Участок днк в котором закодирована информация о последовательности аминокислот в первичной структуре

Обновлено: 18.09.2024

Как известно, аминокислоты в ДНК есть – они встраиваются в полипептидную цепь. И здесь важно начать с определения нуклеиновых кислот.

Нуклеиновые кислоты – это полимеры, находящиеся в ядрах клеток и состоящие из нуклеотидов.

ДНК состоит из таких компонентов как азотистые основания, дезоксирибиозы, фосфорная кислота. Кроме них в нее входят следующие нуклеотиды:

Любое азотистое основание обладает уникальным механизмом функционирования, а также, что важно, обеспечивает в результате разнообразных сочетаний в триплете многообразие аминокислот, которые формируются. В свою очередь, функционирование каждой клетки живого организма регулируется аминокислотами по-разному.

Сведения о различных типах РНК в клетке – матричной, транспортной, рибосомальной - дает нуклеотидная последовательность. У каждого вида РНК есть своя уникальная функция и все они создаются на ДНК матрице – это происходит в результате копирования и самоудвоения нуклеиновой кислоты того же типа.

Ключевое значение в этом процессе отводится принципу комплементарности, под которым понимают попарное соединение нуклеотидов.

Трансляция – сборка белковой молекулы на рибосоме, когда информация считывается со сформированной в процессе транскрипции ДНК-матрицы.

Матричный синтез – комплекс реакций, благодаря которому на рибосомах внутри эукариотических клеток формируются белковые молекулы.

Такие белки отличаются первичной структурой, а также соединением аминокислот в виде пептидной связи.

Все вышеперечисленное свидетельствует о том, что на базе ДНК активно создаются определенного типа аминокислоты. Клетке передается устойчивая информация об аминокислотном наборе, который ей нужно будет создать, чтобы она могла выполнять все необходимые функции.

Нуклеотиды соединяются друг с другом с помощью прочных ковалентных связей: сахара в составе одного нуклеотида и фосфорной кислоты – в другом. Соединение двух нуклеотидных цепей осуществляется при помощи слабых водородных связей, формирующимися между азотистыми основаниями. Это принцип комплементарности. Тимин присоединяется к аденину, а гуанин – к цитозину: в результате происходит скручивание в спираль двойной цепи.

Функции ДНК и аминокислот

Основные функции ДНК

К функциям ДНК относят:

  1. Вхождение в состав хромосом.
  2. Хранение наследственной информации обо всех признаках организма и первичной структуре белков. Первичную структуру белков называют линейной, поскольку она состоит из соединенных друг с другом пептидной связью аминокислот.
  3. Способность к репликации (удвоение). Процесс удвоения осуществляется в интерфазе до процесса деления. Хромосомы состоят из двух хроматид – в будущем они станут дочерними хромосомами. Процесс удвоения важен потому, что после эти дочерние клетки получат наследственную информацию в одинаковом объеме.

Свойства и функции аминокислот

Есть множество азотосодержащих соединений, обладающих двойственной функций. Кроме нуклеиновых кислот нужно выделить аминокислоты.

Аминокислоты – органические соединения, в состав которых входят аминогруппы (- NH2) и карбоксильные группы (- COOH).

Несмотря на то, что в клетках и живых тканях можно встретить больше 300 различных аминокислот, всего 20 из них являются звеньями в процессе строительства пептидов и белков, которые создаются на ДНК-матрице. Такие аминокислоты входят в состав ДНК и называются белковыми.

В последовательности нуклеотидов ДНК или соответствующего гена закодирована последовательность размещения вышеупомянутых аминокислот внутри белка. Другие аминокислоты могут встречаться как в виде свободных молекул, так и в связанном виде.

Есть аминокислоты, которые можно найти только в определенных организмах, а некоторые – только в одном организме. Почти все растения и микроорганизмы, в отличие от животных и людей, синтезируют нужные аминокислоты. Люди и животные не могут синтезировать незаменимые аминокислоты – они получают их только в процессе приема пищи.

Аминокислоты крайне важны для организма, поскольку принимают участие в обмене белков и углеводов, образовании важных органических соединений. В качестве примера – пуриновые и пиримидиновые основания, которые являются важной частью аминокислот.

Аминокислоты можно найти в составе гормонов, токсинов, алкалоидов, антибиотиков, пигментов и др. А еще очень много аминокислот выступает посредниками при передаче нервных импульсов.

Есть несколько признаков, по которым классифицируют все аминокислоты:

  • взаимное расположения аминогрупп и карбоксильных групп;
  • количество функциональных групп. Здесь выделяют кислые, нейтральные и основные аминокислоты;
  • характер углеводного радикала. В этом случае можно выделить алифатические, ароматические, гетероциклические аминокислоты.

Названия аминокислот, исходя из систематической номенклатуры, получаются, если к названию соответствующей кислоты добавляется приставка амино- и указывается место размещения аминогруппы по отношению к карбоксильной группе.

Есть еще одни вариант называния аминокислоты: обычное название карбоновой кислоты озвучивается вместе с приставкой амино-, а после обозначается буквой греческого алфавита.

Среди наиболее важных аминокислот стоит назвать валин, глицин, лейцин, аланин.

Подводя итоги, отметим, что аминокислоты – это кристаллические вещества, обладающие высокой температурой плавления. Они практически ничем не отличаются от индивидуальных аминокислот – по этой причине они не свойственны многим живым организмам.

Многие аминокислоты сладкие на вкус.

Важно обозначить, что аминокислоты растворяются в воде, а в органических растворителях – нет. Учитывая этот факт, можно сказать, что аминокислоты похожи на неорганические соединения.

Я считаю, что будет ЦГТ ТГГ ТАТ ЦАТ ТТТ.
Так как если белок имеет такую последовательность, то такая же последовательность у тРНК, у иРНК она комплементарна тРНК, а у ДНК комплементарна иРНК, но урацил заменяется на тимин.

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Каждая клетка содержит тысячи белков. Свойства белков зависят от их первичной структуры , т. е. порядка соединения аминокислотных остатков в молекулах.

Информация о первичной структуре всех белков организма закодирована последовательностью нуклеотидов, образующих молекулы ДНК. В молекулах ДНК выделяют гены . Каждый ген соответствует одному белку.

Ген — это единица наследственности, представляющая собой участок ДНК, в котором закодирована первичная структура молекул одного белка.

ДНК_РНК_Белок.jpg


Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до \(60\) тыс. пептидных связей.

Транскрипция — это процесс переписывания наследственной информации с молекулы ДНК на информационную (матричную) РНК.

ДНК_иРНК.jpg

Информационная (матричная) РНК одноцепочечная, она собирается на одной из нитей ДНК по правилу комплементарности.

Образуется молекула иРНК, которая является копией второй цепочки ДНК, только в ней тимин заменён на урацил. Закодированная в ДНК информация о первичной структуре белка таким образом переписывается на иРНК.


Молекула ДНК содержит большое количество генов. Каждый ген начинается промотором — особым участком ДНК, состоящим из нескольких расположенных друг за другом нуклеотидов, который определяет РНК-полимераза, и с этого места начинает сборку молекулы иРНК.


В клетках прокариот иРНК образуется в цитоплазме, поэтому образовавшиеся молекулы могут сразу принимать участие в синтезе белков на рибосомах.


В клетках эукариот транскрипция происходит в ядре, поэтому иРНК сначала через поры в ядерной мембране выходит в цитоплазму.

Для сборки белковой молекулы в цитоплазме клетки должны присутствовать все необходимые аминокислоты. Они образуются при расщеплении белков, поступающих с пищей, или синтезируются в самом организме.

Аминокислоты доставляются к рибосомам транспортными РНК (тРНК). Аминокислота попадает в рибосому только в комплексе с сответствующей тРНК.

К кодону, расположенному в активном центре рибосомы, присоединяется тРНК с комплементарным антикодоном. Соединённая с ней аминокислота образует пептидную связь к растущей полипептидной цепочкой. Затем рибосома перемещается на следующий кодон иРНК. В рибосоме оказывается тРНК с антикодоном, комплементарным следующему триплету в иРНК, и к образующейся молекуле белка присоединяется следующая аминокислота.


Полисома.jpg

Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так поэтапно собирается молекула белка.

Синтез полипептидной цепи заканчивается, когда в активном центре рибосомы оказывается стоп-кодон (УАА, УАГ или УГА). Молекула белка отсоединяется от рибосомы, выходит в ЭПС или цитоплазму и усложняется, образуя характерную вторичную, третичную и четвертичную структуры.

На одной иРНК одновременно находятся несколько рибосом и происходит синтез нескольких молекул белка. Рибосомы, которые связаны с одной иРНК и синтезируют один и тот же белок, образуют полисому .

Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.


Биосинтез белка.jpg

последовательность нуклеотидов матричной цепи ДНК: ААГ ГЦТ ТАГ.
При транскрипции на этой цепи по принципу комплементарности образуется участок иРНК с нуклеотидами УУЦ ЦГА АУЦ, на котором в результате трансляции образуется цепочка из аминокислот: фенилаланин — аргинин — серин.

Если в одном из триплетов произойдёт замена нуклеотидов или они поменяются местами, то может случиться так, что триплет станет кодировать какую-нибудь другую аминокислоту. Значит, произойдут изменения и в строении белка, закодированного данным геном, что может оказать влияние на процессы обмена веществ и изменить признаки организма.

Некоторым аминокислотам соответствует несколько антикодонов т-РНК, поэтому одну аминокислоту могут переносить несколько т-РНК.

Вопрос. Заполните таблицу.

Вопрос. Что и как закодировано в цепи ДНК?

Закодирована информация о первичной структуре белков. Информация записана нуклеотидами, каждый триплет нуклеотидов в молекуле ДНК соответствует одной аминокислоте в молекуле белка.

Вопрос. Что происходит в процессе транскрипции?

На матрице, которой является структурный ген ДНК, синтезируется его копия — и-РНК. Синтез молекулы и-РНК идет по принципу комплементарности с помощью нескольких ферментов.

Вопрос. Где и как происходит трансляция?

Трансляция происходит в цитоплазме клетки. Рибосома соединяется с молекулой и-РНК и передвигается по ней, а т-РНК подносят аминокислоты, которые присоединяются рибосомой к растущей полипептидной цепи.

Вопрос. Какую роль играют ферменты в процессе биосинтезе белка?

Ферменты осуществляют и ускоряют процессы биосинтеза белка.

Вопрос 2. Решите задачу. Используя таблицу генетического кода, запишите последовательность аминокислот, зашифрованных в участке и-РНК:

А У Г Ц У У У У А Г У У А Г А Г У Г

мет — лей — лей — вал — арг — вал

Вопрос 3. Письменно составьте план рассказа о современной догме молекулярной биологии, которая выражается в схеме: ДНК → и-РНК → белок.

1.Генетический код ДНК; 2. Процесс транскрипции; 3. Процесс трансляции.

Стр. 112–113

Решение задач по молекулярной биологии

Вопрос 1. Используя принцип комплементарности, постройте участок второй нити ДНК по данному участку кодогенной нити и определите общее количество водородных связей на данном участке ДНК.

Постройте участок второй нити ДНК по данному участку кодогенной нити

Всего связей: 16+30=46

Вопрос 2. Сколько свободных нуклеотидов потребуется:

А) для редупликации фрагмента ДНК:

ЦГТААЦТГЦГГЦТТТАЦГГАЦААГГЦТ Редупликация — это процесс удвоения ДНК, когда из комплементарных свободных нуклеотидов достраивается вторая цепь. Для редупликации данного фрагмента необходимо: аденина (А) — 6 нуклеотидов, тимина (Т) — 6 нуклеотидов, цитозина(Ц) — 8 нуклеотидов, гуанина (Г) — 7 нуклеотидов.

Б) для образования и-РНК, на которой синтезируется белок, состоящий из 1380 аминокислот;

Если белок состоит из 1380 аминокислот, а каждая аминокислота кодируется триплетом нуклеотидов, значит потребуется 1380×3=4140 нуклеотидов.

в) для формирования участка ДНК, содержащего данный ген. Потребуется 4140 нуклеотидов для одной цепи ДНК, и столько же для второй цепи ДНК. Всего: 4140 ×2= 8280 нуклеотидов.

Вопрос 3. Участок ДНК содержит 26% аденина. Определите процентный состав других нуклеотидов.

Согласно принципу комплементарности: количество аденина равно количеству тимина, значит А=Т=26%. Принимая все количество нуклеотидов за 100%, найдем суммарное количество цитозина и гуанина (Ц+Г)=100% — (А+Т). (Ц+Г)=100% — (26%+26%)=48%. Так как количество гуанина равно количеству цитозина Ц=Г=48% : 2=24%.

Ответ: Т=26%, Ц=24%, Г=24%.

Вопрос 4. На участке кодогенной нити ДНК нуклеотиды расположены в следующей последовательности: Ц Г Т Ц Т А Ц Т Т А Г Т А Ц Ц Т Т Т Т Ц А

Какую первичную структуру имеет полипептид, синтезируемый при участии этой цепи ДНК?

Ц Г Т Ц Т А Ц Т Т А Г Т А Ц Ц Т Т Т Т Ц А

и-РНК Г Ц А Г А У Г А А У Ц А У Г Г А А А А Г У

Ответ: ала — асп — глу — сер — три — лиз — сер

Вопрос 5. Часть молекулы белка имеет следующую первичную структуру: сер-лиз-три-глун-ала-сер-аспн-вал. Запишите:

А) участок и-РНК, на котором синтезирован этот белок;

Используя таблицу генетического кода, определяем триплеты, кодирующие аминокислоты. Зная такое свойство генетического кода, как вырожденность, когда одну аминокислоту кодирует несколько триплетов, берем самое верхнее значение в таблице.

Б) участок гена, который несет информацию о строении этого белка;

по принципу комплементарности с и-РНК переписываем цепь ДНК:

АГА ТТТ АЦЦ ЦТТ ЦГА АГА ЦТА ЦАА

В) антикодоны т-РНК, которые участвуют в синтезе этого белка.

Антикодоны т-РНК должны быть комплементарны триплетам нуклеотидов и-РНК:

Вопрос 6. Как могут быть закодированы в гене мономеры следующего участка белка:

лиз — три-цис-тир-гис-гли-ала-. Запишите два варианта.

Используя таблицу генетического кода, определяем триплеты и-РНК, кодирующие аминокислоты. Зная такое свойство генетического кода, как вырожденность, когда одну аминокислоту кодирует несколько триплетов, берем самое верхнее значение в таблице.

и-РНК ААА-УГГ-УГУ-УАУ-ЦАУ-ГГУ-ГЦУ по принципу комплементарности с и-РНК переписываем цепь ДНК:

ТТТ АЦЦ АЦА АТА ГТА ЦЦА ЦГА

Используя таблицу генетического кода, определяем триплеты и-РНК, кодирующие аминокислоты. Зная такое свойство генетического кода, как вырожденность, когда одну аминокислоту кодирует несколько триплетов, берем самое нижнее значение в таблице.

Читайте также: