Полиплоидию вызывают обработкой семян или проростков растений

Обновлено: 07.07.2024

В 1892 году русский ботаник И.И. Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление - изменение числа ядер в клетке. После воздействия низкой температурой или снотворным (хлороформом и хлоралгидратом) он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии, а организмы с увеличенным числом хромосом - полииплоидов.

В природе хорошо отлажены механизмы, обеспечивающие сохранение постоянства генетического материала. Каждая материнская клетка при делении на две дочерние строго распределяет наследственное вещество поровну. При половом размножении новый организм образуется в результате слияния мужской и женской гаметы. Чтоб сохранилось постоянство хромосом у родителей и потомства, каждая гамета должна содержать половину числа хромосом обычной клетки. И в самом деле, происходит уменьшение в два раза числа хромосом, или, как назвали ученые редукционное деление клетки, при котором в каждую гамету попадает только одна из двух гомологичных хромосом. Итак, гамета содержит гаплоидный набор хромосом - т.е. по одной от каждой гомологичной пары. Все соматические клетки диплоидны.

Полиплоидия (от греч. polyploos - многократный и eidos - вид), кратное увеличение числа наборов хромосом в клетках организмов. В естественных условиях возникает под влиянием различной природных факторов (резкая смена температур, действие ионизирующей радиации и др.), а также при естественной гибридизации. В основе механизма действия этих факторов лежит не расхождение

хромосом в митозе (т. н. митотическая полиплоидия, напри-мер, у голосеменных) или в мейозе (мейотическая полиплоидия). При поли-плоидии нормальный диплоидный набор хромосом (2 n), свойственный соматическим клеткам большинства организмов, увеличивается кратно гаплоидному набору (n), свойственному половым клеткам.

Полиплоидизация - перспективный метод в селекции лесных пород, ведущий к улучшению существующих и созданию новых, более совершенных форм. Искусственные триплоиды тополя, берёзы, ольхи и других древесных пород, получаемые скрещиванием диплоидных и тетраплоидных форм и отличающиеся быстрым ростом, прочной и устойчивой к гнилям древесиной, декоративностью, высоко ценятся в лесоразведении и озеленении.

Полиплоидия – это естественный природный процесс видо- и формообразования, ведущий к улучшению существующих и возникновению новых более совершенных форм растений. Изучение некоторых разновидностей и сортов культивируемых древесных растений показало, что по своей генетической природе они являются аллополиплоидамми древних гибридных видов. Между количеством хромосом и свойствами полиплоидных форм не всегда наблюдается прямая связь. Часто диплоидные особи оказываются значительно лучше полиплоидов, полученных от них. Например, тетраплоидные формы березы, тополей, вязов, ольхи и робинии лжеакации растут медленнее диплоидных, а триплоидные особи оказались более быстрорастущими. Существует известный оптимум числа хромосом, обеспечивающий наиболее эффективный рост и накопление практически ценных для селекции качеств. У древесных растений оптимальным уровнем полиплоидии считается триплоидный. Например, триплоидная исполинская осина (Populus tremula var gigas) характеризуется быстрым ростом, увеличенным размером клеток и органов, устойчивостью к грибным заболеваниям. Разработаны методы массового искусственного получения триплоидной осины. Растения с очень большим числом хромосом нередко имеют пониженную жизнеспособность.

Больше полиплоидов среди лиственных пород (особенно в семействах ивовых, берёзовых, розовых, бобовых и др.), меньше - среди хвойных. Около трети всех видов покрытосеменных возникло за счёт полиплоидии (среди голосеменных только 4,5% видов - полиплоиды). Полиплоидия ведёт к образованию гетерозисных форм, характеризующихся мощностью развития, усиленным и быстрым ростом, накоплением в тканях ценных химических соединений и т. д. Однако повышение плоидности, ведущее к усилению мощности растений, имеет определенные границы. Так, у цитрусовых деревьев (апельсин, мандарин, лимон) искусственная полиплоидия вызывает карликовость.

Особенно большое значение в селекции растений, в том числе и древесных, имеет восстановление фертильности (плодовитости) аллополиплоидов.

Фертильность определяется порядком прохождения мейоза. У тетраплоидных особей в клетках растения существуют два набора гомологичных хромосом, которые в мейозе группируются по четыре хромосомы. Четыре гомологичные хромосомы могут расходиться к противоположным полюсам следующим образом: 2 и 2, 2 и 3, 3 и 1. Дочерние клетки в результате мейоза могут получить неполный или избыточный набор хромосом. Гаметы с несбалансированным набором хромосом, как правило, погибают. Такому стерильному дереву с нарушенным процессом образования гамет можно вернуть плодовитость (фертильность) и вмешательством в процесс формирования кариотипа зародыша семян. Это имеет большое значение при отдаленной гибридизации для восстановления фертильности в последующих поколениях ценных гибридов.

Существует правило: если диплоид фертильный, то образованный от него тетраплоид может быть стерильным; если же диплоид стерильный, то производный тетраплоид может быть фертильным. Наряду с этим замечено, что если в первом гибридном поколении (F1) диплоидный гибрид стерилен или образует варьирующее потомство, то при удвоении числа хромосом он может стать фертильным и хорошо размножаться, так как в этом случае все члены одного набора хромосом полностью соответствуют своим двойникам в другом наборе хромосом. Например, полученный гибрид с диплоидным набором хромосом имеет негомологичные хромосомы вследствие скрещивания отдаленных в систематическом отношении видов. В результате хромосомы не образуют во время мейоза необходимых гомологичных пар и не распределяются равномерно по полюсам. Вместо этого они могут мигрировать к полюсам в сочетании: 2 и 0, 1 и 1 , 0 и 2. В каждом случае яйцеклетка или пыльцевое зерно получает несбалансированные наборы хромосом и погибает. Однако если число хромосом гибрида удваивается и образующаяся тетраплоидная особь имеет два полных набора хромосом (по 2п в каждом), получаются гаметы с гомологичными наборами хромосом. В мейозе хромосомы образуют пары и равномерно распределяются в дочерние клетки.

Анализируя все вышесказанное можно сделать вывод: при полиплоидии в ядрах клеток растений происходит увеличение числа хромосом в кратном отношении к гаплоидному (п), при этом с увеличением числа хромосом на один набор 2 + 1 = 3 появляются триплоидные растения, при 2 + 2 = 4 – тетраплоиды и т.д. Увеличение числа хромосом может быть неограниченно большим, но наиболее эффективны небольшие их величины.

Полиплоиды могут возникать в естественных условиях под влиянием природных факторов: резких смен температур, космической радиации, гроз, бурь, ливней, града и т.п.

Полиплоидия может быть митотического (изменяется набор хромосом в соматических клетках) и мейотического (изменяется набор хромосом в половых клетках) происхождения, последняя бывает реже.

Все полиплоиды могут быть объединены в четыре группы:

1 автополиплоиды – организмы, имеющие увеличение гаплоидного набора более, чем в два раза хромосом одного и того же вида.

2 аллополиплоиды – особи, возникающие на основе объединения или умножения двух или нескольких целых геномов, принадлежащих разным видам или родам.

3 анеуплоиды – организмы, имеющие уменьшенное или увеличенное число хромосом некратное основному числу хромосом вида.

4 гаплоиды – организмы, имеющие в соматических клетках не увеличенное, а уменьшенное число хромосом.

Следовательно, в селекционной работе с древесными растениями полиплоидия приобретает значение, как метод восстановления фертильности

и преодоления явления несовместимости при отдаленной межвидовой гибридизации.

Существует ряд методов получения полиплоидов. Так методы получения аллоплоидов можно разделить на две группы: опыление предуцированными гаметами и индуцирование мутагенами. При нормально протекающем мейозе хромосомное число в клетках уменьшается с 2п до 1п. Иногда редукционного деления не происходит, и образуются яйцеклетки или пыльцевые зерна с 2п хромосомами. Если пыльцевое зерно с 2п хромосомами оплодотворит яйцеклетку с гаплоидным набором хромосом, образуется триплоидный эмбрион. Таким путем получают тетраплоидную осину, опыляя крупными триплоидными пыльцевыми зернами женские цветки диплоидных растений. Крупную триплоидную пыльцу отделяют от диплоидной, просеивая через тонкую ткань.

Индуцирование полиплоидов в свою очередь производится тремя способами:

1 Воздействие нагреванием, высушиванием или холодом. Удвоение соматических хромосом таким путем происходит довольно часто (в 1% или более делящихся клеток). Образующиеся клетки с тетраплоидным набором хромосом обрастают вокруг тканью и растение в целом остается диплоидным.

Получение триплоидов из семян. Триплоидные растения древесных видов характеризуются быстрым ростом. Поэтому получение тетраплоидов для последующего перевода их в триплоиды скрещиванием с диплоидами становится распространенным направлением в селекции на гетерозис. Так, в северной Европе в больших количествах выращивают триплоидные деревья осины, которые получают в результате скрещивания женских клонов тетраплоидных растений с одним из диплоидных мужских клонов. Эту работу, как правило, проводят в теплицах. Дополнительно к этому практикуют посадку одного тетраплоидного клона в центре естественных насаждений мужских диплоидных особей. На деревьях женского клона семена будут триплоидными.

Гаплоидные особи образуются в результате самопроизвольного деления неоплодотворенной яйцеклетки. Такие формы обнаружены, как у голосеменных, так и у покрытосеменных. Однако гаплоидные формы древесных пород в селекции не применяются, так как они не жизнеспособны.

Из неоплодотворенных яйцеклеток индуцируют развитие партеногенетических особей после опыления их заранее инактивированной пыльцой. Среду для культуры тканей обычно готовят из агара с добавлением веществ, стимулирующих рост: сахарозы, аминокислот, гормонов растений, минеральных веществ, экстрактов пыльников. Температурный режим и свет

– важнейшие факторы при культуре тканей растений. Пыльцевые зерна в культуру тканей берут в период, когда генеративное и вегетативное ядра начинают одновременно делиться. При этом имеется большая вероятность образования триплоидных эмбрионов, чем гаплоидных.

Такие методы успешно используются при работе с травянистыми растениями. Это дает основание полагать, что эти методы можно будет применять и при работе с древесными растениями.

Таким образом, можно сделать вывод, что изменение количества хромосом в кариотипе – важнейший источник формообразования исходного материала для селекции растений.

Селекция — отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Основные методы селекции

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим. Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами. В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора

Показатели Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существание Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой — ведёт к снижению жизнеспособности, продуктивности и вырождению. Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация — скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы с ослом, лошак — гибрид коня с ослицей). Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия — увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Селекция растений, животных и микроорганизмов

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.
Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.
Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны.
Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).
К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией). Почти все домашние животные относятся к высшим позвоночным животным — птицам и млекопитающим.
В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация.
Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье). Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).
Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула — гибрида кобылы с ослом, бестера — гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Селекция микроорганизмов

К микроорганизмам относятся прокариоты — бактерии, сине-зелёные водоросли; эукариоты — грибы, микроскопические водоросли, простейшие.
В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии.
Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др. С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.
Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды. Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений. Это позволит избавиться от необходимости производить огромное количество азотных удобрений.

Селекция — это наука о методах создания новых и улучшения существующих пород животных, сортов растений и штаммов микроорганизмов.

  • повышение продуктивности организмов;
  • улучшение качества продукции (вкуса, внешнего вида, химического состава);
  • улучшение хозяйственно важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).

Сорт , порода , штамм — это искусственно созданная устойчивая группа (популяция) живых организмов, имеющая определённые наследственные особенности. Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение изучения сортового, видового и родового разнообразия культур; изучения наследственной изменчивости; влияния среды на развитие интересующих селекционера признаков; знаний закономерностей наследования признаков при гибридизации; особенностей селекционного процесса для само- или перекрестноопылителей; стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Все особи такой группы имеют сходные морфологические и физиологические признаки, однотипную реакцию на изменение факторов внешней среды, определённый уровень продуктивности.

1 . Искусственный отбор используется для сохранения и размножения особей с желаемой комбинацией признаков. Различают массовый и индивидуальный отбор.

При массовом отборе одновременно отбирают большое число особей с нужным признаком, остальные выбраковывают. Это отбор по фенотипу, он не даёт генетически однородного материала. Повторяется многократно.

При индивидуальном отборе (по генотипу) выделяют одну особь с необходимыми признаками и получают от неё потомство.

2. В селекционной работе используют следующие методы гибридизации : инбридинг, аутбридинг и отдалённую гибридизацию.

При инбридинге скрещиваются потомки с родительскими формами или потомки одних и тех же родителей. Этот тип скрещивания применяют для получения чистых линий , т. е. перевода большинства генов в гомозиготное состояние и закрепления ценных признаков. Нежелательным последствием близкородственного скрещивания является инбредная депрессия — снижение продуктивности и жизнеспособности потомства из-за проявления рецессивных мутаций.

При неродственном скрещивании может наблюдаться эффект гетерозиса ( гибридной силы ) — повышение жизнеспособности и продуктивности гибридов по сравнению с родительскими формами. Гетерозис проявляется у гибридов первого поколения и обусловлен переходом большинства генов в гетерозиготное состояние. При этом нежелательные рецессивные мутации становятся скрытыми. При половом размножении в следующих поколениях степень гетерозиготности уменьшается и эффект гибридной силы исчезает. Он может сохраняться только при вегетативном размножении.

Осуществляется с трудом, а полученные гибриды бесплодны из-за затруднения конъюгации хромосом разных видов в профазе I мейоза. Разработаны методы преодоления бесплодия.

3. Искусственный ( индуцированный ) мутагенез используют для увеличения разнообразия исходного материала. Мутагенез вызывают действием мутагенных факторов, например, рентгеновского облучения. Мутации носят ненаправленный характер, поэтому селекционер отбирает организмы с новыми полезными свойствами.

Геномной мутацией является полиплоидия , т. е. кратное увеличение числа хромосомных наборов. Используется в селекции растений. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные формы культурных растений (пшеницы, картофеля, овощных культур) имеют более высокую урожайность, чем родственные диплоидные виды.

Искусственно полиплоидию вызывают обработкой растений колхицином . Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор

Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

Индивидуальный отбор

Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

Естественный отбор

Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

Инбридинг (инцухт)

В центре гете­розис­ная куку­руза, слева и справа роди­тель­ские особи.

Р♀ AAbbCCdd ×♂ aaBBccDD
F1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование — вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.

Растения диплоид­ной (2n = 16) и тетра­плоидной (2n = 32) гре­чихи.

Аа × Аа
АА 2 Аа аа

Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.

Отдаленная гибридизация

Восстановление плодови­тости капустно-­редечного гибрида: 1 — капуста; 2 — редька; 3, 4 — капустно-­редечный гибрид.

Отдаленная гибридизация — это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.

Использование соматических мутаций

Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

Экспериментальный мутагенез

Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Методы селекции растений, предложенные И.В. Мичуриным

С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.

Методы селекции растений, предложенные И.В. Мичуриным

С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.

Поиск исходного материала облегчает закон гомологических рядов наследственной изменчивости , открытый Н. И. Вавиловым .

Родственные роды и виды живых организмов характеризуются сходными рядами наследственной изменчивости.

Если известны формы изменчивости одного вида, то можно предположить, что подобные формы будут существовать и у других близкородственных видов.

Н. И. Вавилов установил также семь центров происхождения культурных растений и основал мировую коллекцию семян культурных растений и их диких сородичей.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.

Селекция — науки и методах создании новых и улучшения уже существующих сортов растений, пород животных и штаммов микроорганизмов. Селекция разрабатывает способы воздействия на растения и животных с целью изменения их наследственных качеств в нужном для человека направлении. Селекция играет большую роль в обеспечении населения земного шара продовольствием. В последние годы селекция обогатилась результатами генной и клеточной инженерии, биотехнологии. Породы животных, сорта растений, штаммы микроорганизмов представляют собой совокупности особей, созданных человеком с помощью методов селекции, и характеризуются определенными наследственными особенностями, морфологическими и физиологическими хозяйственно ценными качествами. Поскольку свойства живых организмов обусловлены их нормой реакции на основе определенной генетической информации и подвержены модификационной и наследственной изменчивости, развитие селекции основано на закономерностях генетики.

Основные методы селекции включают гибридизацию и отбор, полиплоидию, мутагенез. За последние 10—15 лет были созданы принципиально новые методы экспериментальной биологии, клеточной и генной инженерии. Эти направления легли в основу новой области прикладной биологии — биотехнологии — промышленного использования биологических процессов и систем с целью получения необходимых человеку веществ (ферментов, витаминов, гормональных препаратов, лекарственных средств и др.) Необходима разработка методов борьбы с загрязнением окружающей среды и для зашиты растений от вредителей и болезней, создание новых штаммов микроорганизмов, сортов растений, пород животных. У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. Со временем человек будет внедрять нужные гены в клетки растений, животных и человека, что постепенно избавит от многих наследственных болезней, позволит клеткам синтезировать необходимые лекарства и биологически активные соединения, белки и незаменимые аминокислоты, употребляемые в пищу.

Отбор и гибридизация

В основе селекции как науки лежит разработанная Ч. Дарвином концепция отбора. Он выделял три формы отбора, имеющие место у культурных растений и домашних животных: бессознательный, методический и естественный. В процессе естественного отбора в природе возникли те виды животных и растений, которые затем были подвергнуты человеком одомашниванию. Действие естественного отбора продолжается и после одомашнивания, вызывая изменения, связанные с приспособлением к условиям, которые созданы человеком. Основой селекции является искусственный отбор. На ранних этапах социальной эволюции человека искусственный отбор носил характер бессознательного и выражался в сохранении на племя лучших представителей и уничтожении (употреблении в пищу) худших без осознанного намерения вывести более совершенную породу или сорт. При методическом отборе человек осознанно занимается выведением сортов и пород с желаемыми качествами

Различают два вида искусственного отбора: массовый и индивидуальный. При массовом отборе выделяют группу особей с желаемыми признаками и получают потомство. Сорт, полученный этим способом, генетически неоднороден, и отбор время от времени повторяют. При индивидуальном отборе выделяют единичные особи с желаемыми признаками и отдельно выращивают их потомство. При последующем самоопылении у растений или близкородственных скрещиваниях у животных выводят чистые линии (группы генетически однородных (гомозиготных) организмов.

Отбор сочетают с гибридизацией, что позволяет увеличить разнообразие материала для селекции. Различают близкородственную и отдаленную гибридизацию, в ходе которых создаются генотипы, новые по составу генов

При близкородственной гибридизации — инбридинге (у растений — самоопылении) повышается степень гомозиготности организмов. Многократный инбридинг приводит к резкому ослаблению или вырождению потомков (проявляются рецессивные аллели, до инбридинга входившие в состав гетерозигот). При скрещивании особей разных линий — аутбридинге удается получить гетерозисные гибриды, превосходящие по своим качествам родительские формы. В этом случае проявляется эффект гетерозиса. Основной причиной гетерозиса является отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Гетерозис широко применяется для создания высокопродуктивных гибридов, однако уже со второго поколения эффект гетерозиса значительно ослабляется.

Отдаленная гибридизация заключается в скрещивании особей разных видов. В силу генетических, морфологических, физиологических и иных различий организмов разных видов отдаленная гибридизация, как правило, осуществляется с большим трудом и требует применения специальных методов преодоления нескрешиваемости. Межвидовые гибриды часто оказываются бесплодными вследствие нарушения процессов гаметогенеза. Вместе с тем межвидовая гибридизация может привести к возникновению форм, сочетающих в себе ценные свойства разных видов.

Искусственные мутации и полиплоидные формы

Повышения количества мутаций достигают воздействием на организм различными мутагенами (ультрафиолетовые лучи, ионизирующее излучение, некоторые химические вещества). Селекционеры отбирают и культивируют организмы с интересующими признаками. Значительное место в селекции растений отводят получению полиплоидных форм у растений, так как они характеризуются большей урожайностью. В основе возникновения полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках; слияние соматических клеток или их ядер; нарушение процесса мейоза, приводящее к образованию гамет с нередуцированным числом хромосом. Искусственно полиплоидию можно вызвать путем обработки семян или проростков растений, яйцеклеток или эмбрионов животных колхицином. Он разрушает нити митотического веретена и тем самым препятствует расхождению гомологичных хромосом в процессе мейоза. Полиплоиды могут также образовываться от скрещивания организмов, принадлежащих к разным видам. Так, отечественным генетиком Г.Д. Карпетченко был выведен плодовитый гибрид капусты и редьки. Число хромосом у этих растений одинаково (18). Однако они принадлежат к разным родам и межвидовой гибрид был бесплодным, так как родительские хромосомы негомологичны друг другу, не коньюгируют при мейозе и затем нормально не расходятся в гаметы. При искусственном удвоении хромосомного набора гибрида (36 — по 18 от каждого исходного вида) плодовитость восстанавливалась

Клеточная и генная инженерия

Методы клеточной и генной инженерии дают возможность создавать организмы с новыми, в том числе и не встречающимися в природе комбинациями наследственных свойств.

Клеточная инженерия основана на культивировании отдельных клеток или тканей на искусственных питательных средах. Клеточные культуры используют для получения пенных веществ (культура клеток женьшеня продуцирует лекарственное вещество). Метод вегетативного размножения в пробирке (in vitro) позволяет бесконечно размножать одно растение из кусочков его стебля, почки и т.д. Этот метод применим дли овощных культур, плодовых деревьев, декоративных растений и т.д.

Метод гибридизации клеток приобрел большое значение в селекции. Он позволяет гибридизировать соматические клетки, культивируемые на искусственных средах вне организма, не только между собой, но и с клетками животных другого вида. Широко применяют методику слияния протопластов (клеток, лишенных своих оболочек при ферментативной обработке) у растений.

Для изучения закономерностей функционирования дифференцированных клеток пересаживают ядра из соматических клеток в яйцеклетки с предварительно удаленными ядрами. В 1977 году проведены успешные эксперименты по клонированию овцы. Этот эксперимент показал, что соматические клетки млекопитающих содержат полную генетическую информацию взрослого организма.

Генная инженерия — совокупность методов и технологий получения рекомбинантных нуклеиновых кислот (ДНК, РНК), выделения генов и введения их в другие организмы. Задача этих методов состоит в получении индивидуальных генов или генетических структур и введении их в новое генетическое окружение с целью создания организма с новыми, заранее предопределенными признаками. Методами генной инженерии осуществлен синтез биологически активных веществ и препаратов в трансформированных клетках, а также культивирование генов больных и здоровых людей в клетках других организмов с целью изучения молекулярных основ наследственных заболеваний человека и разработки новых методов их лечения.

Успех селекционной работы в значительной степени зависит от генетического разнообразия исходной группы организмов. С целью изучения многообразия и географического распространения культурных растений выдающийся генетик и селекционер академик Н.И. Вавилов организовывал многочисленные экспедиции в разные регионы Земли для сбора образцов культурных растений, их диких предков и сородичей. В результате был собран огромный семенной материал, который использовался для селекционной работы. Н.И. Вавилов сформулировал представления о центрах происхождения культурных растений (табл. 10.1).

Селекция (лат. selectio - выбирать) - наука и отрасль практической деятельности, направленная на создание новых сортов растений, пород животных и штаммов микроорганизмов, обладающих полезными для человека свойствами.

Этими полезными свойствами могут быть размер и форма плодов, урожайность, удойность у коров, устойчивость к факторам внешней среды (к засушливому климату, к морозу).

Селекция

Основы селекции

В основе селекции лежит способность генотипа живых организмов к изменениям, что происходит главным образом за счет комбинативной и мутационной изменчивости. В процессе селекции происходит искусственный отбор организмов с полезными для человека свойствами и их размножение.

В результате множества последовательных скрещиваний, в конце концов, селекционерам удается достичь желаемой цели: вывести гибридов с нужными признаками.

Мутационная изменчивость существует благодаря мутациям - случайным ненаправленным изменениям генотипа. Благодаря мутациям, к примеру, возник безалкалоидный сорт люпина. И.В. Мичуриным на яблоне сорта Антоновка Могилевская были обнаружены необычайно крупные плоды, ветвь с которым послужила для появления нового сорта - Антоновки шестистограммовой. Эти плоды - результат произошедшей в естественных условиях мутации соматических клеток.

Антоновка шестистограммовая

"Сколько ждать этой естественной мутации?" - спросите вы. Может один день, а может и 100, и 10000 лет - всем властвует случайность. На наш век может не выпасть удача, а мы такого допустить не можем! :)

Именно по этой причине в селекции растений часто используются искусственно вызванные мутации - авто- и аллополиплоидию.

Автополиплоидия

Автополиплоидия - кратное (4n,6n,8n) увеличение исходного набора хромосом, который характерен для особей вида.

Автополиплоидия возникает в результате обработки почек колхицином, который нарушает образование нитей веретена деления, и, соответственно, нарушает расхождение хромосом в мейозе, в результате чего набор хромосом в половых клетках (гаметах) оказывается удвоенным. Таким способом получают полиплоиды - сорта растений, обладающие повышенной урожайностью.

Существуют различные тетраплоидные сорта свеклы, мака, кукурузы и других сельскохозяйственных культур, которые отличаются большими размерами плодов.

Автополиплоидия

Аллополиплоидия

Аллополиплоидия (греч. állos — другой и polýploos — многократный) - соединение в клетках организма хромосомного набора от разных видов или родов, в результате которого образуется гибридная зигота.

Благодаря аллополиплоидии получают новые сорта растений. Наиболее известным примером является гибрид ржи и пшеницы - тритикале. Некоторые межвидовые гибриды табака обладают повышенной устойчивостью к возбудителям заболеваний мучнистой росы, табачной мозаики.

Тритикале

В рамках биотехнологии разработаны методы, с помощью которых стало возможным создание бактерий, синтезирующих полезные для человека белки, многие из которых используются как лекарства: аминокислоты, антибиотики, инсулин.

Антибиотики

Скрещивание особей в селекции

Каждое скрещивание как сдача новых карт: может повезет, а может и нет. Вполне возможно, что особь унаследует полезные признаки от родителей и сможет передать их своим потомкам, всегда есть и шанс того, что появятся новые полезные для человека признаки, равно как и шанс, что ничего полезного из проводимого скрещивания не выйдет.

    Близкородственное скрещивание (инбридинг - от англ. in — внутри + breeding — разведение)

Близкородственное скрещивание в течение нескольких поколений приводит к переходу генов в гомозиготное состояние, вследствие чего потомство ослабевает и становится более подвержено наследственным заболеваниям.

Замечу, что под инбридингом подразумевают близкородственное скрещивание животных. Для самоопыления у растений существует иной термин - инцухт.

В селекции инбридинг применяют для выведения чистых линий (гомозиготных особей - aa, AA, bb, BB), которые используются, например, для анализирующего скрещивания. Инбридинг использовался при выведении абсолютно всех пород животных, и в настоящее время активно используется в питомниках для выведения нужных пород животных (кошек, собак и т.д.)

Шотландские вислоухие

Аутбридинг заключается в скрещивании неродственных особей, которые могут принадлежать к одному сорту, породе, виду или роду. Аутбридинг ведет к явлению гетерозиса - получения гетерозисных форм, которые превосходят родительских особей по ряду признаков.

Гетерозис - явление увеличения жизнеспособности особей у гибридов, которые получены при скрещивании двух чистых линий. Такой эффект связан с переходом генов в гетерозиготное состояние, что повышает выживаемость организмов, плодовитость, и множество других полезных свойств.

Гетерозис

Применение отдаленной гибридизации заключается в скрещивании особей, принадлежащих к разным родам и видам. Такие особи обладают крайне полезными для человека свойствами, но часто бесплодны (стерильны).

Известным примером отдаленной гибридизации является мул - гибрид осла (самца) и лошади (самки). Отличаются большой выносливостью и работоспособностью, живут до 40 лет, обладают хорошим иммунитетом к заболеваниям, не требовательны в корме и уходе.

Обратный пример: гибрид ослицы (самки) и жеребца (самца) - лошак. Встречаются гораздо реже по сравнению с мулом, так как обладают меньшей выносливостью и работоспособностью. В большинстве случаев бесплодны.

Мул и лошак

Отбор в селекции

Отбор в селекции осуществляет человек с единственной целью: размножить особей с нужными и полезными признаками, свойствами. Очевидно, что такой отбор называется искусственным, в противовес естественному отбору, главный критерий которого - приспособленность.

Отбор организмов исключительно на основе внешних данных (фенотипа). Основным критерием для человека служит проявление признака: размер плодов, цвет лепестков, цвет листьев и т.д. Этот вид отбора характеризуется массовостью и быстротой.

В результате массового отбора формируется группа особей, которые обладают нужными и полезными для человека признаками. В дальнейшем они подвергаются размножению.

Массовый отбор

Выборочный отбор и сохранение особей с ценными для человека признаками. В ходе индивидуального отбора оценивается не только фенотип, но и генотип, вследствие чего данный вид отбора занимает большее время, но оказывается более эффективен.

Индивидуальный отбор требует оценки потомства от выбранной особи в ряду поколений. Иногда подобный отбор применяют у самоопыляемых растений: пшеницы, ячменя - с целью получения чистых линий. Как было сказано ранее, чистые линии характеризуются гомозиготностью и являются исходным материалом для селекции.

Индивидуальный отбор

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: