Среды для культивирования микроорганизмов клеток растений и животных

Обновлено: 05.10.2024

Технология культивирования клеток и тканей значительно продвинулась вперёд за последние десятки лет и теперь активно применяется в различных областях: от молекулярной биологии до фармацевтической промышленности.

Технология культивирования клеток и тканей значительно продвинулась вперёд за последние десятки лет и теперь активно применяется в различных областях: от молекулярной биологии до фармацевтической промышленности. Суть заключается в выделении клеток, органов, либо тканей из живых организмов или растений с последующим помещением их в синтетическую питательную среду. При этом важно создать нужные условия, чтобы был возможен рост и пролиферация структурных единиц. А именно обеспечить:

  • контроль температурного режима;
  • правильный состав культуральной среды;
  • СО2-инкубатор для регулирования кислотности;
  • поддержание осмотического давления;
  • субстрат (для прикрепления адгезивных клеточных культур).

Из всех этих условий наиболее значимым считается культуральная среда. Именно от неё зависит качество роста и размножения клеток.

Питательные среды — это многокомпонентные жидкости или плотные гели, созданные специально для выращивания клеток разного типа. В их состав входят различные аминокислоты, соли, витамины, гормоны, факторы прикрепления и роста, смешанные в определённых пропорциях. Среда должна содержать все необходимые питательные компоненты в легкоусвояемой форме, быть изотонической, сбалансированной с высокой буферной ёмкостью.

Компоненты питательной среды

Для обеспечения буферной системы

Оптимальные показатели pH для культивируемых клеток — от 7,2 до 7,4. Повышение или понижение уровня кислотности крайне нежелательно.

Бикарбонат натрия помогает нейтрализовать избыток водородных ионов, поддерживая оптимальный уровень кислотности (буферность). Для правильного действия ему нужно 5-10% содержания СО2. Это обеспечивается с помощью специального инкубатора.

HEPES — это фосфатный буферный агент, который поддерживает физиологический pH между 7,2 и 7,4. Для него не требуется специальная среда с диоксидом углерода, но высокие концентрации вещества могут нанести вред некоторым видам клеток.

Феноловый красный — это кислотно-основный индикатор. Становится красным при показателях pH 7,4. При понижении значения приобретает цвет от оранжевого до жёлтого. Подходит не для всех клеток: некоторые из них могут быть чувствительны к эстрогену.

С помощью неорганических солей поддерживается изотоничность. Кроме того, они способствуют нормализации мембранного напряжения, насыщая среду ионами основных электролитов (калия, кальция, натрия). Осмоляльность не менее важна, чем уровень pH. Её показатели (для разных видов клеток) должны находиться между 260 и 340 миллиосмоль/кг.

Аминокислоты

Являясь основным стройматериалом для синтеза белков, аминокислоты обязательно присутствуют в культуральных средах. L-глютамин наиболее важен среди всех. Он насыщает азотом НАД, НАДФН и нуклеотиды, а также выступает в роли одного из источников энергии, необходимой для внутриклеточного обмена веществ. Кроме него в состав могут входить заменимые аминокислоты.

Углеводороды

Глюкоза и галактоза — составляющие, которые обеспечивают клетки энергией. Содержатся в большинстве сред.

Белки, пептиды

Чаще всего в растворы добавляют три вещества. Альбумин — простой водорастворимый белок, отвечающий за связывание воды и различных веществ (солей, витаминов), а также дальнейший их транспорт в структуру тканей и клеток. Фибронектин — важный субстрат, обеспечивающий клеточную адгезию. Трансферрин доставляет атомы железа в клеточную мембрану.

Жиры, жирные кислоты

Необходимы для выращивания клеток в бессывороточных средах. В составе сывороток уже присутствуют.

Витамины

Для роста и пролиферации нужны витамины, которые клетки не могут синтезировать. В растворах чаще всего содержатся рибофлавин, биотин, тиамин.

Добавки

Сыворотка — значимый компонент, который добавляется перед использованием раствора, в концентрации от 5 до 10%. Она представляет собой состав, содержащий водорастворимые белки, факторы и ингибиторы роста, аминокислоты, жиры, микроэлементы. Чаще всего это эмбриональная сыворотка, бычья или телячья.

Антибиотики добавляют, чтобы снизить риск загрязнения среды бактериями или грибами. Но они не защищают от заражения микоплазмой.

После извлечения клеток из ткани или организма и помещения их в культуру культуральная среда должна обеспечивать все внешние условия, которые клетки имели in vivo. Это обеспечивает выживание клеток, их пролиферацию и дифференцировку. Внеклеточная среда должна обеспечивать клетки питательными и гормональными факторами, т.е. обладать всем необходимым для роста и выживания клеток.

Культуры клеток животных и человека предъявляют определенные требования к жидкой (питательная среда), газообразной (концентрация газов) и твердой (поверхность субстрата) фазе. Питательная среда представляет собой раствор определенного состава, к которому добавляются компоненты невыясненного биологического происхождения (добавки плазмы, сыворотки крови, тканевые экстракты и т.д.). Основу питательных сред составляют солевые растворы. Минеральные компоненты в этих растворах подобраны так, что раствор выполняет буферные функции, поддерживая постоянный кислотнощелочной баланс среды в процессе культивирования. Постоянство рН среды является одним из главных требований условий культивирования.

Для приготовления питательных сред обычно используются солевые растворы Эрла и Хенкса. Эти растворы, как и фосфатносолевой буфер Дульбекко и Фогта используются также для орошения и промывки клеток при пассировании культур, выделении клеточных линий и других манипуляциях с культурами клеток. Другим важным условием культивирования является осмотическое давление. Оно определяется числом молей осмотически активных частиц (ионов и неионизированных молекул) растворенных веществ на 1 кг растворителя (осмоляльность) или на 1 литр раствора (осмолярность). В разбавленных водных растворах эти величины близки. Осмоляльность раствора (осмоль/кг) = S mi*xi, где mi концентрация i-го растворенного вещества (моль/кг), xi количество частиц, на которые диссоциировала его молекула. Например, для раствора Эрла расчетная величина осмоляльности равна 310.6 мосмоль/кг, реальная 283. Диапазоны рН и осмоляльности, при которых происходит размножение клеток, узки и варьируют в зависимости от типа клеток. Например, для клонального роста диплоидных фибробластов человека WI38 оптимальны рН=7.30 + 0.15 и осмоляльность 285 + 40 мосмоль/кг, а для фибробластов из эмбриона цыпленка 7.12 + 0.18 и 300 + 20 соответственно. Для поддержания рН в большинстве сред используется бикарбонатный буфер: HCO3 = CO2 + OH, если выделяется углекислый газ, увеличивается концентрация ОН. Растворы могут содержать малое количество бикарбонатного буфера (раствор Хенкса), они предназначены для поддержания рН в плотно закрытых сосудах. В других (растворе Эрла) бикарбоната больше, они используются в системах с повышенным парциальным давлением СО2. Если культуры ведутся вне СО2инкубатора, где рН поддерживать труднее, необходимы альтернативные буферные системы. Хорошим буфером является HEPES 4-(2-оксиэтил)1-пиперазинэтансульфоновая кислота. HEPES легко растворим в воде, не связывает двухвалентные катионы, не цитотоксичен до концентрации 0.05 Моль. Применяется в концентрациях 0.01 0.03 М.

Стандартные среды для ведения культур животных клеток. Среды Игла MEM (minimal essential medium) и BME (basal medium, Eagle). Чаще используется МЕМ. Она содержит минеральные вещества, аминокислоты (13 незаменимых), 6 водорастворимых витаминов, холин и инозит, выполняющие роль углеводородного субстрата. МЕМ используется только с сывороткой, так как в ней отсутствуют биотин, витамин В12, ионы железа и микроэлементы. Основа раствор Эрла.

Среда Дульбекко DME или DMEM (двойная модификация среды Игла). Используется при культивировании клеток различных типов, в том числе нетрансформированных клеток и гибридом. Является основой для бессывороточных сред. Содержит двойную концентрацию аминокислот, глицин, серин, пируват, железо. При использовании этой среды необходим инкубатор с 10% концентрацией СО2.

Среда Искова IMDM - модификация среда Дульбекко. Добавлены незаменимые аминокислоты, биотин, витамин В12, селенит натрия. В среду введен HEPES и уменьшены концентрации NaCl и NaHCO3. Среда бессывороточная, обычно используется для культивирования лимфоцитов и кроветворных клеток.

Среда МакКоя 5А и серия сред RPMI. Среда МакКоя 5А разработана в 1958 году для поддержания клонального роста клеток карциносаркомы Уолкера 256 в присутствии сыворотки, а затем уже других первичных культур и различных клеточных линий. Обычно производится в модификации Ивката и Грейса (RPMI) и предназначена для культивирования лейкоцитов в присутствии сыворотки, часто применяется и для культивирования гибридом. Концентрация СО2 в атмосфере при культивировании 5%.

Среда 199 разработана в 1950 году для культивирования фрагментов сердца из эмбриона цыпленка. Для среды характерны широкий спектр питательных веществ и невысокая их концентрация. Используется без добавок, как поддерживающая для первичных клеток, а с сывороткой как ростовая среда для быстро размножающихся клеток. Нормальные, сохраняющие специфические функции клетки на стандартных средах не размножаются (если не трансформированы). Для оптимального роста клеток обычно добавляют 5 - 20% фетальной (эмбриональной) сыворотки.

Сыворотка представляет собой чрезвычайно сложную смесь мелких и крупных молекул, способных как вызывать, так и тормозить рост клеток. К главным функциям сыворотки относятся: обеспечение гормональными факторами, стимулирующими рост клеток и их функции; обеспечение факторами прикрепления и распластывания клеток; обеспечение транспортными белками, переносящими гормоны, минеральные вещества, липиды и т.д. Белки сыворотки, прямо и специфически участвующие в стимуляции клеточного деления, называются факторы роста.

Большинство ростовых факторов присутствуют в сыворотке в концентрации нескольких нанаграммов на миллилитр и ниже. Некоторые из этих факторов специфичны для клеток на определенной стадии дифференцировки, действие других не ограничено какимлибо одним типом клеток. Один и тот же тип клеток может быть стимулирован различными ростовыми факторами. Например, фибробласты размножаются в ответ на фактор роста фибробластов, фактор роста эпидермиса, фактор роста, синтезируемый тромбоцитами и соматомедины. Все эти вещества являются митогенами (стимулируют митоз). Другим важным фактором роста практически для всех типов клеток является гормон инсулин. Из других гормонов наиболее часто применяются глюкокортикоиды (гидрокортизон, дексаметазон), стероиды (эстрадиол, тестостерон, прогестерон) и гормоны щитовидной железы (трииодтиронин). Гормоны стимулируют или подавляют рост в зависимости от типа клеток и их плотности. Глюкокортикоиды, например, влияют на пролиферацию клеток, изменяя их чувствительность к факторам роста.

Для переноса низкомолекулярных факторов (витаминов, аминокислот, липидов и других) необходимы транспортные белки. В этой роли выступает альбумин. Транспорт железа обеспечивает трансферрин, а поверхность большинства культивируемых клеток содержит рецепторы для этого белка. К факторам прикрепления и распластывания клеток относятся коллаген и фибронектин, более специализированы хондронектин (адгезия хондроцитов) и ламинин (адгезия эпителиальных клеток).

В последние годы разработаны бессывороточные среды для размножения клеток. Чаще всего эти среды узко специализированы, т.е. предназначены для определенного типа клеток. К базовой среде добавляется инсулин, трансферрин, гидрокортизон или его аналог дексаметазон и т.д. Бессывороточные среды имеют определенные преимущества: улучшение воспроизводимости результатов опыта вследствие большей стабильности состава среды; снижение риска заражения культуры вирусами, грибами, микоплазмой; облегчение очистки продуктов клеточного метаболизма; снижение влияния дополнительных белков на результаты биологических исследований; отсутствие цитотоксичности сыворотки. Культивирование клеток в присутствии сыворотки обнаруживает и ряд недостатков: для большинства тканей сыворотка не является физиологической жидкостью, с которой они контактировали в исходной ткани, поэтому, например, сыворотка вызывает рост фибробластов, но тормозит рост эпидермальных кератиноцитов; сыворотка может быть цитотоксичной, так как содержит полиаминоксидазу, действующую на полиамины (спермин, спермидин), являющиеся продуктами секреции быстро пролиферирующих клеток (эмбриональная сыворотка содержит относительно много такого фермента); значительная вариабельность состава сывороток разных партий; сыворотки могут содержать недостаточное количество специфических ростовых факторов, что вызывает необходимость добавления их к культурам клеток.

Многие клетки млекопитающих, прежде чем приступить к пролиферации и образовать клеточный монослой, должны прикрепиться к субстрату и распластаться на нем. В связи с этим встает вопрос о подходящем материале. В качестве субстрата в настоящее время используют несколько материалов. Стекло лучше всего пирекс (алюмоборосиликатное стекло), так как натрийсиликатное стекло может подщелачивать среду и его необходимо кипятить в слабой кислоте перед употреблением. С каждым использованием пригодность такого стекла падает. Пластик - чаще всего используют полистирол, поликарбонат, поливинилхлорид, тефлон и другие. Металлы - подходит как нержавеющая сталь, так и титан, так как эти вещества химически инертны и обладают высоким отрицательным поверхностным зарядом. Клетки прикрепляются за счет электростатических взаимодействий, поэтому поверхность культуральных сосудов должна быть смачиваемой и отрицательно заряженной. Этого можно достичь химической обработкой окисляющими агентами или физическими воздействиями (высоковольтным разрядом, ультрафиолетовым светом, бомбардировкой высокоэнергетическими электронами). Фирмы, производящие пластиковую посуду, используют эти методы. Некоторые исследователи, несмотря на это, предпочитают даже новую посуду перед посадкой клеток обрабатывать смесью концентрированной серной кислоты и бихромата калия (хромовая смесь), после чего следует тщательная промывка. Иногда поверхность сосуда покрывают веществом, облегчающим прикрепление клеток. Наиболее часто для этого используют коллаген и полиаминокислоты.

Разработка питательных сред, и особенно плотных, для разных видов микроорганизмов позволила изучать их культуральные, биохимические, антигенные, вирулентные свойства.

Пастер для культивирования микробов использовал жидкие отвары. Первыми разработчиками плотных питательных сред были Кох и его ученики. Они первыми применили картофель, свернутую сыворотку, желатин, мясопептонный агар.

Плотные среды позволили получать чистую культуру микробов и изучать их свойства.

Стало возможным определять этиологические факторы многих инфекционных заболеваний, заняться созданием профилактических и лечебных препаратов.

Культивирование микробов на плотных питательных средах в лабораторных условиях позволило, получая чистые культуры, не только работать над созданием вакцин, диагностикумов, но и изучать спектр действия химиотерапевтических препаратов и антибиотиков, применяемых с лечебной целью, а также изучать действие химических препаратов, применяемых с целью профилактической, текущей и заключительной дезинфекции.

Постановка лабораторного диагноза связана с выяснением систематического положения микроорганизмов, полученных в чистой культуре (чистая культура – скопление микробов одного вида на питательной среде).

Получение чистой культуры часто является необходимым условием при изучении микроорганизмов, выделенных от больного.

Определение видовой принадлежности микроорганизмов включает определение целого ряда особенностей микроорганизмов: морфологии клетки, характера роста культуры на различных питательных средах, способности использовать те или иные химические соединения, отношения к температуре, рН среды, кислороду и пр. Кроме того, для определения вида у микроорганизмов часто необходимо знать продукты обмена веществ, антигенные свойства, нуклеотидный состав клеток, биохимическую активность, связанную с набором ферментов, и многое другое.

Определение всех этих признаков позволяет идентифицировать микроорганизмы.

Идентификация микроорганизмов очень важна при диагностике инфекций, установлении источников и путей передачи возбудителя.

Для того, чтобы можно было идентифицировать какой – либо микроорганизм, необходимо накопить особи в чистой культуре и в необходимом количестве.

Для выделения, культивирования, накопления и сохранения микроорганизмов пользуются питательными средами, содержащими все необходимые для микробов питательные вещества и имитирующими среду обитания микроорганизмов в естественных условиях.

Все питательные среды должны удовлетворять следующим требованиям:
1) наличие питательных веществ и факторов роста в легко усвояемой форме;
2) стерильность – отсутствие жизнеспособных микроорганизмов и спор;
3) изотоничность – одинаковое содержание минеральных солей внутри и вне клетки. Для патогенных микроорганизмов, адаптировавшихся к длительному пребыванию внутри организма человека, изотоничным считается 0,85% раствор хлорида натрия. Для микроорганизмов, обитающих, например, в океане (в соленой воде), изотоничность будет создаваться другой концентрацией солей, однако требование к изотоничности питательных сред остается;
4) оптимальное рН среды. Окислительно – восстановительный потенциал питательной среды создается ионами водорода, что способствует нормальному функционированию ферментов микроорганизмов;
5) прозрачность среды. Так как большинство бактерий одним из основных признаков роста на питательных средах является помутнение (на жидких средах – помутнение, осадок, пленка или смешанное; на плотных средах – образование колоний).

Важнейшей особенностью роста некоторых микроорганизмов на питательных средах: для лептоспир – отсутствие помутнения питательной среды (наблюдение за ростом и размножением этих микроорганизмов осуществляется при помощи фазово – контрастного микроскопа), для микоплазм и возбудителя туберкулеза – замедленный рост (помутнение или появление колоний не ранее чем через 21 сутки, а то и позже).

Питательные среды являются основой микробиологической работы и их качество нередко определяет результаты исследования. Поэтому при подборе сред следует учитывать как требования микробов в отношении веществ, необходимых для поддержания их жизнедеятельности, так и их возможность осуществлять в данных условиях обмен веществ между клеткой и средой.

Питательные среды должны создавать оптимальные (наилучшие) условия для жизнедеятельности микробов.

Чтобы осуществлять биосинтез, рост и размножение, клетка должна получать извне в необходимых количествах все содержащиеся в ней элементы и должна быть обеспечена источником энергии. В соответствии с тем, какие именно элементы доставляются клетке, вещества питательной среды называют источниками углерода, азота, фосфора, серы и т.д.

Соединения, в виде которых необходимые для конструктивных целей элементы должны быть внесены в среды, определяются синтетическими способностями микроорганизмов.

Форма источника энергии определяется способом ее получения.

Синтетические возможности микроорганизмов и способы получения ими энергии отличаются чрезвычайным разнообразием, поэтому и различны их потребности в источниках питания. Этот факт необходимо учитывать при составлении питательных сред, четко представляя, что универсальных сред, одинаково пригодных для роста всех без исключения микроорганизмов, не существует.

Таким образом, состав питательных сред определяется прежде всего особенностями, разнообразием обмена веществ микроорганизмов.

Необходимыми элементами питания микроорганизмов, как и других существ, являются углерод, азот, сера, фосфор, зольные элементы, а для многих микроорганизмов – различные дополнительные питательные вещества, такие как витамины, факторы роста и т.д.

Многие микроорганизмы, подобно высшим животным, помимо нормальных источников углерода, азота, минеральных солей и других элементов, служащих им источником энергии и материалом для синтеза, нуждаются еще в весьма существенных факторах роста. Особенностью факторов роста является их активность в чрезвычайно малых количествах.

Вещества, аналогичные БИОСу, оказались необходимыми как факторы роста для многих микроорганизмов. Некоторые микроорганизмы нуждаются в добавлении к питательной среде витамина В.

По потребности в витамине В бактерии делятся на четыре группы:
а) бактерии, растущие на бульоне, лишенном витамина В. Эти бактерии не растут на синтетических средах (брюшнотифозная и дизентерийная палочки, гноеродный стафилококк);
б) бактерии , не нуждающиеся в экзогенном поступлении витамина В. Эти бактерии растут на безвитаминном бульоне и синтетических средах (кишечная палочка, холерный вибрион, синегнойная палочка, возбудитель сибирской язвы и др.). Микробы этой группы способны сами синтезировать витамин В;
в) бактерии, плохо растущие на безвитаминных средах (менингококк, возбудитель дифтерии);
г) бактерии, не растущие на безвитаминных средах (гемолитический стрептококк, пневмококк).

Установлено, что витамины группы В обладают способностью стимулировать рост и кислотообразование у пропионово – кислых и молочно – кислых бактерий.

Палочка инфлюэнцы, возбудители коклюша и мягкого шанкра нуждаются в факторе роста, состоящем из Х и Y факторов. Оба эти фактора находятся в крови, а также в картофеле и других растительных экстрактах.

Х – фактор термостабилен, он является гематином и может быть заменен некоторыми неорганическими соединениями железа, имеющими оксидную или каталазную активность. Гематин и другие соединениия железа необходимы для синтеза цитохромов, участвующих в процессах дыхания.

Y – фактор имеет витаминную природу, разрушается при автоклавировании, вырабатывается бактериями, дрожжами, клетками животных и растений.

Анаэробный микроб Bac. sporogenes использует в качестве фактора роста ненасыщенную жирную кислоту. ЕЕ наличие необходимо также и для роста Cl.botulinum и Cl. Perfringens. Это вещество образуется многими аэробными бактериями, например, брюшнотифозной, туберкулезной палочками, а также плесневыми грибами. Очевидно, это вещество необходимо для жизнедеятельности всех микроорганизмов, но анаэробные клостридии лишены способности сами его синтезировать.

Весьма активным фактором роста, имеющим универсальное биологическое распространение, является пантотеновая кислота. Амид никотиновой кислоты служит фактором роста для стафилококков. Без него стафилококки не растут на синтетических средах, содержащих гидролизованную желатину, триптофан, тирозин, цистин и глюкозу. Никотинамид синтезируется кишечной, брюшнотифозной палочками, а также холерным вибрионом.

К факторам роста относятся некоторые аминокислоты (необходимые для синтеза белка), пуриновые и пиримидиновые основания (идущие на построение нуклеиновых кислот) и др. Многие факторы роста входят в состав различных ферментов и играют роль катализаторов в биологических процессах. Вопрос о факторах бактериального роста весьма существенен. С одной стороны, он помогает понять физиологическую роль мясной воды, на которой готовятся лабораторные питательные среды для культивирования многих микроорганизмов. С другой стороны, разрешение вопроса о факторах роста позволяет более широко применять синтетические среды для культивирования микробов.

Питательные среды для одного и того же микроорганизма могут быть разными в зависимости от задач исследования. Например, среды, подходящие для длительного поддержания жизнедеятельности культур микроорганизмов, могут сильно отличаться от сред, предназначенных для получения тех или иных продуктов обмена, когда требуется стимулировать отдельные стороны жизнедеятельности микробов. Особые среды нужны для образования спор и других форм жизненного цикла.

По возможности питательные среды должны быть унифицированными, т. е. содержать постоянные количества отдельных ингредиентов. Для удобства слежения за ростом культур и контролем за загрязнением среды посторонними микроорганизмами питательные среды должны быть прозрачными.

По составу питательные среды подразделяются на натуральные, синтетические и полусинтетические.

Натуральными средами обычно называют среды, состоящие из продуктов животного или растительного происхождения, имеющие сложный неопределенный химический состав. Основой таких сред являются различные части зеленых растений, ткани животных, солод, дрожжи, фрукты, овощи, навоз, почва, вода морей, озер и минеральных источников. Большинство из них используются в виде экстрактов или настоев.

На натуральных средах хорошо развиваются многие микроорганизмы, так как в таких средах имеются, как правило, все компоненты, необходимые для роста и развития микробов. Однако среды с неопределенным составом мало пригодны для изучения физиологии обмена веществ микроорганизмов, поскольку они не позволяют учесть потребление ряда компонентов среды и выяснить, какие вещества образуются по ходу развития микроорганизмов.

Натуральные среды неопределенного состава используются, главным образом, для поддержания культур микроорганизмов, накопления их биомассы и для диагностических целей.

К числу сред неопределенного состава относят и так называемые полусинтетические среды. В их состав наряду с соединениями известной химической природы входят вещества и неопределенного состава. Такие среды находят особенно широкое применение в промышленной микробиологии для получения аминокислот, витаминов, антибиотиков и других важных продуктов жизнедеятельности микроорганизмов.

В качестве примера таких сред можно назвать мясо – пептонный бульон (МПБ), в состав которого одновременно с мясным экстрактом и пептоном, имеющими сложный состав, входят хлорид натрия, фосфорнокислый калий, а также иногда глюкоза или сахароза. К полусинтетическим относятся и картофельные среды с глюкозой и пептоном.

Синтетические среды – это такие среды, в состав которых входят только определенные , химически чистые соединения, взятые точно в указанных концентрациях.

Синтетические среды наиболее удобны для исследования обмена веществ микроорганизмов. Зная точный состав и количество входящих в среду компонентов, можно изучить их потребление и превращение в соответствующие продукты обмена.

Питательные среды бывают элективные, дифференциально – диагностические и консервирующие.

Элективные среды были введены в микробиологическую практику С.Н.Виноградским и М.Бейеринком. Это такие питательные среды, в которых путем добавления одного или нескольких химических соединений, создаются оптимальные условия для роста и размножения одного вида микроорганизмов (или группы родственных микроорганизмов) и неблагоприятные – для всех остальных. Такие среды применяются главным образом для выделения чистой культуры микроорганизмов из мест их естественного обитания и для накопления массы культур (химический метод выделения чистой культуры). Например, питательная среда, которая представляет собой свернутую лошадиную сыворотку, является элективной средой для дифтерийных бактерий, щелочная пептонная вода – для холерных вибрионов, желчный бульон – для возбудителя брюшного тифа, печеночный бульон – для бруцелл и т.д.

Накопление микробов а элективных питательных средах во многих случаях служит важным предварительным этапом при выделении чистых культур из исходных исследуемых материалов (например, холерного вибриона или брюшнотифозных бактерий из испражнений больных или носителей и пр.).

Дифференциально – диагностические среды – это такие среды, в состав которых кроме веществ, обеспечивающих рост и развитие микроорганизмов, входят вещества, применяющиеся в качестве субстрата для определенных ферментов. По качественному изменению субстрата Определяется присутствие того или иного фермента (оценивается при помощи индикатора, реагирующего на наличие в питательной среде продуктов распада субстрата).

Каждый вид микроорганизмов характеризуется достаточно стабильным набором ферментов. Определение набора ферментов при помощи дифференциально – дагностических сред позволяет дифференцировать виды микроорганизмов. Например, кровяной агар позволяет выявить фермент гемолизин, среды Гиса – сахаролитические ферменты (карбогидразы), желатин используется для учета протеолитических свойств микробов и т.д.

Кровяной агар. О наличии фермента гемолизина судят по разрушению эритроцитов и образованию светлой зоны вокруг микробов, выросших на кровяном агаре.

Среды Гиса. О наличии ферментов – карбогидраз, расщепляющих углеводы до кислоты, свидетельствует изменение рН среды в кислую сторону и изменение цвета питательной среды. Различие в наборе ферментов может быть использовано для проверки чистоты выделяемой культуры, а также для быстрой дифференцировки одного вида от других при первичном исследовании посевов заразного материала.

Консервирующие среды предназначены для первичного посева и транспортировки исследуемого материала. В них предотвращается гибель патогенных микроорганизмов и подавляется развитие сапрофитов. В качестве примера можно назвать глицериновую смесь, используемую для сбора испражнений при исследованиях, проводимых с целью обнаружения некоторых видов бактерий.

По физическому состоянию среды разделяются на жидкие, плотные, полужидкие и сыпучие. Для выяснения физиолого – биохимических особенностей микроорганизмов, а также для накопления их биомассы или продуктов обмена наиболее удобно применять жидкие среды. Плотные среды используются для выделения чистых культур, получения изолированных колоний, для хранения культуры и количественного учета микроорганизмов, определения их антагонистических свойств и в ряде других случаев. Полужидкие питательные среды, как правило, используются для более длительного хранения микробных культур. Для уплотнения сред применяют агар – агар, желатин и кремнекислый гель.

В промышленной микробиологии применяют так называемые сыпучие питательные среды. К таким средам относятся, например, разваренное пшено, отруби, пропитанные питательным раствором и пр.

Питательные среды бывают простые и сложные. К числу простых жидких питательных сред относятся пептонная вода, мясо – пептонный бульон (МПБ). К плотным простым питательным средам принадлежат мясо – пептонный агар (МПА) и мясо – пептонный желатин.

Простые питательные среды, особенно МПБ и МПА, служат основой для изготовления из них более сложных сред путем добавления к ним различных веществ, повышающих питательную ценность субстрата. Например, при добавлении глюкозы получают сахарный бульон или сахарный агар; асцит – агар и асцит – бульон получают при добавлении асцитической жидкости; цельная кровь является составной частью кровяного агара и кровяного бульона, а при добавлении сыворотки крови получают сывороточные среды (агар или бульон).

Среды более сложного состава обычно предназначаются для культивирования требовательных к питательному субстрату микробов, не размножающихся на простых средах. К таким микроорганизмам относятся возбудители гонореи, дифтерии, бруцеллеза, туляремии, сифилиса, возвратного тифа, риносклеромы, туберкулеза и др.

Среда — это твердая или жидкая субстанция, содержащая питательные вещества для культивирования (роста) микроорганизмов, а также клеток животных или тканей растений. Культурой называют совокупность микробных клеток, растущих на среде (или в среде).

Твердые и жидкие среды

Микроорганизмы можно выращивать на твердой среде или в жидкой среде (бульоне).

Твердые среды

Твердые среды очень удобны для выращивания бактерий и грибов; их готовят путем смешивания жидкого питательного раствора с гелеобразующим компонентом (обычно агаром) в концентрации 1—2%; при этом получается питательный агар. Агар представляет собой экстракт из красных водорослей. В концентрации 1—2% агар плавится при 90—100 °С и застывает примерно при 44 °С. Агар можно предварительно простерилизовать нагреванием и затем остудить. Микроорганизмы рассевают по поверхности агара после его застывания, либо, если они выдерживают температуру около 44 °С, добавляют к агару непосредственно перед застыванием; тогда они равномерно распределяются по всей среде. Агар прозрачен и, будучи сложным полисахаридом, устойчив к разрушению микроорганизмами; это относится к его преимуществам. Примеры использования твердых и жидких сред будут приведены в последующих разделах. На твердых средах иногда выращивают и культуры тканей растений.

Жидкие среды

Жидкие среды часто используют для изучения роста популяции. Клетки помещают в пробирку, закрытую ватной пробкой или металлической крышкой, или в стеклянный флакон с завинчивающейся крышкой, такой как универсальный сосуд Маккартни, в который помещается около 25 см3 среды — как раз для заливки одной чашки. Перед тем, как среда будет использована для выращивания культуры клеток, она должна быть простерилизована. Добавление небольшого количества клеток к среде называется посевом (или инокуляцией). После инокуляции среду оставляют в термостате при оптимальной для роста данного микроорганизма температуре. Растущие клетки распределяются в среде случайным образом.

При использовании больших объемов среды культуру перемешивают, чтобы предотвратить оседание клеток. Для этой цели применяют механические встряхиватели или магнитные мешалки. Кроме того, пропускают стерильный воздух через среду, чтобы обеспечить поддержание оптимальной концентрации кислорода по всей среде. Для фильтрации воздуха и его стерилизации используют имеющиеся в продаже фильтры либо фильтры из стеклянной или неабсорбирующей хлопковой ваты. Воздух поступает через распылитель — устройство с множеством маленьких отверстий, позволяющее получать идеальные пузырьки. Его крепят на конце трубки, идущей ко дну сосуда с культурой. Жидкие культуры можно выращивать в виде периодических культур или непрерывных культур.

питательные среды

Обогащенные и селективные среды

Селективная среда — это среда, в которую добавляются вещества, подавляющие рост всех организмов, за исключением одного или нескольких. Примером может служить добавление пенициллина к культуре с целью отбора устойчивых к нему организмов, или отбор гибридных клеток в процессе производства моноклональных антител.

Индикаторные среды

Готовые среды

Сухие среды, содержащие агар и все необходимые компоненты, имеются в продаже. Обычно их выдерживают 15 мин в воде и затем, чтобы простерилизовать, автоклавируют в колбах или флаконах в течение 15 мин при 121 °С. В процессе автоклавирования среда перемешивается и растворяется. Внутри автоклава под давлением кипит вода. Автоклав закрывается крышкой с защитным клапаном, выпускающим пар, когда достигнуто необходимое давление. Чем выше давление, тем выше температура кипения воды. Так стерилизуют растворы и оборудование, например, стеклянную посуду. Чтобы убить всех бактерий и их устойчивые споры, обычно достаточно 15—20 мин инкубации при давлении 103 кПа (кН/м2). При таком давлении температура внутри автоклава достигает 121 °С.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Культивирование микроорганизмов

Большинство научных исследований в области биологии и медицины проводятся не на живых организмах, а "в пробирке". Клеточные культуры и культуры микроорганизмов являются наиболее простым и удобным модельным объектом, позволяющим как тестировать на них воздействие извне, так и исправлять ошибки внутри клетки. Благодаря исследованиям в области клеточного редактирования постепенно становится возможным лечение многих генетических заболеваний. Но каким образом мы можем добиться культуры, максимально соответствующей требованиям к модели для сложных экспериментов? Рассмотрим наиболее популярные современные способы выращивания микроорганизмов и культур клеток.

Общее понимание культивирования

Культивирование как микроорганизмов, так и отдельных клеток – это выращивание изъятого из определенной среды материала в лабораторных условиях. Выращенная таким образом подборка единообразных микробов или клеток уже может называться культурой.

Для того, чтобы выращивание прошло успешно, требуется наличие определенного оборудования, а также соблюдение условий, необходимых для роста и созревания культуры. Стандартно для культивирования используются:

  • Питательная среда, на которой будущая культура должна расти.
  • Факторы роста – питательные вещества, используемые клетками.
  • Посуда, включающая в себя стерильные чашки Петри, инструменты для переноса клеток на среду и др.
  • Дополнительное оборудование: термостаты, аппараты для ферментации и другие.

Также в процессе культивирования от лаборатории требуется соблюдение условий роста для каждой конкретной культуры. Ввиду того, что как клетки, так и микробы, требуют для себя условий, приближенных к естественным, в лаборатории должны поддерживаться различные условия роста при наличии разных культур. Основные условия: приемлемая для культур температура, влажность, давление, постоянная подача кислорода (для аэробных бактерий) или исключение доступа к кислороду (для анаэробных). (Рекомендуем статью: "Флуоресцентная микроскопия")

Культивирование микроорганизмов в чашке Петри

Факторы роста

Факторами роста называют все питательные вещества, которые требуются бактериям и клеткам для оптимального роста и развития. В случае если сама среда не обладает достаточным количеством нужных элементов, их добавляют извне. При этом количество строго регулируется в зависимости от требований к конечной культуре.

К наиболее часто использующимся в современном лабораторном культивировании факторам роста относятся:

  • Аминокислоты. Отдельным микроорганизмам или группам клеток требуются дополнительные аминокислоты извне. При этом требоваться может только одна кислота, например, лейцин и аргинин для стрептококков.
  • Пуриновые или пиримидиновые основания. Также используются и их производные (аденин, гуанин и др.).
  • Витамины. Они требуются для того, чтобы поддерживать работу коферментов, участвующих в метаболизме как клеток, так и бактерий.

В зависимости от типа культивируемых клеток или бактерий, фактор роста может как входить в состав питательной среды, так и вноситься извне.

Питательные среды и требования к ним

Питательная среда – это пространство, в котором находится необходимая группа клеток или бактерий. Среды бывают очень разными, в том числе и узкоспециализированными, для роста наиболее привередливых микроорганизмов. Однако существуют и общие требования, предъявляемые ко всем средам без исключения:

  1. Питательность. Среда должна содержать все необходимые вещества, которые используются бактериями для роста и не могут быть синтезированы ими без среды.
  2. Нужный уровень pH. Это требуется для регулирования проницаемости мембраны клетки и, как следствие, уровень питательных веществ, попадающих внутрь.
  3. Уровень осмотического давления, равный уровню давления в культивируемой клетке.
  4. Оптимальный для конкретной бактерии уровень влажности.
  5. Окислительно-восстановительные качества. Наибольшие различия требований по данной характеристике существуют при культивировании аэробов и анаэробов.
  6. Единый состав среды. Каждая конкретная среда должна иметь одинаковое количество веществ, чтобы не было вариативности в результатах культивирования.

При этом питательные среды могут значительно различаться по всем остальным характеристикам. Они могут быть как натуральными, так и синтезированными искусственно, а также жидкими, полужидкими или плотными.

Стерилизация посуды, сред и окружения для культивирования

Условия роста

Рост микроорганизмов и клеток невозможен без соблюдения определенных условий, таких как температура, влажность, давление, свет и аэрация (насыщение кислородом). Существуют микроорганизмы, которые имеют диаметрально противоположные требования по условиям роста. Для решения проблемы условий при культивировании различных клеток или микроорганизмов используется специальная аппаратура с камерами, внутри которых поддерживается нужный уровень температуры, света или давления. В одном таком устройстве, но в разных камерах, может быть одновременно несколько чашек Петри с материалом, имеющим различные требования по условиям роста. (Рекомендуем статью: "Инновационные технологии для поиска и разработки новых лекарств")

Стерилизация посуды, сред и окружения

Одним из наиболее важных требований к процессу культивирования, является отсутствие загрязнений на оборудовании, при помощи которого происходит выращивание. Этого добиваются, проводя мероприятия по стерилизации. Стерилизация может проводиться несколькими способами, наиболее известные и используемые в современных лабораториях:

  • Прокаливание. Экспресс-метод устранения микробиологического загрязнения через нагрев, может выполняться на спиртовке. Однако данный метод не может быть использован с чем-то, кроме игл и петель для переноса материала.
  • Кипячение. Данный метод широко используется для устранения микробов, но споры бактерий он не устраняет.
  • Сухожаровая стерилизация. Проводится в сушильном шкафу, наиболее часто используется для лабораторной посуды.
  • Автоклавирование под давлением. Один из самых популярных и универсальных методов, однако многие материалы и среды разрушаются при использовании автоклавов.

Основным моментом в современном культивировании клеток и микроорганизмов, всегда будет являться неуниверсальность методик. Из-за большого разнообразия объектов культивирования, всегда будет необходимость подбирать наилучшие условия для конкретного объекта.

Читайте также: