Удобрения пролонгированного действия своими руками

Обновлено: 02.07.2024

Изобретение относится к области сельского хозяйства, а именно к технологии получения комплексных удобрений. Способ получения комплексного удобрения пролонгированного действия на основе адсорбционной добавки - трепела, включает 5 этапов. На первом этапе трепел смешивают с раствором K3[Al(ОН)6], полученную суспензию выдерживают в автоклаве в течение 4 ч при давлении 5 атм и температуре 150°С, получая при этом комплексный адсорбент. Смесь промывают водой в соотношении смесь: вода, равном 1:3, и доводят до кипения, нейтрализуют полученную суспензию горячей фосфорной кислотой с концентрацией 30,7 вес.%, при непрерывном перемешивании до получения раствора с рН 7,0, суспензию сушат до влажности 1%. На втором этапе обрабатывают торф 30% раствором КОН при кипячении в течение 0,5 ч с получением биологически активной гуминовой фракции. На третьем этапе получают нитрующую смесь, состоящую из Р2O5 и HNO3 в соотношении 1:2, соединяют ее с торфом в соотношении 1:1 при тщательном перемешивании и подвергают охлаждению в течение 0,5 ч в кристаллизаторе со льдом с получением органической азотсодержащей фракции удобрения. На четвертом этапе смешивают биологически активную гуминовую и органическую азотсодержащую фракции удобрения, смесь нейтрализуют 25% раствором аммиака до получения раствора с рН 7,0 и сушат. На пятом этапе соединяют комплексный адсорбент и смесь органической и гуминовой фракций в соотношении 1:2,7, измельчают и получают при этом удобрение, содержащее в своем составе следующие элементы, вес.%: азот N 21,96; фосфорный ангидрид P2O5 15,73; окись калия K2O 11,20; окись кремния SiO2 12,54; окись алюминия Al2О3 1,65; окись кальция СаО 1,92; окись магния MgO 0,30; окись железа Fe2O3 0,96; окись марганца MnO2 0,14; торф и органические вещества 33,6. Техническим результатом является снижение стоимости полученного комплексного удобрения, а также повышение эффективности пролонгированного действия комплексного удобрения на плодородие почвы. 2 табл.

Изобретение относится к области сельского хозяйства, а именно к технологии получения комплексных удобрений, регулирующих дозированное введение микроэлементов и поглощение из почвы токсичных компонентов, в том числе радиоактивных элементов, и может найти широкое применение для улучшения плодородия почв и улучшения их экологической безопасности.

Известны различные типы удобрений, служащие для улучшения плодородия почв и повышения урожайности сельскохозяйственных культур.

Патент РФ №2038347, МКИ 6 C05G 3/04, опубл. 27.06.95 г.

монокальцийфосфат моногидрат15-65
азотнокислого калия10-25.

Патент РФ №2137739, МКИ 6 C05G 3/04, опубл. 20.09.99 г.

Патент РФ №2255922, МКИ 6 С05В 17/00, C05G 3/04, опубл. 20.09.99 г.

Патент РФ №2088557, МКИ 6 C05G 3/04, опубл. 27.08.97 г.

Недостатками вышеописанных способов являются недостаточная эффективность повышения плодородия почв и невысокие адсорбционная способность и емкость поглощения.

К техническому результату относится снижение стоимости полученного комплексного удобрения путем использования дешевого природного сырья в виде трепела и несложной технологической обработки, а также повышение эффективности пролонгированного действия комплексного удобрения на плодородие почвы путем использования комплексного адсорбента, регулирующего дозированное введение микроэлементов с одновременным поглощением с высокой селективностью из почвы токсичных компонентов, в том числе радиоактивных элементов.

Технический результат достигается за счет того, что способ получения комплексного удобрения пролонгированного действия на основе адсорбционной добавки заключается в использовании в качестве адсорбционной добавки трепела, причем осуществляют получение комплексного удобрения пролонгированного действия в пять этапов, при этом

на первом этапе получают из трепела комплексный адсорбент, для этого смешивают трепел с раствором гидроксокомплекса алюминия с калием K3[Al(ОН)6], помещают полученную суспензию в автоклав и выдерживают в течение четырех часов при давлении 5 атм и температуре 150°С. Затем смесь извлекают из автоклава путем промывки водой в соотношении смесь:вода, равном 1:3, и доводят до кипения. Полученную щелочную суспензию подвергают нейтрализации горячей фосфорной кислотой с концентрацией 30,7 вес.% при непрерывном перемешивании до получения раствора, рН которого равен 7,0, с последующей сушкой суспензии до влажности 1%.

На втором этапе получают биологически активную гуминовую фракцию удобрения путем обработки торфа 30% раствором гидроокиси калия КОН при кипячении в течение 0,5 часа.

На третьем этапе получают органическую азотсодержащую фракцию удобрения путем получения нитрующей смеси, состоящей из фосфорного ангидрида P2O5 и азотной кислоты HNO3 в соотношении 1:2. Затем торф и нитрующую смесь соединяют в соотношении 1:1 при тщательном перемешивании в реакционном сосуде и подвергают охлаждению в течение 0,5 часа, поместив реакционный сосуд в кристаллизатор со льдом.

На четвертом этапе смешивают биологически активную гуминовую и органическую азотсодержащую фракции удобрения. Смесь нейтрализуют 25% раствором аммиака до получения раствора, рН которого равен 7,0, с последующей его сушкой.

На пятом этапе комплексный адсорбент, полученный на первом этапе, и смесь органической и гуминовой фракций, полученную на четвертом этапе, соединяют в соотношении 1:2,7, измельчают и получают при этом удобрение, содержащее в своем составе следующие элементы, вес.%:

Азот N21,96
Фосфорный ангидрид Р2O515,73
Окись калия К2О11,20
Окись кремния SiO212,54
Окись алюминия Al2O31,65
Окись кальция СаО1,92
Окись магния MgO0,30
Окись железа Fe2О30,96
Окись марганца MnO20,14
Торф и органические вещества33,6

При этом мольное соотношение SiO2:Al2О3 равно 12,90.

Пример конкретного выполнения способа получения комплексного удобрения пролонгированного действия.

Для получения комплексного удобрения пролонгированного действия производятся следующие операции (в расчете на 1 кг исходного минерального сырья - трепела):

Этап 1. Приготовление комплексного адсорбента:

1. Получение 1 дм 3 раствора гидроксокомплекса алюминия с калием - К3[Al(ОН)6]:

1) В 0,1 дм 3 H2O при кипячении растворяется 0,450 кг гидроокиси калия - (КОН).

2) В горячий раствор добавляется 0,100 кг гидроокиси алюминия - Al(ОН)3 и полученная суспензия выдерживается при температуре кипения до полного растворения гидроокиси алюминия и просветления раствора.

3) Раствор гидроксокомплекса алюминия с калием доводится до объема 1 дм 3 , при кипячении, малыми порциями горячей H2О (избегая интенсивного разбрызгивания и помутнения раствора).

2. Полученный раствор К3[Al(ОН)6] вводится в трепел марки М80 (тонина помола 3 . Стенки автоклава обмываются водой от остатков смеси и смывы объединяются с основной массой смеси. В конечном итоге, извлеченная из автоклава смесь должна быть разведена водой не менее чем в 3 раза. Далее эту массу доводят до кипения.

4. Полученная щелочная суспензия нейтрализуется горячей фосфорной кислотой разбавленной водой до концентрации 30,7 вес.% или 3,71 моль/дм 3 до нейтральной реакции раствора (рН 7,0), при тщательном перемешивании. На нейтрализацию расходуется 0,575 дм 3 Н3PO4

5. Полученная суспензия после нейтрализации помещается в испарительную ванну и высушивается.

Таким образом, для получения 1,777 кг комплексного адсорбента, высушенного до воздушно-сухого состояния (влажность 1%) затрачивается 0,100 кг Al(ОН)3. 0,450 кг КОН, 1 кг трепела марки М80 и 2,13 моль (0,209 кг) Н3PO4.

Этап 2. Приготовление биологически активной гуминовой фракции.

1. 0,5 кг торфа (возможно использование пожнивных остатков, гидролизного лигнина и др.) помещается в стеклянную или металлическую емкость, заливается 1,5 дм 3 30% раствора (m:v) гидроокиси калия (0,300 кг КОН на 1 дм 3 раствора) и кипятится на электрической плитке в течение 0,5 часа.

Этап 3. Получение органической азотсодержащей компоненты.

Приготавливается нитрующая смесь, состоящая из фосфорного ангидрида (P2O5) и азотной кислоты (HNO3) в соотношении 1:2 по массе чистых веществ (подразумевается масса безводного P2O5 и расчетная масса 100% HNO3), в термостойкой посуде при охлаждении.

2,2 кг торфа помещаются в фарфоровую, тефлоновую или стеклянную посуду и заливаются 2 л нитрующей смеси (малыми порциями при тщательном перемешивании). Для приготовления необходимого количества нитрующей смеси затрачивается 2 дм 3 HNO3 (ρ=1,39), имеющей концентрацию 65 вес.%, и 0,910 кг Р2O5. Смесь выдерживают в течение 0,5 часа. При этом реакционный сосуд необходимо охлаждать, например, поместив в кристаллизатор со льдом.

Этап 4. Полученные биологически активная гуминовая фракция и органическая азотсодержащая компонента объединяются и нейтрализуются 25% водным раствором аммиака до нейтральной реакции (рН около 7,0), сопровождающейся появлением слабого запаха аммиака. На нейтрализацию расходуется 5,8 дм 3 раствора NH4OH.

Полученная смесь помещается в испарительную ванну и высушивается. Общая масса органической компоненты в полученном продукте, приходящаяся на 1,777 кг минеральной компоненты (комплексного адсорбента), составляет 4,969 кг, следовательно соотношение между комплексным адсорбентом и смесью органических и гуминовых фракций составляет 1:2,7.

Этап 5. Получение комплексного удобрения пролонгированного действия.

Комплексный адсорбент (этап 1) и органическая компонента (этап 4) объединяются и размалываются (совместно) в мельнице (шаровой). Таким образом, общая масса полученного продукта составляет 6,746 кг.

Как показали наблюдения, внесение в дерново-подзолистую легкосуглинистую почву Cd в дозе 6 мг/кг почвы снижает урожай зерна в 1,3 раза по сравнению с фоном. При внесении Zn в дозе 600 мг/кг почвы и Cu в дозе 390 мг/кг почвы, снижение урожая зерна по сравнению с контролем составило 1,6 и 1,1 раза (табл.3).

Применение комплексного удобрения (супродита), обладающего высокой емкостью поглощения, способствует повышению урожая на дерново-подзолистой среднесуглинистой почве, загрязненной Cu, до уровня 116% от контрольного, и нивелирует отрицательное действие Zn600 и Cd6 на урожай зерна, доводя уровень последнего до 81-82% от контрольного.

Добавление комплексного удобрения в радиоактивно загрязненную почву снижает содержание 137 Cs в зерне ячменя на 35% по сравнению с вариантом без мелиоранта. Внесение супродита в загрязненную ТМ (Cd6 и Zn600) почву снижает содержание Cd и Zn в зерне ячменя на 17-27% по сравнению с вариантами без внесения мелиоранта (удобрения)

Таблица 1.
Влияние комплексного удобрения пролонгированного действия (супродита) на продуктивность ячменя и накопление ТМ в урожае на техногенно загрязненной дерново-подзолистой среднесуглинистой почве
№ п/пВариантУрожай зерна, г/сосудСодержание в зерне 137 Cs, Бк/кгСодержание в зерне, мг/кг
CdZnCu
1Фон-NPK20,1±0,7-0,846,69,4
2Фон+ 137 Cs22,0±0,84388±94---
3Фон+ 137 Cs+удобрение (супродит)22,1±0,53246±75---
4Фон+Cd615,0±1,1-1,4--
5Фон+Cd6+удобрение (супродит)17,0±0,8-1,1--
6Фон+Zn60012,9±0,9--224,4
7Фон+Zn600+удобрение (супродит)16,2±0,8--192,0-
8Фон+Cu39018,2±0,3---13,9
9Фон+Cu390+удобрение (супродит)23,3±0,8---14,1
HCP05--0,119,52,1

Были апробированы еще 2 варианта комплексного удобрения пролонгированного действия - с пониженным и повышенным содержанием калия. Выяснилось, что внесение в ту же почву, загрязненную Cd6 и Zn600, удобрения с пониженным содержанием калия практически не влияет на урожай зерна ячменя, а в почве, загрязненной Cu390, урожай зерна ячменя едва достигает контрольного уровня (табл.4). Содержание Cd и Zn в зерне ячменя при внесении данного удобрения достоверно не менялось по сравнению с вариантами, где мелиорант не был внесен.

Таблица 2.
Влияние комплексного удобрения пролонгированного действия с пониженным (1) и повышенным (2) содержанием калия на продуктивность ячменя и накопление ТМ в урожае на техногенно загрязненной дерново-подзолистой среднесуглинистой почве
№ п/пВариантУрожай зерна, г/сосудСодержание ТМ в зерне, мг/кг
CdZnCu
1Фон-NPK20,1±0,70,846,69,4
2Фон+Cd615,0±1,11,4--
3Фон+Cd6+удобрение (1)15,9±0,81,3-
4Фон+Cd6+удобрение (2)17,3±0,91,1--
5Фон+Zn60012,9±0,9-224,4-
6Фон+Zn600+удобрение (1)14,0±0,8-210,0-
7Фон+Zn600+удобрение (2)16,6±0,5-186,3-
8Фон+Cu39018,2±0,3--13,9
9Фон+Cu390+удобрение (1)19,0±0,7--14,1
10Фон+Cu390+удобрение (2)24,0±0,8--13,5
НСР05-0,118,82,0

Действие удобрения с повышенным содержанием калия на урожай ячменя и накопление ТМ в зерне практически не отличается от эффекта классического удобрения с содержанием калия 25,2%, но стоимость его из-за повышенных доз необходимого для получения удобрения КОН оказывается несколько выше, так что супродит с содержанием К2O=11,2% оптимален по стоимости и действию на урожай зерновых и накоплению ТМ в зерне, по крайней мере в условиях вегетационных опытов под ячменем на дерново-подзолистых почвах.

Следовательно, предложенный способ получения комплексного удобрения пролонгированного действия позволяет получить из дешевого природного сырья в виде трепела путем несложной технологической обработки комплексное удобрение, эффективно влияющее на плодородие почвы, путем использования комплексного адсорбента, регулирующего дозированное введение микроэлементов с одновременным поглощением с высокой селективностью из почвы токсичных компонентов, в том числе радиоактивных элементов.

Способ получения комплексного удобрения пролонгированного действия на основе адсорбционной добавки, заключающийся в использовании в качестве адсорбционной добавки трепела, отличающийся тем, что осуществляют получение комплексного удобрения пролонгированного действия в пять этапов, при этом на первом этапе получают из трепела комплексный адсорбент, для этого смешивают трепел с раствором гидроксокомплекса алюминия с калием К3[Al(ОН)6], помещают полученную суспензию в автоклав и выдерживают в течение четырех часов при давлении 5 атм и температуре 150°С, затем смесь извлекают из автоклава путем промывки водой в соотношении смесь: вода равном 1:3, и доводят до кипения с дальнейшей нейтрализацией полученной щелочной суспензии горячей фосфорной кислотой с концентрацией 30,7 вес.%, при непрерывном перемешивании до получения раствора, рН которого равен 7,0, с последующей сушкой раствора до влажности 1%, на втором этапе получают биологически активную гуминовую фракцию удобрения путем обработки торфа 30% раствором гидроокиси калия КОН при кипячении в течение 0,5 ч, на третьем этапе получают органическую азотсодержащую фракцию удобрения путем получения нитрующей смеси, состоящей из фосфорного ангидрида P2O5 и азотной кислоты HNO3 в соотношении 1:2, затем торф и нитрующую смесь соединяют в соотношении 1:1 при тщательном перемешивании в реакционном сосуде и подвергают охлаждению в течение 0,5 ч, поместив реакционный сосуд в кристаллизатор со льдом, на четвертом этапе смешивают биологически активную гуминовую и органическую азотсодержащую фракции удобрения, смесь нейтрализуют 25% раствором аммиака до получения раствора, рН которого равен 7,0 с последующей его сушкой, на пятом этапе комплексный адсорбент, полученный на первом этапе, и смесь органической и гуминовой фракций, полученную на четвертом этапе, соединяют в соотношении 1:2,7 с дальнейшим измельчением и получением при этом удобрения, содержащего в своем составе следующие элементы, вес.%:

Каждый цветовод, имея большую коллекцию цветов, рано или поздно задумывается об упрощении постоянных задач, например подкормки. Для этого созданы удобрения пролонгированного действия. Это огромные помощники, но есть огромный минус - высокая стоимость и труднодоступность таких удобрений в удаленных глубинках нашей огромной страны.

На канале Procvetok мне попался видеоролик с рассказом о самостоятельном приготовлении такого удобрения из имеющихся стандартных компанентов. Мне повезло и в нашем городе удалось найти все составляющие.

Так как моя коллекция фуксий насчитывает более 200 сортов, пеларгоний около 40, количество сортов бегоний уже тоже доходит до 40 и это не считая остальных декоративнолиственных цветов, фиалок, глоксинии, стрептокарпусов, то вопрос об управлении в подкормках стоит особо остро.

Итак нам понадобятся:

  • Суперфорфат 1 стакан
  • Сульфат калия 1 стакан
  • Аммиачная селитра или карбамид 1 стакан
  • Овсяные отруби или хлопья 3 стакана
  • Бентонитовый комкующийся кошачий наполнитель ( состав чистая глина без примесей соды, продается в зоомагазине)
  • Любой гумат.

Это основные составляющие, но можно и нужно добавить и другие компаненты, например железо от хлороза.

  • Костную муку
  • Разные хелаты
  • Медный купорос

Так как я делаю удобрение для цветов, то использую именно медный купорос для оказания и фунгицидного действия. Для овощей же лучше взять железный купорос.

Все сыпучие составляюшие смешаем в миске.

Так как гумат у меня в порошкообразной форме, то я просто добавляю воду, если же у вас жидкий гумат, то разводим сразу им сухие компоненты, помешивая, до состоянияи теста.

Из получившейся массы осталось сформировать шарики размером примерно 1 сантиметр.


Пролонгированное удобрение - это удобрение с медленным постепенным высвобождением элементов питания растений в почву. Существует не очень много марок готовых пролонгированных удобрений для растений. Пожалуй, самым известным удобрением длительного действия является Осмокот.


Мы приготовим ТАКОЕ удобрение САМИ. Приготовленное удобрение получится дешевле в 7 раз, чем Осмокот из расчета на 0,5 кг готового продукта.

Урожай зависит от питания, которые получают растения. Это понятно каждому. Плодородная почва с большим содержание гумуса дает щедрые урожаи любых культур. Разные почвы имеют разный состав, узнать его точно можно только при почвенном анализе. Без него приходится ориентироваться по состоянию растений.

Часть 1. О питании растений

Например частые хлорозы, которые проявляются на листьях в середине лета, говорят о недостатке железа или магния. Оба элемента участвуют в фотосинтезе. Их нехватка сказывается на ослаблении роста растения. К тому же недостаток железа способствует накоплению нитратов в плодах. При нехватке бора растения хуже завязывают плоды, и цветы просто опадают.

Почему не хватает микроэлементов. Ситуация с микроэлементами может быть подобной ситуации с фосфором. В почве может быть полный набор питательных веществ, но в недоступной для растений форме. Микроэлементы поступают в почву с навозом и древесной золой. Комплексные минеральные удобрения часто бывают обогащены микроэлементами, о чем указано на упаковке. Но железо, медь, магний, цинк, кальций быстро инактивируются в почве.

Как вносить микроэлементы. Вносить микроэлементы можно двумя способами: под корень и по листу. Под корень вносят сульфаты: сульфат железа (железный купорос), сульфат меди (медный купорос), сульфат цинка, сульфат магния, сульфат марганца, борную кислоту и др. Минус такой подкормки в том, что сульфаты усваиваются очень медленно.

Для скорой помощи при проявлении недостатка какого-то микроэлемента применяют их хелатные формы. Препараты с хелатными формами микроэлементов вносят по листу. Небольшой расход при внекорневых обработках компенсирует достаточно высокую стоимость препаратов.

Часть 2. Применение хелатов

Что такое хелаты? Поскольку среди садоводов-огородников не так много людей с химическим образованием, большинство не интересуется составом препаратов, а читает лишь инструкцию по применению. Между тем в качестве хелатирующего агента, как правило, применяют химически синтезированную кислоту ЭДТА. Ее свойство по связыванию ионов металлов используют не только в растениеводстве, ЭДТА добавляют в продукты для увеличения срока годности, в шампуни и гели для душа и пр.

В небольших дозах вред от ЕДТА не проявляется, однако это вещество накапливается в плодах, и попадает в организм в неконтролируемых объемах. Большая часть этих соединений выводится из организма естественным путем, но та, что остается, оказывает цитотоксичное действие, т.е. угнетает работу клеток.

Частое применение препаратов, в состав которых входит ЭДТА, угнетает почвенную микрофлору, загрязняет грунтовые воды. Поскольку производитель не всегда указывает на упаковке хелатирующий агент, можно лишь догадываться, что вместе с железом или магнием мы распыляем вредное вещество.

Как приготовить хелаты самостоятельно. Гораздо безопаснее производить хелатные формы элементов из сульфатов. Это очень просто. При этом стоимость конечного препарата будет в разы меньше. Ведь сульфаты продаются большими упаковками. За 25 рублей можно купить 200 г железного купороса (сульфата железа, железа сернокислого) или 5-10 г хелата железа. Согласитесь, экономия значительная.

Для того, чтобы сульфаты превратить в хелаты, нужна любая кислота, например, лимонная.

  • 1 чайную ложку лимонной кислоты разводят в 1 л воды.
  • В этот раствор нужно добавить 1 чайную ложку необходимого сульфата, например, сульфат железа или сульфат магния, сульфат марганца, сульфат цинка или же борную кислоту.
  • Маточный раствор разводят на 10 л воды. Его можно использовать как для полива под корень, из расчета 0.5 л на растение или для обработки по листу

Часть 3. Как активировать микроэлементы в почве

Лимонная кислота. Если вы уверены в том, что вносили в почву все необходимые микроэлементы весной при заправке грядок, то достаточно просто мобилизовать их. Перевести фосфор и металлы в доступные формы поможет лимонная кислота. Достаточно развести 1 ст.л. лимонной кислоты на 10 л воды и пролить почву, чтобы вещества перешли в хелатные формы.

Бактерии. Конечно, еще более полезно заселить в почву силикатные и фосфатмобилизующие бактерии, а также бактерии псевдомонады. В процессе жизнедеятельности они синтезируют пиовердин. Это вещество обладает хелатирующим эффектом. Так что внесение в почву этих препаратов открывает доступ ко всем микроэлементам и фосфатам, которые уже есть в почве.

Эти бактерии не только переводят фосфор и металлы в доступные для растений формы, но стимулируют рост растений за счет выделения фитогормонов и аминокислот. Антибиотические вещества, которые выделяют бактерии, увеличивают сопротивляемость растений к различным болезням.

Аминокислоты обладают некоторым хелатирующим эффектом. Поэтому пролив почвы препаратами с аминокислотами высвобождает те микроэлементы, которые в ней находятся.

Гуматы. Подобное действие оказывают и гуматы. Внесение гуминовых препаратов с поливом активизирует почвенную микрофлору и мобилизует фосфаты и металлы.

Танины. Танины, которые находятся в чае, тоже оказывают хелатирующий эффект. Достаточно прокипятить 1 ч. л. чая (или 1 пакетик) в 1 л воды, после чего довести объем до 10 л воды. И поливать им наши растения

Все эти вещества: лимонную кислоту, аминокислоты, гуматы, танины можно использовать при приготовлении хелатов в домашних условиях.

Читайте также: