Содержание в почве органического вещества в меньшей степени влияет на

Обновлено: 19.09.2024

Органическое вещество почвы представляет собой важнейшее звено обмена веществ и энергии между живой и неживой природой. Это комплекс органических соединений, входящих в состав почвы. Представлены в основном гумусом (на 80–90%); неспецифическими для почвы углеводами; жирами, белками, а также остатками растений, животных.

Запасы органического вещества в метровом слое различных типов почв колеблются от 8 до 760 т/га. В дерново-подзолистых почвах (пашня) эти запасы достигают 90–100 т/га, в торфяниках – 760 т/га. Основным источником органического вещества в почве являются остатки зеленых растений. В условиях хвойного леса в почву ежегодно поступает в виде опада и отмерших корней около 4–6 т сухого вещества на 1 га. В агроэкосистемах в почву поступает растительных остатков в год от 2–3 т (пропашные культуры) до 7–9 т сухого вещества на 1 га (многолетние травы).

Масса микроорганизмов, ежегодно отмирающих в почве, составляет около 0,6–0,8 т сухого вещества на 1 га. Количество остатков животного происхождения – 0,1–0,2 т сухого вещества на 1 га почвы.

Органическое вещество почвы

Различают следующие формы нахождения органического вещества в почве.
1. Неразложившиеся или слаборазложившиеся остатки преимущественно растительного происхождения, буроокрашенные. Образуют лесную подстилку, степной войлок, торфяные горизонты. Это так называемый грубый гумус, или мор.
2. Остатки в стадии глубокого разложения, образующие рыхлую темно-бурую или черную массу, под микроскопом – полуразложившиеся остатки. Эта форма получила название модер (труха).
3. Специфические органические образования, представляющие собой собственно гумус, составляющие 85–90% от органического вещества почвы. Это – муллевая форма.

Состав органических остатков, поступающих в почву, довольно сложный. Основную массу их представляют углеводы – сахароза, фруктоза, глюкоза, крахмал, клетчатка. Вместе с органическими веществами в почву поступают азотсодержащие соединения – аминокислоты, белки, ал¬калоиды, а также лигнин, дубильные вещества, смолы, органические кислоты (щавелевая, лимонная, винная).

Элементный состав органического вещества, поступающего в почву, характеризуется тем, что оно примерно на 5% (в пересчете на сухое вещество) представлено углеродом, водородом, азотом; остальные 5% – многочисленная группа зольных элементов – кальций, магний, калий, натрий, кремний, фосфор, железо, сера, а также микроэлементы – медь, бор, марганец, цинк и др.

По содержанию зольных элементов органические остатки различных растительных формаций могут существенно отличаться, что соответствующим образом влияет на ход почвообразовательного процесса. Почвы образовавшиеся под травянистой луговой растительностью, содержат больше зольных элементов по сравнению с почвами, сформированными под лесом.

Органические остатки, поступившие в почву, подвергаются различным биохимическим и физико-химическим преобразованиям. Подъем ферментов, выделяемых микроорганизмами, изменяется анатомическое строение остатков, а сложные органические соединения распадаются на более простые – их называют промежуточными продуктами преобразования органических остатков.

В результате гидролиза белков образуются пептоны, пептиды, и свободные аминокислоты. При гидролизе сложных белков вместе с кислотами образуются углеводы, фосфорная кислота, азотсодержащие гетероциклические основы.

Разложение жиров сопровождается образованием лигнина и жирных кислот. Продуктами распада лигнина являются фенолы. Много промежуточных соединений образуется при разложении углеводов – моносахариды, органические кислоты, альдегиды и др.

Спектр промежуточных продуктов преобразования органических веществ, как видно, довольно разнообразный. Большая их часть окисляется до конечных продуктов – углекислого газа, воды, простых солей. А промежуточные продукты преобразования используются гетеротрофными бактериями для питания и построения плазмы и таким образом вновь образуются в сложные соединения – белки, углеводы и др. И, наконец, часть промежуточных продуктов участвует в синтезе гумусовых веществ.

Процесс синтеза этих веществ протекает в условиях биокатализа, действия ферментов, выделяемых микроорганизмами. Сущность этого процесса сводится к тому, что промежуточные продукты разложения opганического вещества, попадая под воздействием реакций биохимического окисления, поликонденсации, полимеризации, дают качественно новые органические соединения, которые называют гумусовыми, или перегнойными, а процесс их образования – гумификацией. Обычно под гумусом (от лат. humus – земля, почва) понимают группу темноокрашенных высокомолекулярных азотсодержащих органических веществ кислотной природы, большая часть которых – коллоиды. Собственно гумусовые вещества составляют 85–90% общего количества органических соединений почвы.

Наибольшее количество и качество гумуса дает травянистая растительность и ее корневая система. В образовании гумуса принимают участие простейшие животные почв и микроорганизмы, которые разрушают сложные органические вещества. Такой процесс называют биохимическим. В результате образуются две основные группы соединений: неспецифичный гумус (лигнин, целлюлоза, воски, смолы и др. полуразрушенные соединения) и специфический гумус (гуминовые и фульвокислоты, гумин). Специфический гумус выделяют щелочным реагентом. Та часть гумусовых веществ, которая не экстрагируется щелочью, называется гумином; экстрагируется щелочью и осаждаемая при окислении – гуминовой кислотой, а оставшаяся в растворе фракция – фульвокислотой. Строение гумуса очень сложное и не совсем выясненное. Фульвокислота наиболее подвижная, более агрессивная со светло-коричневым цветом. На Полесье она попадает в колодцы и создает в питьевой воде коричневый цвет. Лучший гумус тот, в котором преобладает гумин с гуминовой кислотой, как в наших дерновых почвах или в черноземных (Сr : Cф > 1). В большинстве почв суши преобладает фульватный состав гумуса. Наибольшее количество доброкачественного гумуса имеют черноземы (4–15%). Поэтому эти почвы самые плодородные.

Гумус в почве частично соединяется с глеем и коллоидными частичками, создавая органоминеральные соединения (хелаты). Они полезны тем, что замедляют минерализацию гумуса (создание золы – оксидов химических соединений), увеличивают содержание ценных элементов питания в доступной форме для растений и не дают возможность выносить удобрения в реки и озера.

В состав гумусовых включают и вещества исходных органических остатков (белки, углеводы, смолы и др.), промежуточные продукты преобразования органических остатков (аминокислоты, моносахариды, полифенолы и др.).

В составе гумусовых веществ выделяют гумины – прочно связанный с минеральной частью почвы комплекс гумусовых кислот.
Установлено, что благоприятствует накоплению гумуса сочетание аэробных и анаэробных условий с чередованием периода достаточного и недостаточного увлажнения. В зависимости от отношения к различным растворителям выделяют следующие компоненты гумуса: фульвокислоты и гуминовые кислоты.

Гуминовые кислоты – специфические органические кислоты почвенного гумуса. Хорошо растворяются в щелочных растворах, слабо в воде и не растворяются в кислотах. Раствор гуминовых кислот имеет бурый или черный цвет. Состоят в основном из углерода (52–62%), кислорода (31–39%), водорода (2,8–6,6%), азота (2–6%) и небольшого количества зольных элементов – фосфора, серы, железа, алюминия, кремния и др.

При взаимодействии с минеральной частью гуминовые кислоты образуют гуматы. Гуматы одновалентных катионов (К+, Na+, NH-) хорошо растворяются в воде и легко переходят в состояние коллоидных и истинных растворов, могут вымываться из верхних горизонтов почвы. Клеящая способность этих гуматов низкая. Почвы, содержащие гуматы одновалентных катионов, не имеют водопрочной структуры – при увлажнении набухают и заплывают.

Гуматы двух- и трехвалентных катионов (Са2+, Mg2+, Fe3+, AI3+) образуют устойчивые водопрочные гели, способные обволакивать минеральные частички почвы и склеивать их в прочные агрегаты. Именно поэтому дерновые почвы характеризуются водопрочной структурой. Молекула гуминовых кислот имеет сложное строение. Ядро молекулы включает бензолполикарбоновые кислоты, ароматические и гетероциклические кольца. Периферические части гумусовых веществ содержат разные функциональные группы (карбоксильные, аминогруппы, спиртовые и др.), определяющие разнообразные химические свойства и взаимодействие групповых соединений между собой, а также с минеральными компонентами почвы и удобрений.

В составе гумуса важное значение имеет соотношение между содержанием гуминовых кислот (ГК) и фульвокислот (ФК). Оно считается благоприятным при ГК/ФК >1.

Велико значение гумуса в почвообразовании и формировании плодородия почв. Влияния гумусовых веществ на эти процессы разнообразное и весьма существенное. При участии гумуса образуются многие почвенные горизонты – А1 А2, В и др., формируется структура почвы и ее водно-воздушные свойства. Гумус повышает поглотительную способность почв, расширяет буферные возможности.

В гумусе накапливаются многочисленные элементы питания растений - N, Р, S, К, Са, микроэлементы, которые высвобождаются при разложении его гетеротрофами. Процессы разложения гумусовых веществ сопровождаются выделением углекислого газа, необходимого зеленым растениям для фотосинтеза.
Кроме того, гумус является источником биологически активных веществ в почве (ферменты, витамины, ростовые вещества), положительно влияющих на рост и развитие растений, мобилизацию элементов.

Гумус выполняет и санитарно-охранную функцию: ускоряет разложение пестицидов, закрепляет загрязняющие вещества (сорбция, образование комплексов) и тем самым снижает их поступление в растения. Гуминовые кислоты имеют высокую поглотительную способность – 200–600 мг•экв на 100 г вещества, их рН около 3,4.

Фульвокислоты (от лат. fulvus – желтый) имеют принципиально такое же строение, как и гуминовые, но ядро их менее конденсировано, они меньше содержат углерода, а кислорода и водорода – больше. Окраска от соломисто-желтой до оранжевой. Фульвокислоты, их соли – фульваты – хорошо растворяются в воде, кислотах, щелочах. Их водные растворы имеют кислую реакцию – рН 2,6–2,8. Поэтому фульвокислоты энергично разрушают почвообразующие породы, содействуют выносу из них многих химических элементов. Это особенно резко проявляется при подзолообразовании.

Таким образом, гуминовые и фульвокислоты существенно отличаются своими свойствами. Гуминовые кислоты способны накапливаться в почве и формировать ее плодородие. Фульвокислоты активно разрушают минеральную часть почвы и снижают тем самым ее плодородие. Поэтому важно знать не только общее количество гумуса в почве, но и его качественный (групповой) состав – соотношение в нем гуминовых и фульвокислот и является важным показателем их агрохимической оценки.

Количество гумуса, его качество (Гк/Фк), мощность гумусового горизонта в почвах различных географических зон неодинаково. Так, большее содержание гумуса в верхнем горизонте (10–14%) и наибольшая его мощность (70–80 см) характерна для типичных черноземов. На север и на юг от зоны черноземов количество гумуса и мощность гумусового горизонта уменьшается. В северном направлении – 3–6% в серых лесных почвах и 1–3% в дерново-подзолистых почвах при мощности гумусового горизонта соответственно 25–30 и 15–20 см. На юг – 3–5% в каштановых почвах и 1–2% в бурых почвах при мощности гумусового горизонта соответственно 20–40 и 10–15 см.

Зональные типы почв отличаются и качеством гумуса. Так, в составе гумуса дерново-подзолистых почв преобладают фульвокислоты (соотношение гуминовых и фульвокислот 0,6–0,8), а в черноземах, каштановых почвах это соотношение равно 1,5–2,5, что говорит о явном преобладании в составе гумуса гуминовых кислот.

Большое влияние на гумификацию оказывает гранулометрический состав. Так, дерново-подзолистые песчаные почвы содержат гумуса (1,0–1,5%) значительно меньше по сравнению с дерново-подзолистыми суглинками (2–3%).

Чтобы баланс гумуса в используемых почвах был положительным, необходимо систематически вносить в почву органические удобрения в достаточно высоких количествах. Считается, что содержание гумуса в дерново-подзолистых почвах не будет снижаться, если ежегодно вносить 8–10 т/га органических удобрений. Положительно сказывается на повышении содержания гумуса в почве применение зеленых удобрений, травосеяние, известкование кислых почв и др.

В заключение следует отметить, что гумус – понятие не только химическое и биологическое, но и экологическое. Гумусовые горизонты формируются как результат непрерывной смены поколений растений. Различные сообщества растений, например, травянистые и деревянистые, резко отличаются по требованиям к условиям внешней среды, по характеру гумификации. Лесная подстилка (Ао), промывной тип водного режима, фульватный тип гумуса – такова экологическая основа существования леса. А для трав – гумификация по гуматному типу, формирование темноокрашенной гумусовой толщи, аккумуляция в ней элементов питания.

Гумус как экологическая основа почвенного плодородия непосредственным образом влияет на условия жизнедеятельности растений, в том числе и культурных.

В пределах почвенного профиля присутствуют разнообразные минеральные и органические вещества. Почва в своем составе имеет как живую биомассу, так и всевозможные химические соединения. Без знания их свойств агроном не сможет эффективно управлять плодородием и увеличивать урожайность. Поэтому изучение органических и минеральных веществ почвы издавна привлекает внимание специалистов сельского хозяйства. В последние годы особенно возрос интерес к исследованию растительных и животных остатков в составе верхнего слоя суши. В нашей статье речь тоже пойдет об этом.

Определение и источники

Вам будет интересно: Как подобрать рифму к имени Сережа

Итак, органическое вещество почвы – это совокупность всей живой биомассы в форме гумуса и остатков растений и животных. Оно играет ключевую роль в формировании свойств почвенного слоя, с которыми связаны фитосанитарные функции и развитие плодородия.

Главными источниками органического вещества в почве выступают отмершие растения в виде корневой и надземной масс. В меньшем количестве поступают остатки фауны. Их соотношение зависит от местных условий и состава зональной растительности. Так, для почв тундры характерна небольшая доля органических остатков. Затем к тайге, лесам и лесостепям она нарастает. При переходе в степную зону опад сокращается вследствие сухого климата, зато возрастает доля корнеопада. В пустынных областях доля органических остатков минимальна, а в лесах тропиков и субтропиков она снова резко увеличивается.

Вам будет интересно: Высшая школа перевода (ВШП) МГУ

Гумус в почве

Характер поступления опада в почву

Органические остатки проникают в почвенный профиль неодинаково: в лесах их основное количество поступает на поверхность слоя, а в травянистых местностях - непосредственно внутрь в форме отмерших корней. От характера попадания в почву опада зависят дальнейшие процессы его превращения. В химическом составе сухих остатков присутствуют белки, углеводы, воски, смолы, лигнин и другие вещества. Также содержатся зольные элементы: кремний, калий, магний, кальций, сера, фосфор, железо и ряд других.

Наиболее быстро гумификации и минерализации подвергается опад, который богат основаниями (магнием, кальцием) и веществами, легкодоступными для микроорганизмов (аминокислотами, белками, растворимыми углеводами). Растительные остатки, содержащие много смол, лигнина и дубильных веществ, разлагаются медленно. Что касается опада культурных растений, среди них быстрее всего трансформации подвергаются остатки бобовых трав, а медленнее всего — солома злаковых трав.

Гумификация

Вам будет интересно: Что такое ластик? Значения слова

Поступая в почву, органические остатки претерпевают разные превращения, в том числе биохимические изменения под влиянием микроорганизмов и измельчение почвенной фауной. Основным направлением таких превращений выступает гумификация. В настоящее время выделяют три варианта ее процесса.

Характеристики состава

Образование органического вещества почвы происходит путем соединения органических остатков отмерших организмов и продуктов их гумификации. К первой группе относятся видимые невооруженным глазом части растений и животных, а также небольшая доля веществ тех или иных классов органических соединений (углеводов, аминокислот, белков, дубильных веществ, сахаров, ферментов).

Основным органическим веществом почвы выступает гумус - смесь разных по свойствам и составу азотосодержащих высокомолекулярных органических соединений. По экстрагируемости из почвенного слоя и растворимости гумусовые вещества подразделяются на фульвокислоты, гумин и гуминовые кислоты.

Вам будет интересно: Абсолютная высота и относительная высота в географии

Органическое вещество почвы

Фульвокислоты являются наиболее растворимой и менее сложной по строению группой. У них более низкие молекулярные массы и высокая миграционная способность. Это самая светлоокрашенная часть гумуса, преобладающая в подзолистых, красноземных и сероземных почвах тропиков. Гумин — вещество, неэкстрагируемое из почвенного слоя щелочами и кислотами. Наиболее прочно он связан с глинными минералами. Гуминовые кислоты — нерастворимая часть гумуса, характеризующаяся более сложным строением, высокими молекулярными массами и повышенным содержанием углерода. Они преобладают в каштановых, дерновых, черноземных и серых лесных почвах.

Лабильная и стабильная группы

Помимо вышеизложенных характеристик состава органического вещества почвы, существует его разделение на лабильную и стабильную части. Первую составляют подвижные формы гумуса (водорастворимые и слабо закрепленные минералами вещества), предгумусовая фракция и растительные остатки. Лабильная группа выступает в качестве основного источника пищи и энергии для почвенной биоты. Также установлено, что остатки растений улучшают физико-механические свойства слоя почвы.

Стабильную группу составляют гумусовые вещества, которые прочно закреплены соединениями минералов (гуминово-глинистыми комплексами, гуматами кальция и др.). Это медленно минерализующаяся, устойчивая часть органического вещества почвы. Чтобы она полностью обновилась, нужны тысячелетия. Стабильный гумус является потенциальным резервом разных элементов питания, но его наибольшее агрономическое значение состоит в формировании благоприятных физико-механических и водно-воздушных свойств почвы, а также выполнении ей санитарно-защитных функций.

Состав органического вещества почвы

Роль органического вещества в почве

Большое число элементарных почвенных процессов происходит при участии гумусовых веществ. Это элювиальные, биогенно-аккумулятивные, метаморфические и другие ЭПП. Запасы, состав и содержание органического вещества в почве служат главными показателями плодородия и влияют на все ее свойства и режимы.

Живая биомасса является источником зольных элементов и азота, необходимых для питания растений. Часть этих веществ усваивается флорой в ходе ионообменных реакций или находится в поглощенном состоянии. Другая часть становится доступной растениям после высвобождения и минерализации органических веществ.

В почве гумус выступает как оптимизатор физико-химических свойств. Более гумусированные слои обладают высокой буферностью к окислению-восстановлению, кислотно-основным воздействиям и действию токсикантов. Катионы, поглощенные органо-минеральными коллоидами, становятся доступными для растений и интенсивно их питают.

Также органическое вещество воздействует на структуру, механические и физические свойства почв. Чем выше гумусированность, тем ниже плотность, лучше структура и водопрочность структурных агрегатов, более оптимизированы твердость, пластичность, липкость и удельное сопротивление. За счет гумуса почва получает темную окраску, что содействует поглощению тепла.

Черви в почве

Влияние на плодородие

Органическое вещество почвы играет ведущую роль в ее биологическом режиме, способствует сохранению в ней микроорганизмов и создает для их функционирования комфортные условия. Высокая биологическая активность почвенного слоя ведет к снижению патогенных микроорганизмов и ускорению микробиологической деградации пестицидов.

В формировании плодородия главную роль играют гумусовые вещества - конечные продукты гумификации. Опад надземных частей отмирающих растений создает на поверхности почвы слой подстилки. Ее годовое количество неодинаково в разных зонах и типах растительности.

Переработка растительного опада

Запас подстилки зависит от скорости разложения. Если опад богат дубильными веществами и сильно лигнифицирован, он разлагается намного медленнее, чем остатки лиственных пород. В разложении подстилки участвуют многие животные организмы, поглощающие опад в качестве пищи. В широколиственных лесах в дело вступают дождевые черви, а на кислых почвах хвойного леса растительный опад перерабатывают главным образом грибы.

Не менее важны в формировании гумуса отмирающие корни. По их массе на первом месте идут луговые степи и широколиственные леса, затем – субтропические и влажные тропические леса и, наконец, пустыни. Высокий запас отмирающих корней под степной травяной растительностью обусловлен преобладанием там тонких и легко разлагающихся растений. Этот гумус обеспечивает высокое плодородие черноземных степных почв.

Сухая почва

Факторы, влияющие на гумусообразование

Содержание органического вещества в почве во многом зависит от температуры. Этим объясняется недостаток гумуса в тропических зонах, где при большой влажности и высоких температурах сапротфоры мощно перерабатывают остатки. В тундре, напротив, активность гетеротрофных организмов очень мала, и растительные остатки практически не разлагаются.

Там, где минерализация органического вещества происходит быстро, минеральные элементы в короткие сроки высвобождаются и вновь становятся доступны зеленым растениям. Это обусловливает формирование большой фитомассы, но и повышенный риск вымывания из почвы минеральных веществ.

Биологический цикл

Плодородие во многом зависит от того, насколько быстро в почву возвращаются отнятые у нее элементы. Некоторые вещества теряются, уходя через сток с дренирующими водами или попадая в атмосферу. Но такие процессы, как фиксация азота, отложение пыли, продолжающееся выветривание, частично восстанавливают утраченные элементы.

В целом зеленые растения больше отдают почве, нежели берут от нее. Они выводят относительно не много растворенных соединений, а возвращают значительную массу органических веществ: лигнин, жиры, целлюлозу, сахара, крахмал, протеины и так далее. Благодаря этому возможность развиваться в почве получают многие животные и организмы, питающиеся этими животными.

Органические и минеральные вещества почвы

В заключение

Итак, органическое вещество почвы, по сути, представляет собой комплекс живой биомассы, входящей в ее состав. Присутствие органических соединений отличает почву от материнских пород. Живая биомасса формируется в результате разложения животного и растительного материалов и является важнейшим звеном обмена веществ неживой и живой природы. Органическое вещество почвы во многом определяет ее биологические, химические и физические свойства, а также плодородие.

Глава 4. ОРГАНИЧЕСКОЕ ВЕЩЕСТВО ПОЧВЫ И ЕГО СОСТАВ

§1. Источники органического вещества и его состав

Важнейшей составляющей частью почвы является органическое вещество, которое представляет собой сложное сочетание растительных и животных остатков, находящихся на различных стадиях разложения, и специфических почвенных органических веществ, называемых гумусом.

Потенциальным источником органического вещества считают все компоненты биоценоза, которые попадают на или в почву (отмирающие микроорганизмы, мхи, лишайники, животные и т.д.), но основным источником накопления гумуса в почвах служат зеленые растения, которые ежегодно оставляют в почве и на ее поверхности большое количество органического вещества. Биологическая продуктивность растений широко варьирует и находится в пределах от 1– 2 т/год сухого органического вещества (тундра) до 30 – 35 т/год (влажные субтропики).

Растительный опад различается не только количественно, но и качественно (см. главу 2). Химический состав органических веществ, поступающих в почву, очень разнообразен и во многом зависит от типа отмерших растений. Большую часть их массы составляет вода (75 – 90 %). В состав сухого вещества входят углеводы, белки, жиры, воски, смолы, липиды, дубильные вещества и другие соединения. Подавляющее большинство этих соединений – высокомолекулярные вещества. Основная часть растительных остатков состоит главным образом из целлюлозы, гемицеллюлозы, лигнина и дубильных веществ, при этом наиболее богаты ими древесные породы. Белка больше всего содержится в бактериях и бобовых растениях, наименьшее его количество обнаружено в древесине.

Кроме того, органические остатки всегда содержат некоторое количество зольных элементов. Основную массу золы составляют кальций, магний, кремний, калий, натрий, фосфор, сера, железо, алюминий, марганец, образующие в составе гумуса органоминеральные комплексонаты. Содержание кремнезема (SiO2) колеблется от 10 до 70 %, фосфора – от 2 до 10 % массы золы. Название зольных элементов связано с тем, что при сжигании растений они остаются в золе, а не улетучиваются, как это происходит с углеродом, водородом, кислородом и азотом.

В весьма малом количестве в золе встречаются микроэлементы – бор, цинк, йод, фтор, молибден, кобальт, никель, медь и др. Наиболее высокой зольностью обладают водоросли, злаковые и бобовые растения, меньше всего золы содержится в древесине хвойных пород. Состав органического вещества можно представить следующим образом (рис.6).


§2. Трансформация органического вещества в почве

Превращение органических остатков в гумус – сложный биохимический процесс, совершающийся в почве при непосредственном участии микроорганизмов, животных, кислорода воздуха и воды. В этом процессе главная и решающая роль принадлежит микроорганизмам, которые участвуют во всех этапах образования гумуса, чему способствует огромная населенность почв микрофлорой. Животные, населяющие почву, тоже активно участвуют в превращении органических остатков в гумус. Насекомые и их личинки, дождевые черви измельчают и перетирают растительные остатки, перемешивают их с почвой, заглатывают, перерабатывают и выбрасывают неиспользованную часть в виде экскрементов в толщу почвы.

Отмирая, все растительные и животные организмы подвергаются процессам разложения до более простых соединений, конечной стадией которых является полная минерализация органического вещества. Образовавшиеся неорганические вещества используются растениями как элементы питания. Скорость процессов разложения и минерализации различных соединений неодинакова. Интенсивно минерализуются растворимые сахара, крахмал; достаточно хорошо разлагаются белки, гемицеллюлозы и целлюлоза; устойчивы – лигнин, смолы, воски. Другая часть продуктов разложения потребляется самими микроорганизмами (гетеротрофными) для синтеза вторичных белков, жиров, углеводов, образующих плазму новых поколений микроорганизмов, а после отмирания последних снова подвергается процессу разложения. Процесс временного удержания органического вещества в микробной клетке называется микробным синтезом. Часть продуктов разложения превращается в специфические сложные высокомолекулярные вещества – гумусовые вещества. Совокупность сложных биохимических и физико-химических процессов превращения органического вещества, в результате которых образуется специфическое органические вещество почвы – гумус, называется гумификацией. Все три процесса идут в почве одновременно и взаимосвязаны друг с другом. Трансформация органического вещества происходит при участии ферментов, выделяемых микроорганизмами, корнями растений, под влиянием которых осуществляются биохимические реакции гидролиза, окисления, восстановления, брожения и т.д. и образуется гумус.

Существует несколько теорий гумусообразования. Первой в 1952 году появилась конденсационная теория, разработанная М.М.Кононовой. В соответствии с этой теорией образование гумуса идет как постепенный процесс поликонденсации (полимеризации) промежуточных продуктов разложения органических веществ (сначала образуются фульвокислоты, а из них – гуминовые). Концепция биохимического окисления разработана Л.Н.Александровой в 70-е годы XX в. Согласно ей, ведущее значение в процессе гумификации имеют реакции медленного биохимического окисления продуктов разложения, в результате которых образуется система высокомолекулярных гумусовых кислот переменного элементного состава. Гумусовые кислоты вступают во взаимодействие с зольными элементами растительных остатков, освобождающимися в процессе минерализации последних, а также с минеральной частью почвы, образуя различные органо-минеральные производные гумусовых кислот. При этом происходит расщепление единой системы кислот на ряд фракций, различных по степени растворимости и строению молекулы. Менее дисперсная часть, образующая с кальцием и полуторными оксидами нерастворимые в воде соли, формируется как группа гуминовых кислот. Более дисперсная фракция, дающая преимущественно растворимые соли, образует группу фульвокислот. Биологические концепции гумусообразовапия предполагают, что гумусовые вещества – продукты синтеза различных микроорганизмов. Данная точка зрения была высказана В.Р.Вильямсом, она получила развитие в работах Ф.Ю.Гельцера, С.П.Ляха, Д.Г.Звягинцева и др.

В различных природных условиях характер и скорость гумусообразования неодинаковы и зависят от взаимосвязанных условий почвообразования: водно-воздушного и теплового режимов почвы, её гранулометрического состава и физико-химических свойств, состава и характера поступления растительных остатков, видового состава и интенсивности жизнедеятельности микроорганизмов.

Трансформация остатков происходит в аэробных или анаэробных условиях в зависимости от водно-воздушного режима. В аэробных условиях при достаточном количестве влаги в почве, благоприятной температуре и свободном доступе О2 процесс разложения органических остатков развивается интенсивно при участии аэробных микроорганизмов. Наиболее оптимальными условиями являются температура 25 – 30 °С и влажность – 60 % от полной влагоемкости почвы. Но в этих же условиях быстро идет минерализация как промежуточных продуктов разложения, так и гумусовых веществ, поэтому в почве накапливается относительно мало гумуса, но много элементов зольного и азотного питания растений (в сероземах и других почвах субтропиков).

В анаэробных условиях (при постоянном избытке влаги, а также при низких температурах, недостатке О2) процессы гумусообразования идут медленно при участии, главным образом, анаэробных микроорганизмов. При этом образуются много низкомолекулярных органических кислот и восстановленные газообразные продукты (СН4, H2S), угнетающие жизнедеятельность микроорганизмов. Процесс разложения постепенно затухает, и органические остатки превращаются в торф – массу слаборазложившихся и неразложившихся растительных остатков, частично сохранивших анатомическую структуру. Наиболее благоприятны для накопления гумуса сочетание в почве аэробных и анаэробных условий с чередованием периодов иссушение и увлажнения. Такой режим характерен для черноземов.

Видовой состав почвенных микроорганизмов и интенсивность их жизнедеятельности также влияют на образование гумуса. Северные подзолистые почвы в результате специфических гидротермических условий характеризуются наименьшим содержанием микроорганизмов с небольшим видовым разнообразием и низкой жизнедеятельностью. Следствием этого является медленное разложение растительных остатков и накопление слаборазложенного торфа. Во влажных субтропиках и тропиках отмечаются интенсивное развитие микробиологической деятельности и в связи с этим активная минерализация остатков. Сопоставление запасов гумуса в различных почвах с разным количеством микроорганизмов в них свидетельствует о том, что как очень слабая, так и высокая биогенность почвы не способствует накоплению гумуса. Наибольшее количество гумуса накапливается в почвах со средним содержанием микроорганизмов (черноземы).

Гранулометрический состав и физико-химические свойства почвы имеют не менее значительное влияние. В песчаных и супесчаных хорошо прогреваемых и аэрируемых почвах разложение органических остатков идет быстро, значительная часть их минерализуется, гумусовые веществ мало и они плохо закрепляются на поверхности песчаных частиц. В глинистых и суглинистых почвах процесс разложения органических остатков при равных условиях происходит медленнее (из-за недостатка О2), гумусовых вещества закрепляются на поверхности минеральных частиц и накапливаются в почве.

Химический и минералогический состав почвы определяет количество питательных веществ, необходимых для микроорганизмов, реакцию среды, в которой идет образование гумуса, и условия для закрепления гумусовых веществ в почве. Так, почвы, насыщенные кальцием, имеют нейтральную реакцию, которая благоприятна для развития бактерий и закрепления гуминовых кислот в виде нерастворимых в воде гуматов кальция, что обогащает ее гумусом. В кислой среде при насыщенности почв водородом и алюминием образуются растворимые фульвокислоты, которые имеют повышенную подвижность и ведут к большому накоплению гумуса. Закреплению гумуса в почве способствуют также глинистые минералы типа монтмориллонита и вермикулита.

В связи с различием в факторах, влияющих на образование гумуса, в разных почвах количество, качество и запасы гумуса неодинаковы. Так, в верхних горизонтах черноземов типичных содержится 10 – 14 % гумуса, серых темных лесных – 4 – 9 %, дерново-подзолистых – 2 – 3 %, темных каштановых, желтоземах – 4 – 5 %, бурых и серо-бурых полупустынных – 1 – 2 %. Запасы органического вещества в природных зонах также различны. Наибольшие запасы, по данным И.В.Тюрина, имеют различные подтипы черноземов, торфяники, серые лесные, средние – темно-каштановые, красноземы, низкие – подзолистые, дерново-подзолистые, сероземы типичные. В пахотных почвах Республики Беларусь содержится гумуса: в глинистых – 65 т/га, в суглинистых – 52 т/га, в супесчаных – 47 т/га, в песчаных – 35 т/га. Почвы Республики Беларусь в зависимости от содержания гумуса в пахотном слое делятся на 6 групп (табл. 3). В почвах других природных зон существуют свои градации в зависимости от содержания гумуса.

Органическое вещество почвы — это фактор плодородия почвы, источник энергии для развития и формирования почвы, это то, что отличает плодородную почву от материнской породы.

Органическое вещество почвы представляет собой комплекс органических соединений, входящих в состав почвы. Эти вещества разделены на две группы:

1) подавляющее группа гумусовых веществ;

2) группа растительных и животных остатков различной степени разложения и промежуточных продуктов разложения (негумифицированные органические вещества).

Гумусовые вещества и их роль в составе почвы

Органическое вещество почвы представлено на 85-90% гумусовыми веществами (фульвокислоты, гуминовые кислоты и гумин). По своей природе это устойчивые к разложению, консервированные органические вещества, на 50-60% состоят из углерода, 30-45% кислорода и только на 2.5-5% из азота.

Так же в их состав входят сера, фосфор и др. Гуминовые кислоты и фульвокислоты, а также образующаяся в почве при разложении органических веществ углекислота, которая растворяет минеральные соединения фосфора, калия, кальция, магния, в результате чего, эти элементы переходят в доступную для растений форму.

Подвижные питательные элементы гумуса в меньшей степени участвуют в питании растений, чем негумифицированные вещества, так как медленно минерализуются, но создают для разложения органических остатков благоприятную среду. Однако при длительном выращивании сельскохозяйственных культур без внесения удобрений, может происходить постепенное разложение и использования гуминовых веществ.

Как избежать снижения плодородия почвы

Это приводит к значительному уменьшению общего количества органического вещества почвы и снижению ее плодородия. Систематическое применение органических и минеральных удобрений, обеспечивая повышение урожайности сельскохозяйственных культур, способствует сохранению и накоплению запасов гумуса и азота в почве, так как с ростом урожая увеличивается количество поступающих в почву корневых и пожнивных остатков и усиливаются процессы гумусообразования.

Накопление гумуса в почве способствует созданию благоприятных условий для развития и деятельности микроорганизмов. Микроорганизмы активизируют многие биохимические процессы в почве, участвующих в процессе минерализации органического вещества, увеличивают доступность питательных веществ почвы и удобрений для растений. Поэтому почвы, богатые микроорганизмами, более плодородные и обеспечивают получение более высоких урожаев сельскохозяйственных культур.

Растительные и животные остатки

Вторая группа органических соединений, хотя и является количественно меньше, но по своему значению в чем-то даже и превосходит гумус. В эту группу входят растительные и животные остатки разной степени разложения, промежуточные продукты разложения (жиры, белки, смолы, клетчатка, органические кислоты и др.).

Негумифицированные органические вещества составляют 10-20% от общего количества органики в почве, они являются непосредственным источником элементов питания для растений и животных, некоторые из них влияют на трансформацию питательных элементов почвы и удобрений с недоступной для растений формы в доступную и наоборот. В них содержатся все макро- и микроэлементы, необходимые растениям и животным.

Что является основой плодородия почв

Органическое вещество является основой плодородия почв, оно служит своеобразным резервом необходимых растениям питательных веществ, оказывает огромное влияние на структуру почвы, является источником энергии для многих полезных микроорганизмов.

В органическом веществе содержится 98% азота, от 30 до 40% фосфора, до 90% серы (от общего их содержания в почве). Вот почему нам так важно знать при анализе почв и расчета доз удобрений под культуру содержание общего органического вещества, так как это как раз те вещества, которые растения потребляют в большом количестве, и они могут быть получены ими из почвы.

О важности оптимальных условий для накопления и минерализации органического вещества

В почве происходят одновременно два противоположно процесса: синтез, накопление органического вещества, и его разрушение (минерализация). При минерализации азот, фосфор и сера переходят в усвояемую для растений минеральную форму. На интенсивность минерализации влияет культура и технология ее выращивания (система обработки почвы и минерального питания).

Поэтому так важно создавать оптимальные условия для накопления и минерализации органического вещества в почве. Лучшие условия создаются в структурных, рыхлых, культурных почвах, где происходит пополнение растительных и животных остатков, создается оптимальное значение рН.

В конечном итоге хотелось бы отметить, что значение такого показателя плодородия почвы как органическое вещество, в процессе разработки компетентных и полных рекомендаций по внесению минеральных удобрений, особенно актуален для расчета доз азотных, фосфорных удобрений и удобрений серы, а также он влияет на нормы внесения гербицидов.


В процессе почвообразования возникает симбиоз растений и почвенных условий, в более узком смысле – растений и гумуса. Органическое вещество и процессы его трансформации играют основную роль в почвообразовании, фактически формируют плодородие.

В почву поступают органические остатки отмерших растений, продукты их микробиологической трансформации, останки животных. Отмершая почвенная фауна привносит 100–200 кг/га в год, в агроэкосистемах после зерновых – 2–3 т/га, после многолетних трав – 7–9 т. В тундре образуется 1–2 т/га сухого органического вещества, в тропиках – 30–35.

Категории органических веществ

1. Органические остатки – остатки, не потерявшие черты анатомического строения. На долю неразложившихся остатков приходится 5–19 % от общего содержания органических соединений в почве.

2. Неспецифические органические соединения. Это вещества не почвенного происхождения, имеющие фито- , зоо- и микробоценотическую природу и поступающие в процессе почвообразования в виде отмирающей биомассы и продуктов жизнедеятельности организмов. Они синтезируются живыми организмами и поступают в почву после их отмирания.

3. Гумус, специфические органические соединения – основная часть органических соединений, присущая только почвам. Содержание гумуса в почве колеблется от 1 до 10 %.

Гумус – смесь различных по составу и свойствам высокомолекулярных соединений, объединенных общностью происхождения, некоторыми свойствами и чертами строения, продукт длительной трансформации органических остатков, обеспечивает плодородие почв. Его впервые выделил из торфа и описал немецкий химик Ф. Ахард в 1786 г.

Гумус содержит основные запасы питательных элементов для растений и микроорганизмов, в его состав входят многие физиологически активные вещества: ферменты, антибиотики, гуминовые кислоты. Он служит источником углерода и энергии для почвенных микроорганизмов, способствует формированию оптимальных водного, воздушного, теплового режимов, обеспечивает устойчивость почв к поллютантам. Лечебные грязи представляют собой комплекс гумусовых соединений.

Гуминовые кислоты (ГК). Это специфические природные высокомолекулярные соединения, которые образуются при трансформации растительных остатков вне живых организмов под действием фауны, микроорганизмов, абиотических факторов (рис. 36).

Элементный состав молекулы ГК: углерод – 46–61 % по массе, кислорода – 33–38, азота и водорода – по 3–6, также в его состав входят фосфор и сера.

Рис. 36. Структурная формула гуминовой кислоты

Среднее содержание углерода составляет 55–61 % в ГК черноземов, 49–58 % – в ГК сероземов, 46–53 % – в ГК дерново-подзолистых почв, в ФК этих типов почв – 36–44 % (Орлов, Гришина, 1981).

Химическая и биологическая активность ГК обусловлена содержанием двойных углерод-углеродных связей, хиноидных, фенольных, карбоксильных, спиртовых, альдегидных, аминогрупп.

ГК практически нерастворимы в воде, только в щелочах. Они активно связывают практически все тяжелые металлы, препятствуют их миграции (ЕКО 400–500 мг-экв/100 г). ГК адсорбируют и химически связывают пестициды и другие органические соединения. ГК способствуют формированию водопрочной структуры, повышают ЕКО, буферность, создают долговременные запасы питательных элементов, микроэлементов.

Фульвокислоты (ФК). Преобладают в почвах с рН меньше 7, ЕКО составляет 600–800 мг-экв/100 г. Это наиболее растворимая часть гумуса, более подвижная, обогащена алифатической частью и функциональными группами (рис. 37).

Рис. 37. Структурная формула фульвокислоты

Природа обусловливает различия в свойствах гуминовых и фульвокислот. Ранее нами было показано, что в молекулах гуминовых кислот не только больше ароматических компонентов, но они и представлены в основном четырехзамещенными бензольными ядрами. В молекулах фульвокислот арильных компонентов меньше, и основной компонент ароматической части – фенол, иначе, карболовая кислота. Преобладает разветвление алкильных ветвей в молекулах фульвокислот по сравнению с гуминовыми кислотами, ФК отличает и большая насыщенность кислородом как арильных, так и алкильных компонентов (Околелова и др., 1987, 1992).

Гумин – неэкстрагируемая часть гумуса, не извлекается из почв щелочными растворами даже при нагревании. Наиболее прочно связан с минеральной частью, глинистыми минералами.

Состав гумуса можно представить в виде формулы:

ГУМУС= ГК + ФК + гумин

Фракционно-групповой состав гумуса – распределение групп гумусовых кислот по формам связи. Фракции различаются с химической точки зрения по отношению к растворителям, и по роли в почвообразовании.

1. ГК и ФК свободные или связанные с полуторными окислами, наиболее мобильная и растворимая часть.

2. ГК и ФК, связанные с кальцием (гуматы и фульваты кальция). Фракция играет значительную роль в плодородии почв, закреплении Са, обеспечении растений азотом, фосфором, калием, малорастворима, менее мобильна, чем первая фракция.

3. ГК и ФК, связаннные с минеральной частью. Эта фракция играет основную роль в формировании запасов гумуса.

Запасы гумуса – величина, которая характеризует содержание гумуса в генетическом горизонте или любом слое почвы в расчете на определенную площадь.

Запасы гумуса определяют по формуле:

где З – запас гумуса, т/га; С – содержание гумуса, %; h – мощность, см; d – плотность г/смз.

Запасы гумуса в 0–20 см слое чернозема типичного составляют 224 т/га, чернозема обыкновенного – 137, темно-каштановой почвы – 99.

Процессы преобразования и накопления органического вещества в почвах

В почвах одновременно протекают два взаимно противоположных процесса – образование новых органических соединений, синтез гумуса, и разложение органических соединений до неорганических составляющих - минерализация.

Гумификация – глобальный процесс. Гумус образуется из обломков макромолекул или их мономеров, которые попадают в почву благодаря ее биоте. Это сахара, аминокислоты, лигнин, белки и другие химические соединения, а также корневые выделения живых растений.

Минерализация. В процессе минерализации сложные органические вещества при участии микроорганизмов превращаются в простые – воду, СО2, соли в виде ионов. Минерализация – источник поступления в почвы доступных растениям элементов – биофилов в концентрациях, близких к их потребностям. Продукты минерализации попадают в почвенный раствор и становятся элементами питания – вновь включаются в биологический круговорот, 80–90 % органических остатков участвуют в этом процессе.

Если интенсивность разложения растительных остатков слабее, чем их поступление, то в верхней части почвы образуются органогенные горизонты: лесная подстилка (Ао), степной войлок (Ао), торфяник (Ат).

Экологические функции гумуса

Аккумулятивная функция. Она заключается в накоплении элементов питания и энергии для биоты.

В гумусе сосредоточено 90–99 % всего азота, больше половины фосфора и серы, кальций, магний, железо и практически все необходимые микроорганизмам микроэлементы. Для азота связывание в органическое соединение – единственный путь предотвращения его потерь из почвенного профиля за счет растворения и выноса в грунтовые воды (Безуглова, 2009). В процессе минерализации гумуса постепенно высвобождаются элементы питания, они поступают в почвенный раствор уже в доступной для растений форме.

Транспортная функция. Гумус с катионами и другими органическими веществами может образовывать устойчивые, но растворимые и способные к геохимическим миграциям соединения. В форме комплексных органо-минеральных соединений в основном с ФК активно мигрирует большинство микроэлементов, железо, значительная часть соединений фосфора и серы.

Значение реакций взаимодействия гуминовых веществ с минеральными компонентами О. С. Безуглова (2009) характеризует следующими положениями:

– под влияние гуминовых веществ преобразуются минералы почвообразующей породы;

– гуминовые вещества способствуют растворению многих минеральных соединений;

– гуминовые вещества образуют пленки на поверхности почвенных частиц, а также труднорастворимые соединения с рядом элементов, ингибируя тем самым процесс выветривания;

– органические вещества влияют на окислительное состояние минеральных соединений, так как участвуют в окислительно-восстановительных взаимодействиях;

– органо-минеральные взаимодействия способствуют агрегированию почвы.

Регуляторная. Гумус участвует в регулировании практически всех почвенных свойств. Регуляторная функция включает:

– формирование почвенной структуры и водно-физических свойств;

– установление равновесий в реакциях ионного обмена, кислотно-основных окислительно-востановительных процессов;

– оптимизация условий минерального питания за счет влияния гумусовых веществ на растворимость минеральных компонентов и доступность живым организмам;

–поддержание теплового режима;

– регулирование процессов внутрипочвенной дифференциации химического состава.

Протекторная. Гумус защищает или сохраняют почвенную биоту, растительный покров от неблагоприятных экстремальных ситуаций. Богатые гумусом почвы более устойчивы к эрозии, дольше сохраняют свойства при орошении даже минерализованными водами, выдерживают большие техногенные нагрузки. При равных условиях токсичное действие тяжелых металлов (ТМ) в плодородных почвах сказывается на растения в меньшей степени, чем в малогумусных почвах, за счет высокой поглотительной способности более плодородных почв.

Гумус прочно связывает радионуклиды, детергенты, пестициды. Трансформация самих гумусовых соединений со временем сопровождается разрушением некоторых токсичных органических соединений или превращением их в неактивные (нетоксичные).

Физиологическая. Различные ГК и их соли стимулируют прорастание семян, активизируют дыхание растений, повышают продуктивность животных. Гумусовые препараты сдерживают развитие злокачественных опухолей, повышают устойчивость организмов к воспалительным процессам.

Гуминовые вещества в медицине (Безуглова, 2009). Бальнеологические свойства обусловлены наличием микроэлементов, физиологически активных веществ. Лечебный эффект объясняется тем, что одновременно идет воздействие физических (активная удельная поверхность, термические свойства), механических, химических (основные элементы, гумус, гормоны), биологических (бактерии, грибы, антибиотики) компонентов.

Для лечения различных воспалений торфот (его делают на основе гумуса) применяют более чем в 30 странах. Торф, пеллоиды, грязи используют на курортах Чехии, Болгарии, Украины. Известно более 600 препаратов в форме торфов и торфяных аппликаций. Их применяют для лечения сосудистых облитераций, ревматических заболеваний, хронических инфекционных полиартритов, болезни Бехтерева, гинекологических заболеваний и желчных путей, воспалений послеоперационных и посттравматических, предстательной железы, парадонтозах.

Неспецифические органические соединения почв

Углеводы. Их доля в почве от 5–7 до 25–30 % от Собш. С растениями в почву поступает 2–14 т углеводов за год. Есть все классы – моно-, ди-, олиго-, полиуглеводы, последние более устойчивы. Легко окисляются. Основные представители: целлюлоза (ее больше всего, в древесине – 50–60, а в травах около 30 %), хитин, крахмал (табл. 9).

Читайте также: