосфата,образование полифенолов.

Симбиотическая фиксация азота (возможно и у не клубеньковых растений), стимулирование окислительно-восстановительных реакций при синтезе хлорофилла и протеинов.

Разнообразные оксиданты, пластоцианины, ценилоплазмин.

Окисление, фотосинтез, метаболизм протеинов и углеводов,

Возможно, участвует в симбиотической фиксации азота и окислительно-восстановительных реакциях.

Тирозин и его производные у покрытосеменных и водорослей

Многие ферментные системы

Фотопродукция кислорода в хлоропластах и косвенное участие в восстановлении NO3 -

Нитратредуктаза, нитрогеназа, оксидазы и молибденоферридоксин

Фиксация азота, восстановление NO3 -

Метаболизм липидов, фотосинтез в зеленых водорослях и, возможно, участие в фиксации N2

Ангидразы, дегидрогеназы, протеиназы и пептидазы

Метаболизм углеводов и белков

Недостаток (дефицит) микроэлементов в растениях

Микроэлементы - Изменения листьев при дефиците цинка

Изменения листьев при дефиците цинка

Микроэлементы - Изменения листьев при дефиците цинка

1 – хлороз листьев пшеницы; 2 – бурые пятна на листьях риса

При недостаточном поступлении какого-либо микроэлемента из числа необходимых питательных элементов рост растения отклоняется от нормы или прекращается вовсе, а дальнейшее развитие растения, в особенности его метаболические циклы, нарушаются. [5]

При недостатке микроэлементов активность многих ферментов резко снижается. Например, установлено, что при недостатке меди резко падает активность ферментов, в состав которых входит медь, а именно, полифенолоксидазы и аскорбатоксидазы. [1]

Симптомы недостаточности (дефицита) трудно свести к одному знаменателю, но, все же, они характерны для конкретных микроэлементов. Наиболее часто наблюдается хлороз.

Визуальная симптоматика очень важна для диагностики недостаточности, но нарушения метаболических процессов и, как следствие, потеря биомассы продукции могут наступать прежде, чем симптомы недостаточности будут заметны. Для улучшения методов диагностики дефицита микроэлементов ряд авторов предлагает биохимические индикаторы. К сожалению, широкое применение этого способа ограничено в связи с большой изменчивостью энзиматической активности и трудностью определения данного показателя.

Наиболее широко используются тесты – анализ почв и растений. Но и в этом случае неподвижные формы микроэлементов, находящиеся в старых частях растения, могут исказить данные. Однако анализ растительных тканей успешно используют для установления дефицита микроэлементов путем сравнения с содержанием этих соединений в тех же тканях нормальных растений, того же возраста и в тех же органах.

При устранении дефицита микроэлементов при помощи удобрений следует учитывать тот факт, что подобная процедура является эффективной, только если содержание элемента в почве либо его доступность достаточно низкие.

В любом случае, формирование дефицита микроэлементов в растениях является результатом сложного взаимодействия нескольких факторов. Многочисленные наблюдения доказали, что свойства и генезис почв – это главные причины, вызывающие дефицит микроэлементов в растении. Обычно недостаток микроэлементов связан с почвами высокой кислотности (светлыми песчанистыми) и щелочными (известковистыми) почвами с неблагоприятным водным режимом, а также с избытком фосфатов, азота, кальция, оксидов железа и марганца. [5]

Симптомы недостатка микроэлементов питания у сельскохозяйственных культур, согласно данным: [5]


Минеральные вещества входят в состав тканей организма человека, ферментов, гормонов. Они поступают в организм человека с пищевыми продуктами и водой. Химические элементы, встречающиеся в организме в очень малых концентрациях, называются микроэлементами.

К микроэлементам, необходимым для нормальной жизнедеятельности нашего организма, относятся железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, ванадий, бор.

Железо. В организме здорового взрослого мужчины содержится около 4 г железа, женщины - 2,8 г.Большая часть железа (примерно 75 %) находится в гемоглобине эритроцитов, также железо входит в состав миоглобина, некоторых ферментов. Оставшиеся 25% железа накапливаются в ретикулоэндотелиальной системе в печени, селезенке и костном мозге. Железо в пищевых продуктах присутствует в виде гемового железа, которое содержится в продуктах животного происхождения (красное мясо и субпродукты (печень, сердце)), и негемового железа, присутствующего в растительных продуктах (зародыши пшеницы, яичные желтки,бобовые, сухофрукты (например, финики) и зеленые овощи). Рекомендуемая норма суточного потребления железа – 14 мг.

Медь. Содержание меди в организма взрослого человек составляет70–120 мг, причем примерно треть меди равномерно распределяется между печенью и мозгом, треть находится в мышцах, а остальная часть распределяется в другие ткани. Количество меди в продуктах растительного происхождения варьируется в зависимости от почвы, на которой они выращены. Богаты медью зеленые листовые овощи, бобовые, цельное зерно и миндаль, изюм и другие сухофрукты, мясо (особенно печень), морепродукты (моллюски).

Цинк. В организме взрослого человека содержится около 2–2,5 г цинка, причем около 70% содержится в костях. У новорожденного содержание цинка достигает 140 мг. Высокое содержание цинка также в тканях глаза, семенных пузырьках, придатках, предстательной железе и сперме. Цинк содержится в белках и металлоферментах во всех фракциях крови. Хорошими источниками цинка являются мясо, птица, яйца и морепродукты (особенно устрицы), зерновые и бобовые (однако из-за присутствия фитиновой кислоты в этих продуктах цинк менее доступен, чем содержащийся в продуктах животного происхождения). Рекомендуемая норма суточного потребления цинка – 15 мг.

Кобальт в основном содержится в печени, почках и костях. В организме кобальт используется в качестве компонента витамина В12. Кобальтом чрезвычайно богаты морепродукты, гречка, овощи (капуста, салат, шпинат, зелень свеклы и кресс-салат). Среднее потребление кобальта у человека составляет около 0,3 мг/день. Он хорошо всасывается, но большая часть его (около 0,26 мг/день) выделяется с мочой.

Молибден встречается во всех тканях и жидкостях организма. Организм взрослого человека содержит около 9 мг молибдена, преимущественно в печени, почках, надпочечниках и костях. Молибден входит в состав различных ферментов, а также препятствует развитию кариеса. Богаты молибденом молочные продукты, бобовые, субпродукты (печень, почки), зерновые продукты и некоторые зеленые листовые овощи.

Селен встречается во всех клетках и тканях организма в концентрациях. Наиболее высокие концентрации селена в организме – в печени и почках. В среднем содержание селена у взрослого составляет около 15 мг. Селен влияет на метаболизм и токсичность некоторых лекарств и химикатов, токсичность некоторых соединений усиливается при дефиците селена. Уровень селена в продуктах растительного происхождения зависит от его концентрации в почве. Богаты селеном зерновые и злаковые, субпродукты (печень и почки), рыба (тунец), моллюски. Рекомендуемая норма суточного потребления селена – 0,07 мг.

Марганец. В организме взрослого человека содержится около 12–20 мг марганца. Самая высокая концентрация марганца - в костях, печени и гипофизе. Концентрация марганца выше в тканях, богатых митохондриями, потому что марганец сконцентрирован в митохондриях. Марганец является кофактором для различных ферментов организма, а также он необходим для нормального развития скелета и соединительной ткани. Источники марганца:зерно, крупы, фрукты, овощи и чай.

Йод. В организме взрослого человека общее количество йода составляет 20–50 мг и распределяется следующим образом: мышцы - 10%; кожа - 10%; скелет - 7%; щитовидная железа - 20%; оставшиеся 13% распределены в других эндокринных органах и центральной нервной системе. Йод является неотъемлемым компонентом гормонов щитовидной железы, которые играют важную роль в регулировании основного метаболизма взрослого человека, а также роста и развития ребенка. Источниками йода являются морепродукты, молочные продукты, мясо и яйца, овощи, фрукты и злаки, выращенные на богатых йодом почвах. Рекомендуемая норма суточного потребления йода – 150 мкг.

Хром распределен по всему организму человека. Общее содержание этого минерала в организме взрослого человека в возрасте 30 лет оценивается в 6–10 мг. Основная роль хрома заключается в поддержании нормальной толерантности к глюкозе, а также он играет роль в метаболизме липопротеинов. Лучшие пищевые источники хрома – это пивные дрожжи, некоторые специи (например, черный перец), моллюски (особенно устрицы), яйца, мясные продукты, сыры, цельное зерно и нерафинированный коричневый сахар

Фтор. В среднем в организме взрослого человека содержится менее 1 г фтора, и примерно 99% из этого количества - в костях и зубах. Фтор оказывает положительное влияние на здоровье скелета и зубов. Источниками фтора могут быть овощи, мясо, крупы,фрукты, морепродукты, чай (в средней чашке чая содержится 0,1 мг фтора).

Кремний присутствует во всех клетках организма, более высокие его концентрации обнаруживаются в аорте, трахее, сухожилиях, костях, коже и ее придатках. Кремний необходим для кальцификации, роста и образованиямукополисахаридов в качестве сшивающего агента. Кремнием богаты ячмень и овес.



Бор является составной частью тканей животных и людей, которые потребляют растения. В организме взрослого человека присутствует примерно 48 мг бора. Бор может предотвратить или замедлить остеопороз у женщин старше 40 лет, поддерживая относительно высокий уровень эстрогена в сыворотке.Бором богаты продукты растительного происхождения, особенно фрукты, листовые овощи, орехи и бобовые. Вино, сидр и пиво также имеют высокое содержание бора.

Ванадий. В организме взрослого человека содержится около 25 мг ванадия, большая его присутствует в жировых тканях, сыворотке крови, а также в костях и зубах. Продукты, богатые ванадием: моллюски, грибы, семена укропа, черный перец и петрушка. Ванадий может влиять на обмен йода и функцию щитовидной железы.

Бром. Бром необходим для нормализации состояния нервной системы человека. Наибольшие его концентрации определяются в щитовидной железе, почках и гипофизеНаиболее богаты бромом бобовые – фасоль, чечевица, горох.

Читайте также: