Спутниковые системы посадки самолетов

Обновлено: 18.09.2024

Несмотря на то, что современная авионика позволяет самолетам садиться полностью в автоматическом режиме, очень часто посадка осуществляется в ручном режиме, по старинке. Как работают разные системы захода на посадку и когда они используются, мы сейчас и расскажем.

Ориентация по сигнальным огням

Следующий этап — аэродромы со светосигнальным оборудованием. На взлетно-посадочной полосе может располагаться почти два десятка разных групп сигнальных огней, благодаря которым пилот четко видит ВПП и все ее части в темноте, сумерках, в тумане и т.п. Среди них есть, в частности, так называемые огни визуальной индикации глиссады (PAPI, Precision Approach Path Indicator): четыре разноцветных фонаря с направленными строго под определенными углами к горизонту пучками света.

Зачем нужны приводные радиомаяки

Маяков обычно два: ближний и дальний, находятся они в створе ВПП на посадочном курсе на расстоянии около 1 и 4 км от ее торца, а принцип действия очень простой: когда самолет пролетает строго над маяком, в кабине звучит акустический сигнал.

Нужно убедиться в том, что высота в этот момент соответствует высоте, указанной в схеме захода на посадку (для каждого аэродрома схема своя), и если нет — скорректировать траекторию, либо уходить на второй круг, если уже поздно.

Что такое курсо-глиссадная система

Более продвинутая система — это курсовые и глиссадные радиомаяки, объединенные в курсо-глиссадную систему (ILS, Instrument Landing System). Они устанавливаются в непосредственной близости от полосы. Курсовой маяк с направленными антеннами формирует два сигнала: с одной частотой модуляции левее от полосы, с другой частотой правее.

Глиссадный маяк точно так же формирует направленные сигналы выше и ниже линии глиссады, и снижаться нужно так, чтобы находиться строго между ними.

Частоты для каждой конкретной полосы конкретного аэродрома свои; перед каждой посадкой они устанавливаются в соответствии со справочником/базой данных.

Раньше на завершающем этапе посадки все равно без пилота было не обойтись, но с появлением ILS Cat.III система стала настолько точной, что самолеты теперь могут садиться полностью автоматически, а с Cat.IIIc (внедряется в последние 3-4 года) могут делать это даже при полностью нулевой видимости.

Спутников стало недостаточно

В конце 1980-х была разработана еще более точная система микроволновой посадки MLS (Microwave Landing System) на основе микроволновых радаров. Принцип ее работы похож на ILS, но доступно несколько каналов, за счет чего несколько маяков MLS не мешают работе друг друга. В радиосигналах MLS также могут передаваться дополнительные данные. Однако распространение GPS-навигации помешало массовому внедрению MLS.

Вместо нее сейчас внедряется другая система захода: GLS (GNSS Landing System).

Координаты самолета в режиме реального времени определяются с помощью спутниковой системы — хоть GPS, хоть ГЛОНАСС, хоть Beidou или Galileo — не важно. Важно то, что одних спутников для обеспечения требуемой точности определения координат недостаточно, погрешность в десять метров, обычная для GPS, уже является критичной.

Поэтому в аэропорту устанавливаются локальные контрольно-корректирующие станции (GBAS, Ground Based Augmentation System), передающие дополнительный сигнал — идея такая же, как, например, в WAAS. Поскольку их местоположение, в отличие от спутников, является постоянным, а расстояние до садящихся самолетов в разы меньше, GBAS позволяют сократить максимальную погрешность в определении координат до трех метров (гарантированно).

GLS намного удобнее и дешевле ILS: если старая система требует установки маяков с каждой стороны каждой полосы (например, две полосы — по четыре глиссадных и четыре курсовых маяка, итого восемь, и все на разных частотах), то GBAS хватит одной. При этом частота одинакова во всех аэропортах и не нужно каждый раз ее настраивать. Кроме того, такая система более устойчива к помехам.


S7 Airlines в конце минувшего года стала первой среди российских авиакомпаний, получившей официальное одобрение Росавиации на выполнение заходов на посадку с использованием сигналов спутниковой системы GLS (GNSS Landing System).

GLS – спутниковая система захода на посадку, которая в настоящее время активно внедряется во всем мире. Разрешение получено для трех воздушных судов авиакомпании, Boeing 737-800NG.

В России наземными корректирующими станциями GBAS, позволяющими осуществлять заходы на посадку по GLS, на сегодняшний день оборудованы более 50 аэродромов. Аэропорты Кемерово и Тюмени (Рощино) уже допущены к таким заходам воздушных судов, в планах Госкорпорации по ОрВД – сертифицировать 10-15 аэродромов в год.

Основная цель такого оборудования – сделать еще более точным определение местоположения воздушного судна в пространстве и избежать ошибок при всех возможных внешних воздействиях на сигнал со спутников, который принимает лайнер, в том числе и во время выполнения точного захода на посадку.

Передовые технологии, используемые при создании системы, позволяют экипажам воздушных судов заходить на посадку даже в том случае, если традиционное аэропортовое оборудование по каким-то причинам отключено или неисправно. Уже сегодня самолеты, оборудованные GLS, могут заходить на посадку при метеоусловиях, соответствующих категории I ИКАО (высота принятия решения не менее 60 метров, а в ближайшие годы планируется, что заходы на посадку GLS будут обеспечивать точные заходы до категории IIIА ИКАО, т.е. до высоты выравнивания 15 метров (пока эти процедуры не стандартизованы).

Принцип действия системы простой: местоположение самолета определяется по спутникам ГЛОНАСС и GPS, но, поскольку погрешность в данном случае является слишком большой для обеспечения точного захода, вводятся наземные корректирующие станции GBAS (Ground Based Augmentation System), они же ЛККС (локальная контрольно-корректирующая станция), передающие дополнительный сигнал. Поскольку они, в отличие от спутников, неподвижны и при этом находятся значительно ближе, точность определения координат значительно возрастает и погрешность не превышает 3 метров.

_2g

Использование GLS имеет ряд преимуществ по сравнению с системой ILS — основным на сегодня способом точного захода на посадку по приборам. Так, одна ЛККС может обслуживать сразу несколько полос и направлений, в то время как для ILS требуется по два радиомаяка (курсовой и глиссадный) возле каждого из торцов каждой ВПП. При этом для настройки на них будут использоваться разные частоты: то есть, на аэродроме с двумя параллельными ВПП частот будет четыре, а ЛККС хватает одной частоты для поддержки до 48 различных схем захода на посадку. Кроме того, ЛККС не так требовательна к месту размещения. Поэтому с ее помощью можно обеспечить точным заходом даже те ВПП, где невозможно установить ILS, а также снизить количество ограничений по рулению самолетов. Также ЛККС требует менее частых проверок и обслуживания, и меньше зависит от влияния помех, ведение по глиссаде осуществляется более плавно.

При этом приемники, установленные на борту, могут одновременно использовать и сигналы GLS, и сигналы ILS, что обеспечивает еще более высокую точность, а также надежность на случай отказа одной из систем во время захода на посадку (при использовании только одной системы в этом случае пришлось бы уйти на второй круг).

Методически различий между заходами на посадку по GLS и ранее выполняемыми заходами на посадку по сигналам курсо-глиссадных радиомаяков инструментальной системы посадки ILS не отмечается. Стереотип действий летчика сохраняется.

Оборудование GLS штатно устанавливается на Boeing-747-8 и 787, а в качестве опции доступно для 737NG, Airbus A320, A330, A340 и A380.

Основными потребителями РТС посадки являются самолеты, снижающиеся по траекториям, положение которых в пространстве определяется с помощью специальных РТС (радиотехнических систем).

Радиотехнические системы посадки позволяют точно определить место самолета относительно ВПП и заданной траектории снижения в любых метеорологических условиях, в том числе и вне видимости земли.


Система посадки состоит из наземного оборудования (в состав которого входят светооборудование аэродромов, приводные радиостанции с маркерными радиомаяками, радиопеленгаторы и т.д.) и из самолетного оборудования (бортового: самолетные автоматические радиокомпасы, радиовысотомеры, маркерные и курсоглиссадные приемники и т.д.).

Вывод ВС в точку приземления на ВПП достигается за счет того, что система посадки задает в пространстве плоскость курса и плоскость планирования (снижения), пересечение которых определяет линию планирования самолета (глиссаду).

Разновидности РТС посадки:

§ радиолокационные системы посадки (РСП), в которых положение ВС относительно глиссады определяется на наземном диспетчерском пункте, а управление ВС осуществляется экипажем по командам диспетчера, передаваемым с помощью УКВ-радиостанции;

§ инструментальные системы посадки, в которых линия планирования задается с помощью наземных радиомаяков, а информация поступает на соответствующие индикаторные приборы в кабине ВС. При этом инструментальные системы посадки в свою очередь можно разделить на упрощенные и радиомаячные (РМС) МВ-, ДМВ- и СМВ-диапазонов.

§ cпутниковые системы посадки (GLS).

1) Радиолокационные системы посадки (РСП) служат для обеспечения посадки самолетов, не имеющих специального радиотехнического посадочного оборудования. В состав радиолокационной системы посадки входит диспетчерское оборудование, посадочный радиолокатор (ПРЛ) и оборудование упрощенной системы посадки. Оборудование упрощенной СП применяется для привода самолетов в район аэродрома. РСП являются высокоэффективными системами контроля захода ВС на посадку.

Достоинства РСП:

§ осуществление посадки всех видов ЛА;

Недостатки РСП:

§ невозможность доведения ЛА до точки приземления;

§ трудность наблюдения за движением ВС на близких расстояниях;

§ низкая пропускная способность;

§ сложность работы наземного персонала;

§ относительная сложность наземной радиолокационной аппаратуры.

2) Оборудование системы посадки (ОСП) (упрощенные системы посадки) обеспечивают вывод ВС на аэродром, выполнение предпосадочного маневра и определение МС в 2х фиксированных точках на траектории посадки.

Достоинства УСП:

§ простота наземного оборудования и его обслуживания;

§ большая дальность действия при полетах ВС на малых высотах.

Недостатки УСП:

§ невозможность непрерывного контроля положения ВС в вертикальной плоскости относительно глиссады

§ сравнительно низкая точность выдерживания посадочного курса, вследствии невысокой точности АРК;

§ ограниченная пропускная способность (15-20 ВС в час).

3) Радиомаячные системы посадки метровых волн (РМСП МВ) позволяют задать прямолинейную пространственную траекторию захода на посадку и определить текущее МС в пространстве, а также фиксировать моменты прохода 2х,3х точек на линии глиссады, расположенных на определенном удалении от ВПП. РМСП этого типа обеспечивает задание единственной траектории – глиссады планирования и управление ВС в пределах определенных достаточно узких секторов вокруг нее.

Достоинства РМСП МВ:

§ обеспечивает возможность точной посадки и днем, и ночью, в том числе в плохих метеоусловиях

Недостатки РМСП МВ:

§ большое влияние отраженных сигналов в метровом диапазоне и как следствие возникновение искажений при наведении ЛА

§ диаграмма направленности маяков позволяет осуществлять заход на посадку только с одного фиксированного направления

§ малый угловой размер зоны действия радиомаяка не позволяет строить удобные схемы захода на посадку

§ высокая стоимость из-за сложной антенной системы

§ повышенные требования к окружающему рельефу

§ ограниченное число каналов (около 40), т.е. работающие на одной частоте маяки создают друг другу помехи

§ при высокой плотности аэродрома, выбор свободных частот бывает проблемным.

4) Радиомаячные системы посадки сантиметровых волн (РМСП СМВ) обеспечивают определение пространственных координат ВС в определенной области пространства, размеры которой значительно превосходят сектора управлений, существующих ныне РМСП и могут позволять выполнение полетов по любой криволинейной 4х мерной пространственно-временной траектории посадки.

5) Спутниковые системы посадки ( GLS ) предполагает использование, для решения задач автоматической посадки, дифференциальной глобальной спутниковой навигационной системы (DGPS).

DGPS позволяет использовать 2 варианта автоматической посадки, полностью отвечающих требованиям точности при заходе на посадку и посадке по 1 категории ИКАО (система наведения для местного района (LAAS) и система наведения для большой площади перекрытия (WAAS)).

VP-BUG3

Мы тут первыми среди российских авиакомпаний получили официальное одобрение Росавиации на выполнение заходов на посадку с использованием сигналов спутниковой системы GLS (GNSS Landing System).

GLS – спутниковая система захода на посадку, которая в настоящее время активно внедряется во всем мире. Разрешение получено для трех воздушных судов авиакомпании Boeing 737-800NG.

В России наземными корректирующими станциями GBAS, позволяющими осуществлять заходы на посадку по GLS, на сегодняшний день оборудованы более 50 аэродромов. В планах Госкорпорации по ОрВД – сертифицировать 10-15 аэродромов в год.

Основная цель такого оборудования – сделать еще более точным определение местоположения воздушного судна в пространстве и избежать ошибок при всех возможных внешних воздействиях на сигнал со спутников, который принимает лайнер, в том числе и во время выполнения точного захода на посадку.
___________________________________

Теперь надо понять, как это работает :))) Денис Окань наверно сделает пост :)

Читайте также: