Природный гормональный ингибитор роста задерживающий прорастание семян и распускание почек это

Обновлено: 05.10.2024

Регуляторы роста и развития — это органические соединения, вызывающие стимуля­цию (усиление) или ингибирование (ослабление) процессов роста и развития. Они могут быть как природными веществами (фитогормоны, образующиеся внутри растений), так и синтезирован­ными человеком препаратами, используемыми в растениеводстве.

Фитогормоны влияют на деление и растяжение клеток, обра­зование корней на побегах (черенках), дифференциацию тканей, геотропическую и фототропическую реакции растений, переход к цветению, покою и выход из состоя­ния покоя.

У растений выделено пять групп (классов) фитогормонов — ауксины, гиббереллины, цитокинины, ингибиторы роста и этилен.

Ауксины — фитогормоны преимущественно индольной природы: индолилуксусная кислота и ее производные (рис. 3.1), вызывающие растяжение клеток, активирующие рост отрезков колеоптилей, стеблей, листьев и корней, вызывающие тропические изгибы, сти­мулирующие образование корней у черенков растений. Ауксины синтезируются в апикальной меристеме и в растущих тканях.

Гиббереллины — преимущественно гибберелловая кислота ГК3 и другие гиббереллины (их известно более 50), стимулирующие деление или растяжение клеток, индуцирую­щие или активирующие рост стебля, прорастание семян, образование партенокарпических плодов, наруша­ющие период покоя и индуцирующие цветение длиннодневных видов. Синтезируются в молодых листьях, молодых семенах, пло­дах, в верхушках корней.

Цитокинины — фитогормоны, главным образом производные пуринов, стимулирующие деление клеток, прорастание семян, способствующие заложению почек у целых растений и изолированных тканей. Источниками цитокининов служат плоды и ткани эндосперма.

Все природные фитогормоны, стимулирующие рост расте­ний, — ауксины, гиббереллины, цитокинины и негормональные соединения со стимулирующим действием — объединяются по­нятием ростовые вещества.

В практике растениеводства широко используют синтетические регуляторы роста, также стимулирующие рост и развитие растений. Все регуляторы роста, активирующие отдельные фазы роста и ор­ганогенеза растений, т. е. природные ростовые вещества и синте­зированные, объединяются в группу стимуляторов роста.

Синтезтическими аналогами фитогормонов-ауксинов и цитокининов являются а-нафтилуксусная кислота (ос-НУК), (3-индолилмасля-ная кислота ((3-ИМК), калийная соль р-индолилуксусной кисло­ты (К-(3-ИУК, гетероауксин), 2,4-дихлорфеноксиуксусная кислота (2,4-Д), кинетин, 6-бензиламинопурин (6-БАП). Стимуляторы ро­ста типа ауксинов (сс-НУК, Р-ИМК, 2,4-Д) применяют для акти­вации корнеобразования, опадения листьев, плодов; типа гиббереллинов — для стимуляции роста стеблей и увеличения размеров цветков и плодов; типа цитокининов (кинетин, 6-БАП) — для активации роста культуры тканей.

Ингибиторы роста соединения, подавляющие или тормозя­щие физиологические или биохимические процессы в растениях, ростовые процессы, прорастание семян и распускание почек. К ним относятся вещества фенольной и терпеноидной группы гормо­нальной и негормональной природы. К числу ингибиторов гормо­нальной природы относится абсцизовая кислота (АБК) и ее аналоги. От природных ингибиторов фенольной группы (кумарина, салици­ловой кислоты) АБК отличается тем, что способна подавлять рост в очень малых концентрациях, в 100 — 500 раз более низких, чем те, в которых действуют фенольные ингибиторы.

К природным ингибиторам относится и этилен, который вы­деляется в отдельную группу как газообразное вещество. Он тоже является веществом гормональной природы, оказывает ингибиторное действие на ростовые процессы — опадение листьев, из­гибы черешков, торможение роста проростков. Кроме того, он тормозит действие ауксинов, цитокининов, гиббереллинов.

В последние годы были химически получены некоторые синтетические ингибиторы роста. Они составляют несколько групп, обладающих специфической функцией: ретарданты, подавляющие рост стебля; антиауксины, тормозящие передвижение р-индоли­луксусной кислоты и ее аналогов по растению; морфактины, на­рушающие нормальное протекание формообразовательных про­цессов в апексе растений; парализаторы, резко приостанавлива­ющие рост всех органов.

В практике декоративного древоводства наиболее широко ис­пользуются регуляторы роста класса ауксинов и ингибиторы рос­та из групп ретардантов и парализаторов (гербициды и дефолиан­ты). Их применение включено в технологические производствен­ные схемы. В меньшей степени изучено влияние гиббереллинов на декоративные древесные растения, во всяком случае степень изу­ченности не позволяет еще включить их в технологический про­цесс выращивания декоративных древесных растений в питомни­ках и ухода за ними на объектах озеленения.

Включение регуляторов роста в технологию выращивания дре­весных растений позволяет сократить ручной труд при их форми­ровании, уходе за кустарниками в живых изгородях, регулирова­нии цветения, предупреждении периода старения, в борьбе с сор­няками в школах питомников и на газонах объектов озеленения; улучшить условия пересадки растений за счет расширения сроков пересадочных работ (использование дефолиантов).

2. Стимуляторы роста

Одна из наиболее старых областей применения регуляторов роста растений — индукция, или ускорение, укоренения стебле­вых черенков и отводков.

Эти вещества представляют собой кри­сталлические порошки светлого цвета. Черенки и отводки обрабатывают стимуляторами роста в мес­тах образования корней. Для наилучшей индукции корнеобразования применяют водные или спиртовые растворы, пудры, со­держащие тальк или измельченный древесный уголь и стимулято­ры роста в сухом измельченном виде, и пасты, приготовленные на основе пудр.

Пудрами обрабатывают черенки, не переносящие предпоса­дочного вымачивания (листья, травянистые черенки).

Водными растворами черенки обрабатывают чаще, чем спир­товыми. Действие стимуляторов роста на черенки и отводки внешне проявляется в ускорении процесса корнеобразования, увеличе­нии количества придаточных корней первого порядка и суммарнои длины образовавшихся корней. Внутренний механизм дей­ствия стимуляторов роста очень сложен, изучен еще не до конца, но из всех исследований следует, что в зоне, обработанной сти­муляторами роста, повышаются оводненность тканей и уровень дыхания. Это способствует активному притоку питательных ве­ществ, а в листьях обработанных черенков повышается интенсив­ность фотосинтеза. В черенке возрастает интенсивность синтети­ческих процессов, усиливается гидролиз Сахаров и белковых ве­ществ, увеличивается проницаемость протоплазмы, повышается активность некоторых ферментов и фитогормонов.

При семенном размножении древесных декоративных пород рекомендуется применять гиббереллин ГК3, обработка которым семян многих видов заменяет стратификацию или сокращает ее срок. Стимуляторы корнеобразования применяют при пересадках декоративных пород и при уходе за корнями деревьев на объектах озеленения. При пересадке корни небольших деревьев обрабаты­вают глиняной болтушкой, содержащей стимуляторы. Болтушку готовят чаще всего на растворе гетероауксина концентрации 0,01 % (100 мг/л воды). При пересадке деревьев с комом земли раство­ром гетероауксина поливают приствольный круг или корневые срезы обмазывают пастой, содержащей гетероауксин.

На объектах озеленения приствольные площадки поливают из расчета 30 — 50 л раствора гетероауксина концентрации 0,001 — 0,003 % на 1 м 2 поверхности приствольной площадки.

Для усиления эффекта цветения кустарники опрыскивают гиббереллином , гетероауксином, витаминами (0,01 %, или 100 мг/л).

3. Ингибиторы роста

Используют в зеленом строительстве для ограничения роста живых изгородей, предотвращения цветения женских экземпляров тополей, повышения устойчивости расте­ний к неблагоприятным условиям (ранние заморозки, затяжное осеннее тепло, которое может вызвать прорастание почек). Но наиболее широко используются такие ингибиторы роста, как гербициды. Кроме того, применяются и такие вещества, как дефолианты.

Гербициды входят в большую группу ингибиторов — парализаторов роста и развития, называемых пестицидами, что означает убивающие грибы, микробы, насекомых, растительность травя­нистую и древесную. Гербициды — синтетические вещества, служащие для уничтожения сорной растительности. Известно около 1000 видов гербицидов, на практике применяют около 250. По токсичности для теплокровных животных они делятся на четыре класса:

I — сильнодействующие гербициды, вызывающие гибель 50 % подопытных животных при дозе до 50 мг/кг массы животного

II — высокотоксичные гербициды,

IV — малотоксичные, ЛД50 = 1000 и более мг/кг.

По общепринятой классификации все гербициды разделяют на общеистребительные (сплошного действия) и избирательные (се­лективного действия).

Различают гербициды корневого (почвенного) действия и гер­бициды, применяемые для обработки надземных органов растений.

Гербициды почвенного действия концентрируются в верхних слоях почвы и воздействуют на травянистые растения с поверхно­стной корневой системой, но не повреждают корневых систем древесных пород и трав с глубоко залегающими корнями. Их вно­сят ранней весной, до начала весеннего роста трав, так как они вызывают гибель не только корней, но и семян.

Гербициды, проникающие через листья, подразделяются на системные (транслокационные) вещества, для которых характер­но быстрое распространение по растению и локализация актив­ности в определенных участках или тканях, и контактные веще­ства, вызывающие повреждения в местах непосредственного со­прикосновения с живыми тканями. В некоторых случаях эти веще­ства также могут передвигаться в растениях, но лишь за счет диф­фузии или с восходящим потоком по мертвым тканям.

Системные и контактные гербициды применяют в течение ве­гетационного сезона путем опрыскивания облиственных растений. Контактными гербицидами, не обладающими фитотоксической избирательностью, сорные растения обрабатывают направленно, избегая попадания раствора на листья выращиваемых растений. Чаще всего гербициды обладают комплексным характером дей­ствия на растения.

Физиологическая избирательность действия гербицидов обыч­но хорошо проявляется в определенных условиях — в зависимости от сроков обработки, доз, типа почвы, возраста и фазы развития растений.

Трудноискореняемые многолетние сорняки уничтожают с по­мощью общеистребительных гербицидов, которые вносят летом по черному пару и осенью после перепахивания сидерального пара или после выкопки посадочного материала. Обработка участков, подготавливаемых к посеву или посадке, уменьшает запас жизнеспособных семян сорняков, но не уничто­жает его полностью. Поэтому обработку гербицидами повторяют после посева и появления всходов или уже после посадки саженцев.

В зависимости от объекта применения гербицидов, характера сорной растительности, цели, свойств используемых гербицидов и других особенностей формируется определенный комплекс дей­ствий.

Допосевное применение гербицидов — сплошное опрыскивание гербицидом поверхности почвы до посева или посадки культиви­руемых древесных пород осенью или весной с таким расчетом, чтобы к моменту посева (посадки) гербициды исчезли из почвы или обладали избирательностью к высеваемым или высаживае­мым породам.

Довсходовое применение — почву обрабатывают после посева. Гер­бициды вносят путем сплошного опрыскивания почвы в один из двух сроков — сразу после посева семян по поверхности, свобод­ной от сорняков, или за несколько дней до появления сорняков.

Послевсходовое применение — обработка гербицидами путем сплошного опрыскивания после появления всходов.

Послепосадочное применение — обработка сорняков в школах сразу после посадки древесных пород или некоторое время спустя. В зависимости от вида растений и вида гербицида послепосадочная обработка может проводиться путем сплошного или направ­ленного (избирательного) опрыскивания сорняков в рядах и меж­дурядьях с защитой саженцев от попадания на них раствора гер­бицида.

Разнообразие видового состава сорняков, биологические осо­бенности выращиваемых пород, почвенные и климатические ус­ловия требуют применения в питомниках гербицидов разного дей­ствия. Для борьбы с сорняками разрешено применять на террито­рии РФ следующие гербициды:

луварам ВР Рекоменду­ется против многолетних двудольных, кроме зонтичных, на паро­вых полях питомников в зависимости от концентрации препарата (от 1,6 до 4,4 л/га). Срок обработки — июль—август, кратность обработки 1 — 3 раза. В древостоях смешанных лесов применяют против березы, осины, ольхи путем инъекции в стволы;

октапон экстра Рекомендуется против одно- и двухлетних двудольных в момент массового появления на паровых полях. Доза — 2,0 — 2,5 л/га;

2,4-Д-аминная соль (2,4-дихлорфеноксиуксусная кислота) — системный, или транслокационный, яд, проникающий в растение через листья и распространяющийся по всему растению. В по­чве быстро разрушается. Применяют для уничтожения многолет­них двудольных (осотов, вьюнка, одуванчика, хвоща, полыни) и однолетних сорняков. Злаковые сорняки этот препарат не уничто­жает. Обработку проводят в сухую теплую погоду. Выпускается в виде темно-бурой жидкости;

раундап — гербицид системного действия, через почву практически не действует и в ней быстро разлагается, поэтому эффективен лишь при обработке по листьям в июне —июле и августе —сентябре. Вносят в дозе 3 кг д.в./га по пару и 0,5 — 3 кг д.в./га по посевам и в школах. Выпуска­ется в виде водного раствора.

атразин в отличие от раундапа действует на растения и через корни, и через листья, поэтому при его применении меньшее значение имеют влажность почвы и содержание в ней гумуса. При влажной погоде усиливается действие атразина через почву, а в сухую — через листья. На почвах с содержанием гумуса менее 2 % его при­менять не следует. Доза внесения — 1 — 4 кг д.в./га. Устойчивость древесных пород (хвойных) к атразину повышается с их возрас­том. Выпускается в виде порошка.

Все перечисленные препараты относятся к средне- и малоток­сичным соединениям.

Экономическая эффективность применения гербицидов опре­деляется тем, что они полностью заменяют прополку и при этом исключается рыхление, так как после обработки сорняков герби­цидами поверхность почвы нужно максимально долго сохранять ненарушенной. При использовании следует соблюдать общие тре­бования санитарной службы, направленные на предупреждение попадания гербицидов в организм людей и животных, на чув­ствительные к ним сельскохозяйственные культуры.

Дефолианты — вещества, способствующие удалению листьев с растений. Как и гербициды, они относятся к пестицидам; мало­токсичны. Дефолианты вызывают процессы, аналогичные проис­ходящим при старении листьев и естественном листопаде, кото­рые у растений контролируются системой ауксин — этилен и при­водят к образованию отделительного слоя в черешке листа. Листья опадают не подсохшие, как и при естественном листопаде. Опаде­ние происходит из-за того, что в листьях и черешках сильно осла­бевает действие ауксина и усиливается действие этилена, активи­рующего процессы гидролитического распада.

В зеленом строительстве и питомниках декоративных пород дефолианты применяют для расширения сроков пересадок за счет смещения их начала на I декаду сентября.

В лекции "Культура Древнего Египта" также много полезной информации.

В качестве дефолиантов рекомендуется применять хлорат маг­ния и хлорат натрия как наименее токсичные вещества. С помощью дефолиантов можно не только ускорить опадение листьев, но и преодолеть периодичность плодоношения на ма­точных растениях, как это делают в плодоводстве, где дефолиан­ты применяют для регулирования количества цветков и завязей с целью сокращения их в годы обильного цветения и плодоноше­ния, а также для опадения плодов. Для повышения эффек­тивности дефолианта применяют добавки, выполняющие роль прилипателей, смачивателей, обволакивателей.

Обработку дефолиантами рекомендуется проводить опрыски­вателем ОН-400 в сухую погоду, а после дождя — не ранее чем через три-четыре часа, когда обсохнут листья. Опадение листьев начинается через восемь-десять дней. Сроки обработки растений дефолиантами зависят от окончания роста у растений.

После опадения листьев растения можно сразу пересаживать.

Латексный антитранспирант наносят на растение после обра­ботки его коагулянтом — хлористым кальцием 0,5%-й концентра­ции, так как предварительное нанесение коагулянта обеспечива­ет более равномерное растекание латекса и более высокую прилипаемость антитранспиранта к тканям листа и ветвей. Антитранспирантом растения обрабатываются путем опрыскивания или обмакивания, в зависимости от размеров растений. Для этой опера­ции используют латексы S-600 и ДММА-65-1ГП.

В организме растений присутствуют физиологически активные вещества — фитогормоны, различающиеся принципом и механизмом влияния на их рост и развитие. Они синтезируются из органических кислот в отдельных частях и распространяются по всему растению, регулируя обмен веществ, вызывая ростовые (ускорение или замедление) или формативные эффекты (дефолиация). Именно за счёт передвижения гормонов достигается взаимовлияние органов и целостность растения. Изменения в интенсивности синтеза одного из фитогормонов, вызванные внутренними или внешними причинами, приводят к ответной реакции растения — переходу к другому характеру ростовых или формативных процессов. Потребность растения в гормонах составляет 10-13×10-5 моль/л.

В природе стимуляторы и ингибиторы действуют сообща. В зависимости от фазы развития культуры и условий окружающей среды активизируется действие одного из фитогормонов. Когда его функция выполнена либо состояние окружающей среды меняется, то в действие включается другой фитогормон.

Регуляторы роста растений — физиологически активные соединения природного или синтетического происхождения, которые в малых количествах вызывают изменения в процессе роста и развития культур. Они не уничтожают вредителей и не действуют на возбудителей болезней.

Регуляторы роста различаются по принципу действия: стимуляторы — временно провоцируют рост и развитие растений за счёт активного деления клеток; ингибиторы (ретарданты) — замедляют рост и развитие, (подавляют прорастание семян, распускание почек, осевой вегетативный рост, формирование завязи и созревание).

Создание эффективных химических и биологических регуляторов роста растений сегодня относят к актуальному направлению научного поиска — нанотехнологиям, поскольку в маленьких дозах (мг или г на 1 гектар) они влияют на ростовые процессы и могут защитить растения от различных стрессов. Препараты на основе физиологически активных веществ используются для обработки посадочного материала, листовой и корневой подкормки, опрыскивания завязей, плодов и т.д. Они выпускаются в форме водных растворов, аэрозолей, паст и эмульсий. К стимуляторам роста можно отнести и микроудобрения.

Классификация регуляторов роста

По характеру действия на растительные ткани регуляторы роста делятся на стимуляторы (ускоряют рост и развитие) и ингибиторы (тормозят рост и развитие). По происхождению регуляторы роста бывают природными и синтетическими.

К природным регуляторам роста относят фитогормоны, ингибиторы роста и витамины. Известно 6 основных эндогенных фитогормонов: ауксин, гиббереллин, цитокинин, абсцизин, этилен и брассин (табл.). Каждый из них имеет синтетические аналоги. К уже известным и изученным группам фитогормонов в наше время выделено еще несколько эндогенных регуляторных веществ: брассиностероиды, жасминовая и салициловая кислоты, некоторые олигосахариды.

Из мевалоновой кислоты синтезируются 4-е класса фитогормонов: стимуляторы — гиббереллины, цитокинины и брассиностероиды, а также ингибитор — абсцизовая кислота.

Гормоны растений, или фитогормоны (греч. hormon — побуждающий, вызывающий), — низкомолекулярные органические соединения, которые участвуют во взаимодействии клеток, тканей и органов. Необходимы в небольших количествах для инициирования и регуляции физиологических и морфологических процессов онтогенеза растений.

Гормоны растений

Гормоны являются посредниками в физиологических процессах, преобразуют специфические сигналы окружающей среды в биохимическую информацию. Гормоны, образующиеся в растениях, называют эндогенными, применяемые человеком для обработки растений — экзогенными.

Потребность растения в гормонах составляет 10-13⋅10 -5 моль/л, в большинстве случаев синтезируются в достаточных количествах самим растением. Синтезируются в отдельных частях растения, но распространяются по всему организму. Под их действием происходит регулирование обмена веществ. Гормоны проявляют физиологическое действие на:

  1. ферменты и ферментные системы;
  2. обмен белков, липидов, нуклеиновых кислот;
  3. информационные и транспортные рибонуклеиновые кислоты;
  4. дезоксирибонуклеиновую кислоту.

Эффект действия гормонов в одних случаях сводится к временному изменению интенсивности биохимических реакций, в других — проявляется в устойчивом отклонении процессов, в-третьих — в морфологических изменениях, затрагивающих соматическую сферу организма, в-четвёртых — в наследственных морфологических изменениях.

К числу наиболее активным и изученным соединениям гормонального действия растительного происхождения относятся ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен.

В отличие от животных в растениях отсутствуют железы, секретирующие гормоны.

Действие гормонов на обмен веществ растительного организма специфично: гиббереллины участвуют в транскрипции, то есть переносе информации о нуклеотидной последователь­ности ДНК на информационную РНК при синтеза белков, цитокинины — в трансляции, то есть процессе перевода последовательности нуклеотидов ин­формационной РНК в последовательность аминокислот синтезируемого полипептида, ауксины — в изменении проницаемости мембран, абсцизины ингибируют ионный транспорт и связанные с ним процессы роста клеток, этилен выступает в качестве “разрешающего” фактора роста, контролирует баланс в системе стимуляторы-ингибиторы.

Ауксины

Ауксины, или соединения индолилуксусной кислоты (ИУК), образуются в зонах с высокой меристематической активностью: в апексах стеблей, в формирующихся семенах, откуда они перемещаются в базипетальном направлении, попадая в боковые побеги и листья.

Ауксины инициируют деление клеток и влияют на скорость их растяжения, регулируют формирование проводящих пучков, обусловливают явления фото- и геотропизма растений, связанные с несимметричностью их распределения. Активация растяжения клеток происходит при стимулировании ауксином секреции протонов в клеточную стенку. Возникающая при этом повышенная концентрация ионов водорода приводит к более активному ферментативному расщеплению поперечных связей, соединяющих между собой целлюлозные микрофибриллы.

Другими свойствами ауксинов являются способность вызывать партенокарпию, задерживать опадание листьев и завязей, активировать корнеобразование у черенков. Ткани, обогащенные ауксином, обладают аттрагирующим действием, то есть способны притягивать питательные вещества. Ауксин обеспечивает корреляционное взаимодействие между органами растущего растения.

Гиббереллины

Гиббереллины — фитогормоны, производные флуоренового ряда. Стимулируют деление и растяжение клеток апикальных и интеркалярных меристем. Под действием гиббереллинов удлиняются листья, цветки и соцветия. Гиббереллины усиливают рост стеблей сильнее, чем ауксины. В то же время гиббереллины практически не влияют на рост корней. Участвуют в процессах прорастания семян и перехода длиннодневных растений к цветению. Способствуют образованию партенокарпических плодов.

Гиббереллины способны смещать пол растений в мужскую сторону. Влияние на метаболизм растения связано с их участием в нуклеиновом обмене: под их действием индуцируется синтез матричных РНК, которые кодируют образование гидролитических ферментов, прежде всего амилаз.

Гиббереллины синтезируются в основном в листьях и оттуда перемещаются вверх и вниз по стеблю.

Цитокинины

Цитокинины — фитогормоны, производные пуринов, стимулируют цитогенез, прорастание семян, способствуют дифференциации почек. Обладают способностью задерживать процессы старения растительных организмов и поддерживать нормальный обмен веществ у пожелтевших листьев, вызывать их вторичное позеленение.

Цитокинины участвуют в мобилизации-притягивании питательных веществ к местам локализации: плодам, семенам, клубням. Освобождают боковые почки от апикального доминирования, вызываемого ауксином, стимулируют их рост. На молекулярном уровне цитокинины в комплексе со специфическим белковым рецептором увеличивают активность РНК-полимеразы и матричную активность хроматина, при этом повышается количество полирибосом и синтез белков. Цитокинины участвуют в синтезе фермента нитратредуктазы и транспорте ионов Н + , K + , Са 2+ .

Образуются в корнях, откуда передвигаются вверх по стеблю в акропетальном направлении.

Абсцизины

Абсцизины — естественные ингибиторы терпеноидной природы. Задерживают рост в фазе деления и растяжения клеток, не проявляют токсического действия даже в высоких концентрациях. Индуцируют наступление состояния покоя у растений, ускоряют опадание листьев и плодов (абсцизия), тормозят рост колеоптилей, задерживают прорастание семян.

Сдерживая избыточный рост стебля, абсцизины направляют метаболиты на формирование фотосинтетического аппарата, то есть координируют ростовой процесс. Участвуют в механизмах стресса, регулируя устьичные движения.

Абсцизовая кислота быстро накапливается в тканях при действии на растения неблагоприятных факторов внешней среды, прежде всего при водном дефиците, вызывая закрытие устьиц, снижая транспирацию и сокращая энергетические затраты. На молекулярном уровне абсцизины ингибируют синтез ДНК, РНК и белков. Могут снижать функциональную активность Н + -помпы.

Абсцизовая кислота синтезируются в листьях, транспортируются вверх и вниз по стеблю. Кроме того, образуется в корневом чехлике.

Этилен

Этилен — специфический гормон, синтезируется во всех органах растения из метионина. Вносит вклад в регуляцию роста и развития растений. Участвует в поддержании апикального изгиба у выращенных в темноте проростков, вызывает эпинастию, то есть быстрый рост верхней стороны органа, в результате которого лист или лепесток изгибается книзу. По этой причине его используют для ускорения раскрывания цветков. Опускание листьев под действием этилена сокращает транспирацию.

Этилен отвечает за контролируемое ауксином подавление роста латеральных почек, обнаруживающих апикальное доминирование. Тормозит деление клеток и удлинение проростков, изменяет направление роста клеток с продольного на поперечное, уменьшая длину и утолщая стебель. Способствуя старению тканей, этилен ускоряет опадание листьев, увядание цветков и ускоряет созревание плодов.

В большинстве случаев увеличивает период покоя семян и клубней, способствует смещению пола растений в женскую сторону, играет роль медиатора гормонального комплекса в процессах корреляционных взаимодействий в растении. Тормозит полярный транспорт ауксина и способствует образованию его конъюгатов. Этилен регулирует реакцию стресса в растениях. На молекулярном уровне повышает проницаемость клеточных мембран и скорость синтеза белка.

Брассиностероиды

Брассиностероиды — гормоны, поддерживающие работу иммунной системы растения, прежде всего в стрессовых ситуациях. Стероиды, также как гиббереллины и абсцизовая кислота, входят в класс терпеноидов.

Брассиностероиды содержатся в каждой растительной клетке, однако их естественный уровень в изменившейся экологической ситуации оказывается недостаточным для поддержания иммунитета и нормального развития в течение всей вегетации.

Препараты - стимуляторы роста растений

Гумат натрия

Кампозан М

Кампозан М применяется для предотвращения полегания льна-долгунца, озимой ржи, ячменя озимого.

Розалин

Розалин используют на хлопчатнике для предотвращения опадения коробочек и повышения урожая хлопка-сырца.

Фоспинол

Фоспинол увеличивает урожай картофеля на 15-20%, уменьшает поражаемость грибными и вирусными болезнями, улучшает лежкоспособность клубней.

Тур, или хлормекват хлорид, и хлорхолинхлорид применяют в посевах зерновых культур, прежде всего озимых. Препятствует полеганию высокоурожайных хлебов за счет утолщения соломины, упрочения механических тканей и уменьшения длины стебля.

Иммуноцитофит

Иммуноцитофит — смесь полиненасыщенных жирных кислот с высоким содержанием архидоновой кислоты. Применяется на зерновых, зернобобовых, корне- и клубнеплодных, овощных, технических и плодовых культурах в качестве многоцелевого стимулятора защитных реакций, роста и развития растений.

Стимулирует естественный иммунитет к болезням, таким как фитофтороз, различные виды парши, черная ножка, мучнистая роса, гнили, бактериозы. Ускоряет прорастание семян, созревание плодов, образование пробкового слоя на клубнях и корнеплодах; увеличивает размеры цветков, зеленую массу и кустистость; обеспечивает повышение урожая на 20-30%, снижает потери урожая при хранении.

Применение регуляторов роста растений

Для эффективного применения регуляторов роста растений необходимо соблюдать условия:

  1. положительный эффект может достигаться только в случае, если в растении или в отдельных органах не хватает эндогенных фитогормонов;
  2. клетки, ткани и органы должны быть восприимчивы к фитогормонам;
  3. действие всех регуляторов роста зависит от концентрации, передозировка приводит к ингибирующему эффекту;
  4. оптимальное обеспечение растений водой и питательными веществами.

Регуляторы роста не заменяют питание растений. По мнению М.Х. Чайлахана (1976), они повышают “аппетит” и поэтому стимулируют ростовые процессы.

Регуляторы роста растений используют для:

  • стимулирования укоренения черенков;
  • получения партенокарпических (бессемянных) плодов;
  • повышения производства бессемянных сортов винограда;
  • прореживания цветков и завязей плодовых культур;
  • уничтожения сорной растительности;
  • торможения удлинения стебля;
  • регуляции покоя;
  • ускорения созревания плодов.

Из регуляторов роста ауксиновой природы получили применение в сельском хозяйстве 1-нафтилуксусная кислота (1-НУК), индометил-3-масляная кислота (ИМК), 2,4-дихлорфеноксиуксусная кислота (2,4-Д), 2,4,5-трихлорфеноксиуксусная кислота (2,4,5-Т), 2-нафтоксиуксусная кислота (2-НОУК), 4-хлорфеноксиуксусная кислота (4Х), гидразид малеиновая кислота (ГМК), 2-метил-4-хлорфеноуксусная кислота (2М 4Х) и 2,4-дихлорфеноксимасляная кислота (2,4-ДМ). 1-НУК и ИМК успешно применяются в садоводстве для укоренения черенков, повышения приживаемости саженцев и восстановления корневой системы у пересаженных кустарников и деревьев.

Практическое применение имеют гиббереллины. Опрыскивание виноградных растений во время цветения водным раствором, содержащим 30-35 г/га гибберелловой кислоты, повышает урожайность бессемянных (кишмишных) сортов на 10-15%. Применяется также при выращивании цитрусовых.

Цитокинины нашли применение в культуре ткани. Они являются фактором, необходимым для получения культуры дедифференцированной каллусной ткани, а также для индукции затем органогенеза и соматического эмбриогенеза. Цитокинин необходим также для поддержания функциональной активности изолированных тканей и органов.

Этилен используется в качестве стимулятора созревания плодов и овощей.

Ретарданты

Ретарданты — синтетические вещества, тормозящие синтез гиббереллинов, подавляющие рост стебля и вегетативных побегов, придающие растению устойчивость к полеганию.

Ретарданты избирательно тормозят рост стебля, не оказывают при этом отрицательного действия на физиолого-биохимические процессы. Действие основано на торможении деления клеток срединной и подверхушечной зон меристемы конуса нарастания, образующих стебель. На верхушечную зону меристемы, из которой развиваются листья и генеративные органы, ретарданты не оказывают влияния. Эти регуляторы тормозят рост клеток стебля в длину и усиливают их деление в поперечном направлении, за счет чего стебель становится более коротким и толстым. Одновременно усиливается развитие механических тканей: утолщаются клеточные стенки, увеличивается число сосудистоволокнистых пучков. Одновременно ретарданты способствуют росту корней, увеличивают площадь ассимиляционной поверхности листьев и содержания пластидных пигментов, повышают устойчивость растений к неблагоприятным факторам внешней среды.

В настоящее время изучено более тысячи химических соединений с ретардантными свойствами. Большинство относятся к четырем группам веществ:

  1. четвертичным ониевые соединения;
  2. производным гидразина;
  3. производные триазола;
  4. этиленпродуцирующие.

Среди ретардантов на основе четвертичных ониевых солей распространены хлорхолинхлорид (ССС), морфол и пике. Характерный ретардантный эффект этих препаратов обусловлен их способностью прерывать биосинтез гиббереллинов. Их введение блокирует образование геранилгеранилпирофосфата и последующую его циклизацию в энткаурен, который является промежуточным звеном в синтезе гиббереллинов.

Производные триазола блокируют биосинтез гиббереллинов, препятствуя окислению энткаурена в кауреновую кислоту.

Этиленпродуцирующие препараты не прерывают биосинтез гиббереллина, их действие связано с антигиббереллиновым эффектом, который проявляется при образовании гормон-рецепторного комплекса или на последующих этапах реализации гормональной активности гиббереллинов.

Механизм действия производных гидразина также не связан с ингибированием синтеза гиббереллинов, а обусловлен подавлением их гормональной активности.

Из всех известных ретардантов наибольшее практическое значение имеет хлорхолинхлорид (ССС), более известный под названием Тур. Этот ретардант дает хорошие результаты в посевах зерновых культур. Для повышения устойчивости к полеганию хлорхолинхлорид вносят в период кущения — начала трубкования в расчете 3-12 кг/га. Не снижает качество зерна, увеличивает урожай, уменьшает экономические затраты на уборку.

Шерстнева О.Н. 1 Сурова Л.М. 1 Синицына Ю.В. 1 Агеева М.Н. 1 Середнева Я.В. 1 Воденеев В.А. 1 Сухов В.С. 1

Гормональная система является одним из основных компонентов системы регуляции, обеспечивающей устойчивость растительного организма к стрессовым условиям. Фитогормоны и их синтетические аналоги активно используются в сельском хозяйстве для усиления роста и продуктивности сельскохозяйственных культур. В настоящей работе был проведён анализ влияния различных концентраций фитогормонов и их синтетических аналогов на прорастание семян и морфометрические показатели проростков гороха посевного (Pisum sativum L.). Обработка фитогормонами (абсцизовая кислота, эпибрасинолид) и их аналогами (пирабактин, эпин) осуществлялась на стадии замачивания семян. Анализ всхожести семян, длины побега и корня, а также сырого и сухого веса проростков показал, что зависимость различных показателей от концентраций исследованных соединений имеет разную выраженность. Вследствие этого, полученные результаты были проанализированы комплексно, что позволило определить оптимальные концентрации растворов абсцизовой кислоты, пирабактина, эпибрассинолида и эпина для предпосевной обработки семян гороха.


2. Шакирова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и её регуляция. – Уфа: Гилем, 2001. – 160 с.

3. Clouse S. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development // The Plant Cell. – 2011. – Vol. 23. – P. 1219 – 1230.

4. Dhaubhadel S., Chaudhary S., Dobinson K.F., Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings // Plant Mol. Biol. – 1999. – V. 40. – P. 333 – 342.

5. Eyidogan F., Oz M.T., Yucel M., Oktem H.A. Signal transduction of phytohormones under abiotic stress. In: Phytohormones and Abiotic Stress Tolerance in Plants / N.A. Khan et al. (eds.). Springer-Verlag Berlin Heidelberg. – 2012. – P. 1 – 48.

6. Ivanov A.G., Kitcheva M.I., Christov A.M., Popova L.P. Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts // Plant Physiol. – 1992. – Vol. 98. – P. 1228 – 1232.

7. Janeczko A., Biesaga–Kościelniak J., Oklestkova J., Filek M., Dziurka M., Szarek–Łukaszewska G., Kościelniak J. Role of 24-Epibrassinolide in wheat production: physiological effects and uptake // Journal of Agronomy and Crop Science. – 2010. – Vol. 196. – P. 311 – 321.

8. Javid M.J., Sorooshzadeh A., Moradi F., Modarres Sanavy S.A.M., Allahdadi I. The role of phytohormones in alleviating salt stress in crop plants // Australian Journal of Crop Science. – 2011. – Vol. 5. № 6. – P. 726 – 734.

9. Kagale S., Divi U.K., Krochko J.E., Keller W.A., Krishna P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses // Planta. – 2007. – Vol. 225. – P. 353 – 364.

10. Madhan M., Mahesh K., Rao S.S.R. Effect of 24-epibrassinolide on aluminium stress induced inhibition of seed germination and seedling growth of Cajanus cajan (L.) Millsp. // International Journal of Multidisciplinary and Current Research. – 2014. – Vol. 2. – P. 286 – 290.

11. Sharma I., Ching E., Saini S., Bhardwaj R., Pati P.K. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1 // Plant Physiol. Biochem. – 2013. – Vol. 69. – P. 17 – 26.

12. Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., Chory, J. Molecular mechanisms of steroid hormone signaling in plants // Annu. Rev. Cell Dev. Biol. – 2005. – Vol. 21. – P. 177 – 201.

13. Wang S., Sui X., Hu L., Sun J., Wei Y., Zhang Z. Effects of exogenous abscisic acid pre-treatment of cucumber (Cucumis sativus) seeds on seedling growth and water-stress tolerance // New Zealand Journal of Crop and Horticultural Science. – 2011. – Vol. 38. № 1. – P. 7 – 18.

14. Wilkinson S., Kudoyarova G.R., Veselov D.S., Arkhipova T.N., Davies W.J. Plant hormone interactions: innovative targets for crop breeding and management // Journal of Experimental Botany. – 2012. – Vol. 63. № 9. – P. 3499 – 3509.

15. Xiong L., Schumaker K.S., Zhu J.-K. Cell signaling during cold, drought, and salt stress // the plant cell. – 2002. – Vol. 14. – P. 165 – 183.

Жизнедеятельность растительных организмов находится в непосредственной зависимости от условий окружающей среды, в адаптации к которым участвует, в частности, гормональная система регуляции. В ее основе лежит синтез и транспорт фитогормонов различной природы, которые играют ключевую роль в регуляции интегральных физиологических процессов растительных организмов, включая развитие ответных реакций на воздействие неблагоприятных факторов среды [2, 8]. Фитогормоны контролируют все этапы онтогенеза высших растений, могут модифицировать ростовые процессы и положительно влиять на устойчивость к действию неблагоприятных факторов [2, 5]. Широкий спектр действия фитогормонов открывает широкие перспективы для их использования в сельском хозяйстве. В частности, весьма перспективными является использование брассиностероидов и абсцизовой кислоты (АБК) и их аналогов.

Брассиностероиды, в частности, эпибрассинолид (ЭБ), обычно относят к ростовым гормонам, так как показано, что они ускоряют элонгацию, усиливают реакцию геотропизма, способствуют дифференциации ксилемы, повышают жизнеспособность пыльцы, задерживают старение листьев у ряда растений [1, 3, 12]. Однако имеются также довольно многочисленные данные, которые показывают, что брассиностероиды могут увеличивать устойчивость растений к повышенной и пониженной температуре [4, 9], к засухе [9], к повышенной концентрации солей [11] и другие.

АБК играет ключевую роль в развитии устойчивости растения к стресс-факторам, что проявляется в ее способности индуцировать синтез более десятка стрессовых белков с доказанными протекторными свойствами [2, 14]. Также известно, что АБК подавляет транспирацию в условиях засухи, участвует в регуляции аквапорин-связанной проводимости мембран для воды, вносит вклад в поддержание тургора в клетках и др. [2, 14,15].

В настоящее время фитогормоны и их синтетические аналоги активно исследуются и применяются в сельском хозяйстве для регуляции роста, продуктивности и устойчивости растений. Целью настоящей работы стало исследование влияния некоторых фитогормонов (АБК, ЭБ) и их синтетических аналогов (пирабактин (ПБ), эпин) на прорастание семян и морфометрические показатели проростков гороха (Pisum sativum L.).

Материалы и методы исследования

В ходе экспериментов регистрировалась всхожесть семян, а также морфометрические показатели проростков гороха, такие как длина побега, длина корня (определенная как максимальная длина), сырой и сухой вес. Биологическая повторность экспериментов для морфометрических показателей составляла 15-25, для показателя всхожести семян - 50-200 (n=500 для контроля). На рис. 1 представлены средние значения и их стандартное отклонение.

Результаты исследования и их обсуждение

Исследование влияния обработки фитогормонами и их аналогами на всхожесть семян гороха показало недостоверное влияние АБК и ПБ на этот процесс в исследуемом диапазоне концентраций (Рис. 1). Иная картина наблюдалась при использовании ЭБ. В этом случае концентрация 10-5 М вызывала значительное уменьшение всхожести семян (от 68% в контроле до 30% в опыте). Более низкие концентрации не оказывали значимого влияния на всхожесть. Еще более существенным было влияние эпина, который вызывал снижение всхожести при всех исследованных концентрациях. В то же время при использовании 10-6 М эпина (10-6 М ЭБ в нем) негативный эффект был минимальным (всхожесть составляла 50 %).

Анализ морфометрических показателей показал (Табл. 1, 2), что влияние на них фитогормонов имеет сложный характер. Так, 10-5 М и 10-4 М АБК вызывали достоверное снижение сырого и сухого веса, а также уменьшения длины побега растения. Обработка семян 10-5 М АБК снижала также длину корня. Таким образом, негативное влияние на ростовые процессы гороха не было выявлено лишь для 10-6 М АБК.

Анализ влияния пирабактина показал, что 10-4 М ПБ негативно влияло на ростовые процессы, снижая длину стебля. При использовании 10-6 М также наблюдался некоторый негативный эффект, проявляющийся в снижении сырого и сухого веса. Таким образом, использование 10-5 М ПБ представляется наиболее обоснованным для обработки гороха.

Эпин и ЭБ оказывали негативный эффект и при концентрациях ниже, и при концентрациях выше 10-6 М. Так 10-7 М ЭБ или эпина снижали сухой вес растения, кроме того, обработка эпином в этой концентрации снижала также сырой вес растения. Более высокие концентрации эпина и ЭБ (10-5 М) достоверно снижали длину корня. Таким образом, концентрация равная 10-6 М ЭБ может быть использована для гороха.





Рис. 1. Влияние обработки фитогормонами на всхожесть семян гороха

а - абсцизовая кислота, б - пирабактин, в - эпибрассиналид, д - эпин (приводится концентрация ЭБ в нём). Приведён % проросших от общего количества замоченных семян (n = 50 - 200 для экспериментальных растений). Контроль усреднён по всей совокупности экспериментов (n = 500) и приведён на каждом рисунке. Стандартная ошибка всхожести (доли проросших) рассчитана по Лакину (1968). * - р

Читайте также: