У растений разных видов размер форма оптические и химические свойства крахмальных зерен

Обновлено: 18.09.2024

В большинстве случаев крахмальные зерна имеют слоистое строение, так как каждый слой откладывается в различное время, в разной степени уплотнен и имеет неодинаковый коэффициент преломления. В каждом амилопласте возникает образовательный центр крахмала, вокруг которого и нарастают слои. Крахмал откладывается стромой амилопласта.

Строение и форма крахмальных зерен характерна для каждого вида растения. У одних растений они округлы, как у пшеницы и ячменя, у других — многоугольны, как у кукурузы, у третьих — продолговаты,, с продольной ветвистой щелью, как у бобовых, и, наконец, у некоторых они имеют форму бедренной кости, как у молочайных. Слоистость крахмальных зерен может быть концентрической (если слои откладываются равномерно, как у пшеницы) или эксцентрической (если слои откладываются неравномерно, как у картофеля). Если в крахмалоносном зерне один образовательный центр, то формируется простое крахмальное зерно. У некоторых растений в одном зерне два или много образовательных центров. В последнем случае формируется сложное крахмальное зерно (овес, гречиха, рис, шпинат и др.). Сложные крахмальные зерна состоят из множества простых крахмальных зернышек, число которых у различных растений варьирует. Например, у картофеля наряду с простыми крахмальными зернами формируются сложные зерна, состоящие всего из 2—3 зернышек. Одно сложное крахмальное зерно овса состоит из 90—100, а у шпината из 30 000 зернышек. Строение крахмальных зерен каждого вида растения имеет большое практическое значение для кондитерской и мукомольной промышленности, особенно при анализе муки. Встречаются и полусложные крахмальные зерна с несколькими образовательными центрами, но окруженные общим периферическим слоем.

Размеры крахмальных зерен также неодинаковы у разных видов растений и определяются микронами.

Строение крахмального зерна и свойства крахмальных полисаха­ридов.

В значительных количествах крахмал содержится в крупе, бобовых, муке, макаронных изделиях, картофеле. Находится он в клетках растительных продуктов в виде крахмальных зерен раз­ной величины и формы. Крахмальные зерна представляют собой сложные биологические образования, в состав которых входят полисахариды амилоза и амилопектин и небольшие количества сопутствующих им веществ (кислоты фосфорная, кремниевая и др., минеральные элементы и т.д.). Крахмальное зерно имеет слоистое строение. Слои состоят из радиально расположенных частиц крахмальных полисахаридов, образующих зачатки кри­сталлической структуры. Благодаря этому крахмальное зерно об­ладает анизотропностью (двойным лучепреломлением).

Образующие зерно слои неоднородны: устойчивые к нагре­ванию чередуются с менее устойчивыми, более плотные — с ме­нее плотными. Наружный слой более плотный, чем внутренние, и образует оболочку зерна. Все зерно пронизано порами и благо­даря этому способно поглощать влагу. Большинство видов крах­мала содержат 15-20 % амилозы и 80-85 % амилопектина. Однако крахмал восковидных сортов кукурузы, риса и ячменя состоит в основном из амилопектина, а крахмал некоторых сор­тов кукурузы и гороха содержит 50-75 % амилозы.

Молекулы крахмальных полисахаридов состоят из остатков глю­козы, соединенных друг с другом в длинные цепи. В молекулы ами­лозы входит в среднем около 1 тыс. таких остатков. Чем длиннее цепи амилозы, тем она хуже растворяется. В молекулы амилопекти­на остатков глюкозы входит значительно больше. Кроме того, в мо­лекулах амилозы цепи прямые, а у амилопектина они ветвятся.

Широкое использование крахмала в кулинарной практике обусловлено комплексом характерных для него технологических свойств: набуханием и клейстеризацией, гидролизом, декстри-низацией (термическая деструкция).

Набухание и клейстеризация крахмала.

Набухание — одно из важнейших свойств крахмала, которое влияет на консистен­цию, форму, объем и выход готовых изделий.

При нагревании крахмала с водой (крахмальная суспензия) до температуры 50-55 °С крахмальные зерна медленно погло­щают воду (до 50 % своей массы) и ограниченно набухают. При этом повышения вязкости суспензии не наблюдается. Набухание это обратимо: после охлаждения и сушки крахмал практически не изменяется.

При нагревании от 55 до 80 °С крахмальные зерна поглощают большое количество воды, увеличиваются в объеме в несколько раз, теряют кристаллическое строением, а следовательно, анизо­тропность. Крахмальная суспензия превращается в клейстер. Процесс его образования называется клейстеризацией. Таким образом, клейстеризация — это разрушение нативной структуры крахмального зерна, сопровождаемое набуханием.

Температура, при которой анизотропность большинства зе­рен разрушена, называется температурой клейстеризации. Тем­пература клейстеризации разных видов крахмала неодинакова. Так, клейстеризация картофельного крахмала наступает при 55-65 °С, пшеничного — при 60-80, кукурузного — при 60-71, рисового - при 70-80 "С.

Процесс клейстеризации крахмальных зерен идет поэтапно:

2) при нагревании выше 70 "С в присутствии значительного количества воды крахмальные зерна увеличиваются в объеме в десятки раз, слоистая структура исчезает, значительно повы­шается вязкость системы (вторая стадия клейстеризации); на этой стадии увеличивается количество растворимой амилозы; раствор ее частично остается в зерне, а частично диффундирует в окружающую среду.

При длительном нагревании с избытком воды крахмальные пузырьки лопаются, и вязкость клейстера снижается. Примером этого в кулинарной практике является разжижение киселя в ре­зультате чрезмерного нагрева.

Крахмал клубневых растений (картофель, топинамбур) дает прозрачные клейстеры желеобразной консистенции, а зерновых (кукуруза, рис, пшеница и др.) — непрозрачные молочно-белые клейстеры пастообразной консистенции.

Консистенция клейстера зависит от количества крахмала: при содержании его от 2 до 5 % клейстер получается жидким (жидкие кисели, соусы, супы-пюре); при 6-8 % — густым (густые кисели). Еще более гутой клейстер образуется внутри клеток картофеля, в кашах, блюдах из макаронных изделий.

На вязкость клейстера влияет не только концентрация крах­мала, но и присутствие различных пищевых веществ (сахаров, минеральных элементов, кислот, белков и др.). Так, сахароза по­вышает, а соль снижает вязкость системы, белки оказывают ста­билизирующее действие на крахмальные клейстеры.

При охлаждении крахмалосодержащих продуктов количест­во растворимой амилозы в них снижается в результате ретроградации (выпадение в осадок). При этом происходит старение крахмальных студней (синерезис), и изделия черствеют. Ско­рость старения зависит от вида изделий, их влажности и темпе­ратуры хранения. Чем выше влажность блюда, кулинарного из­делия, тем интенсивнее снижается в нем количество водораство­римых веществ. Наиболее быстро старение протекает в пшенной каше, медленнее — в манной и гречневой. Повышение темпера­туры тормозит процесс ретроградации, поэтому блюда из крупы и макаронных изделий, которые хранятся на мармитах с темпе­ратурой 70-80 °С, имеют хорошие органолептические показа­тели в течение 4 ч.

Гидролиз крахмала. Крахмальные полисахариды способны распадаться до молекул составляющих их Сахаров. Процесс этот называется гидролизом, так как идет с присоединением воды. Различают ферментативный и кислотный гидролиз. Ферменты, расщепляющие крахмал, носят название амилаз.

Существуют два их вида а- и р-амилаза: а-амилаза вызывает частичный распад цепей крахмальных полисахаридов с образованием низкомолекулярных соедине­ний — декстринов; при продолжительном гидролизе возможно образование мальтозы и глюкозы, р-амилаза расщепляет крах­мал до мальтозы.

Ферментативный гидролиз крахмала происходит при изго­товлении дрожжевого теста и выпечке изделий из него, варке картофеля и др. В пшеничной муке обычно содержится р-амилаза; мальтоза, образующаяся под ее влиянием, является пи­тательной средой для дрожжей. В муке из проросшего зерна пре­обладает а-амилаза, образующиеся под ее воздействием декстри­ны придают изделиям липкость, неприятный вкус.

Степень гидролиза крахмала под действием В-амилазы увели­чивается с повышением температуры теста при замесе и в на­чальный период выпечки, с увеличением продолжительности за­меса. Кроме того, она зависит от размера (или величины) помола муки и степени повреждения крахмальных зерен. Чем больше поврежденных зерен (чем мельче помол муки), тем быстрее про­текает гидролиз (или ферментативная деструкция) крахмала.

В картофеле также содержится В-амилаза, превращающая крахмал в мальтозу. Мальтоза расходуется на дыхание клубней. При температуре, близкой к О °С, дыхание замедляется, мальтоза накапливается, и картофель становится сладким (подморожен­ный картофель). При использовании подмороженного картофе­ля его рекомендуется выдержать некоторое время при комнат­ной температуре. В этом случае дыхание клубней усиливается и сладковатость уменьшается. Активность В-амилазы возрастает в интервале от 35 до 45 °С, при температуре 65 °С фермент разру­шается. Поэтому если картофель перед варкой залить холодной водой, то пока клубни прогреются, значительная часть крахмала успеет превратиться в мальтозу, она перейдет в отвар и потери питательных веществ увеличатся. Если же картофель залить ки­пящей водой, то р-амилаза инактивируется и потери питатель­ных веществ будут меньше.

Кислотный гидролиз крахмала может происходить при на­гревании его в присутствии кислот и воды, при этом образует­ся глюкоза. Кислотный гидролиз имеет место при варке крас­ных соусов, киселей и при длительном хранении их в горячем состоянии.

Декстринизация (термическая деструкция крахмала). Декст-ринизация — это разрушение структуры крахмального зерна при сухом нагреве его свыше 120 "С с образованием растворимых в воде декстринов и некоторого количества продуктов глубокого распада углеводов (оксида и диоксида углерода и др.). Декстри­ны имеют окраску от светло-желтой до темно-коричневой. Раз­ные виды крахмала обладают различной устойчивостью к сухому нагреву.

Так, при нагревании до 180 °С разрушается до 90 % зе­рен картофельного крахмала, до 14 % — пшеничного, до 10 % — кукурузного. Чем выше температура, тем большее количество крахмальных полисахаридов превращается в декстрины. В результате декстринизации снижается способность крахмала к на­буханию в горячей воде и клейстеризации. Этим объясняется бо­лее густая консистенция соусов на белой пассеровке (температу­ра пассерования муки 120 °С) по сравнению с соусами на красной пассеровке (температура пассерования муки 150 °С) при одном и том же расходе муки.

В кулинарной практике декстринизация крахмала происхо­дит не только при пассеровании муки для соусов, но также при обжаривании гречневой муки, подсушивании риса, вермишели, лапши перед варкой, в поверхностных слоях картофеля при жар­ке, в корочке изделий из теста и др.

Крахмалы, свойства которых изменяются в результате специ­альной обработки, называются модифицированными. Они подраз­деляются на две группы: расщепленные крахмалы, при об­работке которых происходит расщепление полисахаридных це­пей, изамещенные крахмалы, свойства которых изменяются в основном в результате присоединения химических радикалов или совместной полимеризации с другими высокомолекулярны­ми соединениями.

Модифицированные крахмалы широко используются в пи­щевой промышленности и общественном питании.

Расщепленные крахмалы получают термическим, механи­ческим воздействием, обработкой полисахарида кислотами, окислителями, некоторыми солями, действием электронов, ультразвука, облучением у-лучами, вызывающими расщепле­ние полисахаридных цепей. Вследствие этих воздействий про­исходит направленное разрушение гликозидных и других ва­лентных связей, появляются новые карбонильные группы, возникают внутри- и межмолекулярные связи. При этом зер­нистая форма крахмала либо остается неизменной, либо полно­стью разрушается с образованием вторичной структуры (напри­мер, при клейстеризации и высушивании крахмалов на вальце­вых сушилках).

Клейстеры расщепленных крахмалов имеют, как правило, пониженную вязкость, более высокую прозрачность и повышен­ную стабильность при хранении. Расщепленные крахмалы на предприятиях общественного питания используют при произ­водстве охлажденной и замороженной кулинарной продукции.

Амилоза, одна из двух разновидностей крахмала, состоит из соединённых в цепочку звеньев глюкозы. Сама цепочка обычно закручена в спираль.

На рисунке: гранулы крахмала разных растений. В зёрнышке риса содержится 60—82% крахмала, в пшеничном зерне — 57—75%, в кукурузе —65—75%, в клубнях картофеля — 12—24%.

Чтобы сделать кисель, нужны вода и крахмал. Конечно, в кисель для вкуса добавляют ещё ягодный сок, сахар, мёд. Но нас сейчас интересует вопрос: каким образом белый, похожий на муку, скрипучий на ощупь порошок превращает воду в густое желе?

Для начала выясним, что такое крахмал и откуда он берётся.

В растениях крахмал откладывается в виде зёрен. Крахмальные зёрна разных растений отличаются по величине, форме, строению. Например, размер зёрен картофельного крахмала достигает 0,1 мм, а по форме они напоминают слегка вытянутые шарики. Зёрна кукурузного крахмала в несколько раз меньше в поперечнике — 10— 20 мкм и более плоские.

По химической природе крахмал — родственник сахара. Е го молекулы состоят из молекул глюкозы, соединённых в длинные цепочки. (Напомним, что молекула обычного сахара — сахарозы — состоит из соединённых вместе молекул глюкозы и фруктозы.) Каким бы это ни казалось странным, но сладкая глюкоза в составе крахмала теряет всю свою сладость! Молекулы крахмала слишком большие, чтобы нужным образом воздействовать на вкусовые рецепторы, поэтому крахмал совершенно безвкусный.

На самом деле крахмал — вещество неоднородное и состоит из смеси амилозы и амилопектина (в картофельном крахмале — около 20% амилозы и 80% амилопектина). Молекулы амилозы — это длинные цепочки, которые обычно скручиваются в спираль. Такая цепочка может содержать от нескольких сотен до нескольких тысяч глюкозных звеньев. Молекула амилопектина имеет разветвлённое строение, а общее число звеньев глюкозы в ней может достигать десятков и сотен тысяч! В крахмальных зёрнах амилоза и ами-лопектин упакованы очень плотно: ветвистые цепочки амилопектина образуют прочный кристаллический каркас, а свободное пространство заполняют свернувшиеся в упругие клубочки молекулы амилозы.

В холодной воде крахмал не растворяется. В этом легко убедиться. Возьмём ложку крахмала и размешаем в стакане холодной воды. Сначала вода помутнеет, но, если дать ей постоять, зёрна крахмала осядут на дно.

Теперь посмотрим, что будет, если взболтанный в воде крахмал медленно нагревать. Зёрна начинают набухать, впитывая воду, но, пока температура меньше 55°С, никаких необратимых изменений не произойдёт: крахмал можно охладить и высушить — получится тот же самый белый порошок.

Дальнейшее нагревание, особенно при активном перемешивании, приведёт к разрушению гранул, да и цепочки молекул крахмала начнут рваться. В результате мы получим не кисель, а клейстер — густой, вязкий, клейкий раствор. Хозяйки знают, что кисель нельзя переваривать, поэтому обычно взбалтывают крахмал в стакане холодной воды, вливают в кипящий отвар фруктов или ягод, быстро перемешивают, а потом сразу снимают с огня. Кстати, кислота тоже приводит к разрушению молекул крахмала, по-этому сок кислых ягод добавляют в кисель в конце приготовления.

Что касается клейстера, то его можно использовать как клей для бумаги и ткани. В таком качестве крахмал применяли ещё 4000 лет до нашей эры: древние египтяне склеивали клей-стером листы папируса. А в Древнем Китае бумагу покрывали слоем рисового крахмала, чтобы предотвратить растекание чернил. Римляне в I веке нашей эры применяли крахмал не только как клей, но и при стирке белья. Крахмалили бельё и в средневековой Европе, особенно пышные рюши и кружевные воротники, а сухим крахмалом припудривали волосы.

В наше время крахмал используют практически для тех же целей, что и в далёком прошлом (ну разве что волосы не пудрят): в производстве бумаги, для отделки тканей и в пищевой промышленности. Причём не только как основу для киселя, но и как загуститель для кремов, соусов, начинок.

КРАХМАЛ ИЗ КАРТОФЕЛЯ СВОИМИ РУКАМИ

КРАХМАЛ ПОМОГАЕТ АРХЕОЛОГАМ

У растений разных видов размер, форма, оптические и химические свойства крахмальных зёрен могут довольно сильно различаться. Зёрна крахмала сохраняются в неизменном виде тысячелетиями, и этим пользуются археологи. Если внимательно рассмотреть под микроскопом крахмальное зерно, прилипшее, например, к каменной мотыге, мельничным жерновам или глиняному черепку, то можно определить, какому растению оно принадлежало, а следовательно, узнать, что выращивали и употребляли в пищу древние люди.

КРАХМАЛ И СИЛА ТЯЖЕСТИ

Как растение определяет, где верх, а где низ? Почему корни растут в глубь земли? Определить нужное направление роста растению помогают крахмальные зёрна — статолиты, которые находятся в клетках на конце растущего корешка. Под действием силы тяжести статолиты скапливаются в нижней части клетки. Если растущий корень положить горизонтально, статолиты сместятся и укажут правильное направление роста. В результате корень изогнётся и продолжит расти вниз. А вот в невесомости растения теряют ориентацию и корни у них растут в разные стороны.

ЗАЧЕМ ПОДКРАХМАЛИВАЮТ БЕЛЬЁ?

Если выстиранное бельё погрузить в разбавленный холодной водой крахмальный клейстер, отжать, подсушить и прогладить во влажном состоянии горячим утюгом, на поверхности ткани образуется тонкая плёнка из крахмала и связанной с его молекулами воды. Подкрахмаленная ткань становится более жёсткой, лучше держит форму. Кроме того, плёнка крахмала защищает ткань от загрязнения: частички грязи не могут проникнуть к волокнам ткани, а при стирке легко смываются вместе с крахмалом.

Включения представляют собой разнообразные продукты обмена веществ протопласта, различным образом оформленные структуры, не обладающие жизненными свойствами и откладываемые как в самом протопласте (цитоплазме и других органоидах), так и вакуолях и реже в оболочке.

Наибольшее их значение состоит в том, что они представляют собой вещества запаса, т. е. вещества, которые в определенные моменты могут вновь использоваться клеткой (запасной крахмал, белок, масло). В отношении других функций включений пока можно высказать только предположения. Например, некоторые вещества могут возникать как приспособление к каким-либо особым условиям существования, другие образуются как отбросы, конечные продукты обмена веществ (некоторые кристаллы). Включения возникают и в результате старения клеток или вследствие каких- либо патологических явлений. Вообще включения — структуры непостоянные, они могут появляться и исчезать в разные периоды деятельности клетки. Поэтому присутствие их характеризует физиологическое состояние и возраст клетки. По наличию, форме и распределению этих веществ часто отличают одни виды, роды и семейства от других, поэтому распознавание включений, описание их формы имеет большое значение для сравнительной анатомии. Так как включения представляют собой твердые или жидкие вещества, имеющие определенную форму, то их можно различать в световой микроскоп. Из включений наибольшее значение имеют крахмальные зерна, жировые капельки, отложения белковых веществ, органические и неорганические кристаллы.

Крахмальные зерна — наиболее распространенные и важные образования среди включений, в химическом отношении представляющие .собой полимерный углевод. Запасной крахмал растений, встречающийся исключительно в виде крахмальных зерен, — основной тип запасных питательных веществ растений. Кроме того, он является самым важным соединением, используемым в пищу растительноядными животными. Громадное значение имеет крахмал как источник пищи для людей. Пшеничная мука, например, почти на 3/4 состоит из зерен крахмала.

Как уже сообщалось, крахмальные зерна образуются только в пластидах живых клеток. В хлоропласте на свету в результате процесса фотосинтеза откладываются очень мелкие зерна (реже палочки) ассимиляционного (первичного) крахмала. Особенно это характерно для так называемых крахмалистых растений (злаки). Ассимиляционный крахмал — продукт непостоянный и откладывается только при избытке растворимых углеводов в клетке. Ночью, при отсутствии фотосинтеза, он с помощью ферментов гидролизуется до сахара и транспортируется в другие части растений. Процесс гидролиза в хлоропластах обратим и не ведет к их разрушению. Более крупные зерна запасного (вторичного) крахмала откладываются из притекающего сахара в амилопластах, сосредоточенных в частях растений, лишенных света. Запасной крахмал амилопластов сохраняется более продолжительное время, чем ассимиляционный крахмал хлоропластов. При мобилизации запасного крахмала происходит его гидролиз (осахаривание) с помощью ферментов (амилазы и др.). Этот процесс необратим, так как амилопласт, образующий запасной крахмал, при гидролизе разрушается.

Крахмальные зерна имеют свойства кристаллического вещества, в поляризованном свете они дают двойное лучепреломление, в результате которого образуется черный крест с пересечением лучей в центре крахмального зерна. С другой стороны, зерна крахмала обладают и некоторыми свойствами коллоидов, например, всем известно свойство картофельного крахмала набухать в горячей воде, которое используется при изготовлении клейстера.

Образование крахмальных зерен связано с наличием образовательного центра в амилопласте, вокруг которого стромой амилопласта откладывается вещество крахмала. Крахмал отлагается слоями, имеющими различный коэффициент преломления, благодаря чему эти слои могут быть видны под микроскопом.

У злаков и бобовых отдельные слои вокруг образовательного центра откладываются равномерно, вследствие чего крахмальные зерна обнаруживают концентрическую слоистость. У других растений, особенно образующих крупные крахмальные зерна (картофель), отдельные слои крахмала откладываются вокруг образовательного центра неравномерно: на одной стороне интенсивнее, на другой слабее, в результате образуются крахмальные зерна с эксцентрической слоистостью. Причем, характер слоистости зависит от вида растения и не определяется положением образовательного центра в амилопласте.

Если в амилопласте закладывается один образовательный центр, то возникают простые крахмальные зерна (по одному в каждом амилопласте) — например, крахмальные зерна картофеля. Часто в амилопласте закладывается одновременно много образовательных центров, тогда возникают сложные крахмальные зерна, состоящие из множества (у шпината до нескольких тысяч) отдельных мелких зернышек. С ростом крахмального зерна оболочка амилопласта растягивается, а строма оттесняется к периферии пластид. У крупных крахмальных зерен слой стромы и оболочка пластиды могут стать столь тонкими, что не различаются в световой микроскоп. Когда мы говорим о крахмальных зернах, то всегда имеем в виду пластиду, переполненную крахмалом настолько, что ее основное вещество становится неразличимым.

Форма, размеры и строение крахмальных зерен специфичны для тех или иных видов растений и иногда даже для отдельных сортов одного вида. Так как крахмальные зерна составляют основную массу муки, то, исследуя их, можно установить, из какого вида растений получена мука и примеси каких растений в ней имеются. Так, у картофеля крахмальные зерна неправильной формы, с хорошо выраженной эксцентричной слоистостью, обычно простые, очень крупные — до 100 мк, у бобовых крахмальные зерна овальной формы, с хорошо выраженной слоистостью, обычно с продольной трещиной, от которой отходят многочисленные боковые трещины меньшей длины. У пшеницы крахмальные зерна с плохо заметной концентрической слоистостью обычно двух размеров: мелкие округлые, 2—9 мк в поперечнике и крупные чечевицеобразные, 30—40 мк. Крахмальные зерна кукурузы округло-угловатые, мелкие, с хорошо заметным образовательным центром в виде лучистой щели. У риса и овса крахмальные зерна сложные, яйцевидной формы, состоящие из многочисленных мелких зернышек, которые удерживаются вместе стромой и оболочкой амилопласта, но легко рассыпаются при надавливании.

Отложения крахмала широко распространены во всех органах растения, но особенно богаты им семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений. В семенах крахмал накапливается сравнительно у немногих (примерно 10%) семенных растений, в том числе у злаков, бобовых, гречишных. Из подземных органов, особенно богатых крахмалом, можно назвать клубни картофеля, содержащие 18—20% крахмала.

Отложения запасных жиров широко распространены в растительных клетках. Они встречаются непосредственно в цитоплазме, преимущественно в жидком состоянии и имеют вид капелек различного размера, обычно сильно преломляющих свет. Хотя в небольшом количестве они встречаются, вероятно, в любой живой растительной клетке, но наиболее богаты ими семена и плоды. Огромное большинство растений (около 90% видов покрытосеменных) в качестве запасных питательных веществ накапливает масло. Некоторые семена содержат масла до 50% и более от сухого веса вещества (семена подсолнечника). Поэтому основная масса растительных жиров добывается из семян. Во время прорастания семян происходит мобилизация запасных жиров, причем жиры гидролизуются с образованием растворимых углеводов, подаваемых к растущим частям зародыша семени. Так как жиры более богаты энергией, чем крахмал, они гораздо экономнее используют пространство в семенах. Механизм возникновения жировых капель в цитоплазме еще полностью не изучен. О случаях образования масла в олеопластах говорилось выше. Совсем недавно было показано, что образование масел у растений из семейства крестоцветных происходит в специализированных органоидах протопласта — сферосомах. Сферосомы начинают развиваться в виде маленьких пузырьков на эндоплазматической сети, отграниченных от цитоплазмы одной мембраной. Затем пузырьки отделяются от эндоплазматической сети, и в них накапливается гранулярный материал. Ко времени созревания семян на месте гранул образуются капельки масла, снаружи одетые мембраной. Является ли такой путь образования запасных масел типичным для растительной клетки, должны показать дальнейшие исследования. Кроме цитоплазмы, капельки жиров могут встречаться также в хлоропластах и митохондриях. В амилопластах стареющих клеток крахмал иногда разрушается, и его место занимают многочисленные капельки жира.

Запасные белки в клетках находятся в виде твердых отложений, либо аморфных, либо кристаллических. Наиболее часто запасные белки встречаются в форме так называемых алейроновых (протеиновых) зерен, главным образом, в семенах злаков, бобовых и многих других (льна, винограда). Реже запасной белок откладывается в форме кристаллоидов (картофель). Размеры и строение алейроновых зерен очень изменчивы, но характерны для определенных групп растений и могут служить систематическим признаком. В типичном случае алейроновое зерно имеет снаружи белковую оболочку (мембрану) и заполнено непрозрачным гомогенным аморфным белком желтоватого цвета, набухающим в воде. В основную массу алейронового зерна могут быть погружены включения трех типов, получивших названия кристаллоидов, глобоидов и истинных кристаллов. Кристаллоиды имеют характерную для кристаллов ромбоэдрическую форму, но в отличие от истинных кристаллов белок, составляющий их, набухает в воде. В алейроновом зерне может быть один или несколько кристаллоидов, причем они находятся всегда вместе с глобоидами.

Глобоиды — округлые тельца, состоящие из кальциево-магниевой соли инозитфосфорной кислоты, не растворимые в воде и не дающие реакцию на белки (считают, что они запасают фосфор). Истинные кристаллы очень редко встречаются в алейроновых зернах, например, кристаллы оксалата кальция (в семенах винограда). В зависимости от строения можно выделить следующие типы алейроновых зерен:

а) зерна с глобоидами (характерны для семян бобовых и зерновых злаков);

б) зерна с глобоидами и кристаллоидами (характерны, например, для семян льна и клещевины;

в) зерна с кристаллами оксалата кальция (характерны для семян зонтичных и винограда).

У картофеля образуются не алейроновые зерна, а одиночные кристаллоиды, не окруженные снаружи аморфным белком.

В клетках растений в процессе их жизнедеятельности образуются и настоящие кристаллы минеральных солей. Большинство кристаллов состоит из щавелевокислого кальция (оксалата), реже из углекислого кальция или кремнезема (SiO2). Формы кристаллов довольно разнообразны и часто специфичны для тех или иных систематических единиц. Оксалат кальция встречается или в виде кристаллов (луковичная шелуха), или друз — шаровидных образований, состоящих из многих сросшихся мелких кристалликов (например, в коре, корневищах) или в виде рафид — игольчатых кристаллов, объединенных в пучки (стебли винограда). Реже оксалат откладывается в клетке в виде кристаллического песка — множества мелких кристаллов, образующихся в одной клетке.

Клетки с различными типами кристаллов

В отличие от животных, которые выделяют избыток минеральных солей во внешнюю среду, растения, не имеющие развитых органов выделения, вынуждены почти целиком накапливать их в своих тканях. Поэтому обычно считают, что кристаллы оксалата — конечный продукт жизнедеятельности протопласта, образующийся в результате соединения кальция и щавелевой кислоты. Эта кислота — побочный продукт деятельности протопласта. Она растворима в клеточном соке и при высокой концентрации токсична для протопласта. Соединяясь с кальцием, высокая концентрация которого в клеточном соке сама по себе может угрожать ионному равновесию в клетке, щавелевая кислота переходит в нерастворимый оксалат, безвредный для протопласта. Кристаллы оксалата образуются поэтому в больших количествах в тех органах и тканях, которые растением время от времени сбрасываются (листья и кора). Присутствие кристаллов во многих случаях служит признаком старения или дегенеративных процессов. Но иногда кристаллы оксалата могут играть и активную роль в обмене веществ, накапливаясь и растворяясь в клетках (например, в плодах апельсина).

Поперечный разрез листа фикуса с клеткой, содержащей цистолит

Для представителей семейств тутовых и крапивных характерны цистолиты — особые включения, представляющие собой выросты клеточной оболочки, пропитанные карбонатом кальция таким образом, что имеют вид грозди. У злаков, осок, пальм внутри клеток образуются твердые отложения кремнезема. Располагаясь в наружном слое клеток листьев, над жилками, они, вероятно, служат защитой от поедания животными.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

(крупины) — бывают различной величины и формы; последняя иногда настолько характерна, что по ней можно определить, из какого растения добыт крахмал. Величина зерен, не только у разных растений, но и у одного и того же, колеблется в широких пределах. Напр. у бобов, в хлорофильных зернах листьев К. крупинки достигают только 0,3-1,5 микрона (микрон = 0,001 мм.), а в семенах 20-40 микр. Вообще ассимиляционный и транзиторный крахмал (см. Крахмал, ботан.) мелкозернист; часто зернышки его не достигают и 1 микр., а в хлорофильных зернах нередко так малы, что нужны даже особые приемы, чтобы их там обнаружить. Наоборот, запасный крахмал отлагается обыкновенно в очень крупных зернах — до 145 и даже 170 микр. Наибольшей величины достигают К. зерна в подземных вместилищах — напр. в клубнях картофеля, корневищах Canna и т. п., в семенах они не так крупны. Вот сравнительная таблица величин различных К. зерен в микронах, по данным Чирха (Tschirch):

Запасный крахмал не только крупнозернист, но и отлагается обыкновенно в большом количестве. Нередко клетки как бы набиты запасными К. зернами, так что на долю остального клеточного содержимого приходится очень немного (ср. фиг. 7 и 12). Ассимиляционный же крахмал и мелкозернист и содержится в листьях в небольшом количестве. Понятно поэтому, что один только запасный крахмал возможно и выгодно извлекать из растений с технической целью. Действительно, все продажные сорта — крахмал запасной. — Не менее величины разнообразна форма К. зерен. Маленькие зернышки обыкновенно округлы, нередко шарообразны; крупные чаще имеют чечевицеобразную, эллиптическую или овальную форму, причем очертания обыкновенно не бывают вполне правильными. Встречаются также удлиненные К. зерна, палочкообразные или веретенообразные. У тропических молочаев (Euphorbiaceae) в млечном соке кроме палочковидных имеются еще зернышки, весьма своеобразно утолщенные на концах, так, что они напоминают собой некоторые кости (фиг. 3). Наиболее, однако, распространена среди крупных К. зерен в общем овальная или клиновидная форма, та форма, какую имеют зерна в картофельных клубнях (фиг. 7-8). Прилагаемая таблица рисунков лучше описания знакомит с разнообразием формы К. зерен. В клетках, содержащих очень много зерен, последние от взаимного давления принимают многогранную форму (фиг. 5, 12, 13).

Крахмальные зерна или крупины: 1. Из семени куколя (Agrostemma Githago).-2. Из пшеничного зерна.-3. Из молочая (Euphorbia).-4. Из семени бобов.-5. Из зерна маиса.-6. Из корневища Canna.-7. Из клубня картофеля (заключенные в клетках).-8. Из клубня картофеля (изолированные, при очень сильном увеличении).-9. Из зерна овса.-10. Из семени Lolium temulentum.-11. Из луковицеобразного клубня зимовника (Colchicum autumnale).-12. Из зерна риса.-13. Из зерна проса. — Все при сильном увеличении.

Крахмальные зерна или крупины: 1. Из семени куколя (Agrostemma Githago).-2. Из пшеничного зерна.-3. Из молочая (Euphorbia).-4. Из семени бобов.-5. Из зерна маиса.-6. Из корневища Canna.-7. Из клубня картофеля (заключенные в клетках).-8. Из клубня картофеля (изолированные, при очень сильном увеличении).-9. Из зерна овса.-10. Из семени Lolium temulentum.-11. Из луковицеобразного клубня зимовника (Colchicum autumnale).-12. Из зерна риса.-13. Из зерна проса. — Все при сильном увеличении.

При рассматривании в воде большинство К. зерен ясно обнаруживают слоистое строение; при этом более бледные слои чередуются с более блестящими, т. е. сильнее преломляющими свет. Первые обыкновенно называют "мягкими" слоями, вторые "плотными". Самый наружный слой всегда бывает плотным; наоборот — самая внутренняя часть у всех ясно слоистых зерен всегда состоит из мягкого вещества и во многих случаях (анатомический) центр слоев и называют "ядром" крахмального зерна. Бывают, однако, зерна, у которых совершенно незаметно ни ядра, ни слоистости (все очень маленькие зернышки и некоторые сорта довольно крупных): вещество их под микроскопом представляется совершенно гомогенным. Смотря по расположению слоев в зерне, различают слоистость концентрическую и эксцентрическую. В зернах шарообразных, чечевицеобразных, эллиптических и некоторых овальных — центр слоев, ядро — совпадает с математическим центром зерна и слои идут параллельно поверхности зерна и параллельно друг другу, сохраняя притом кругом одинаковую толщину; это — слоистость концентрическая. У картофельных же К. зерен и у многих им подобных ядро не совпадает с математическим центром, а лежит всегда ближе к одному из концов зерна, стало быть, имеет эксцентрическое положение. При такой эксцентрической [По характеру слоистости и самые зерна иногда зовутся концентрическими и эксцентрическими.] слоистости слои гораздо шире по одну сторону ядра, нежели на другую. Эксцентричность ядра бывает различной [Ее можно выразить дробью, числитель которой — расстояние ядра от ближайшего конца зерна, а знаменатель — от самого дальнего. У картофельных зерен, напр., она в среднем 1 /5 (ср. фиг. 7-8). Обыкновенно она не превышает 1 /7, но в некоторых случаях, например у Canna lagunensis, доходит до 1 /70 (ср. фиг. 6).]. В зернах с очень эксцентрическим ядром (например, у Canna, Phajus и др.) обыкновенно не все слои окружают ядро, а многие образуются лишь с одного, более удаленного от ядра, конца зерна, представляя из себя различной формы скорлупки, вложенные одна в другую (рис. 6). Причина слоистости, равно как и других физических особенностей (напр., замечательных оптических свойств) К. зерен лежит в их особом внутреннем строении, в так называемой организации зерна. По теории Негели (Naegeli), бывшей общепринятой и ныне отстаиваемой все еще весьма многими учеными, причина слоистости заключается в неодинаковом содержании воды различными слоями; именно — мягкие, бледные слои богаче водой, нежели плотные, блестящие. Сухие зерна совершенно не обнаруживают слоистости. Если зерна картофеля или Canna, весьма явственно слоистые (см. фиг. 6-8) во влажном состоянии, основательно высушить и затем рассматривать в концентрированном глицерине или, еще лучше, в гвоздичном масле или канадском бальзаме, то слоистости незаметно. При притоке воды одновременно с разбуханием зерен выступает ясно и слоистость, поэтому принимают, что слоистость покоится на неодинаковой разбухаемости в воде различных слоев. Изучение К. зерен и клеточных оболочек и легло в основу теории Негели относительно строения нарастания организованных тел вообще (см. Организованные тела, Мицеллярная теория). Шимпер и Арт. Мейер (Schimper; Art. Meyer) считают К. зерна за сферокристаллы (или сферокристаллоиды), что имеет особенно веское подтверждение в оптических свойствах зерен (см. далее). По Бючли (Bütschli) К. зерна имеют ячеистое или подобное пене строение; это в сущности не противоречит взгляду только что названных ученых, так как по Бючли и сферокристаллам, например инулина, свойственно ячеистое строение. Разбираемый вопрос нуждается еще в дальнейшем расследовании. Бывают еще "сложные" и "полусложные" зерна. Сложные зерна составлены из отдельных зернышек, слипшихся вместе; последние от взаимного давления часто получают многогранную форму (фиг. 9-10). Число зернышек, входящих в состав сложного зерна, весьма различно: всего 2-3, как у картофеля (ср. фиг. 11), у овса и многих других злаков (см. фиг. 9-10), также у куколя (фиг. 1), — гораздо больше, а иногда оно достигает колоссальной величины, напр. (по Негели) до 14000 у Chenopodium Quinoa и даже 30000 у Spinacia glabra; в последних случаях составные зернышки чрезвычайно мелки. Обыкновенно достаточно уже слабого давления, чтобы разъединить зернышки сложного зерна, но иногда они срастаются так плотно, что нельзя различить даже разграничивающие их линии. Полусложные зерна имеют несколько ядер, из коих каждое окружено собственными слоями, а все ядра, вместе со всеми их слоями, окружены еще комплексом слоев, общих всему К. зерну (фиг. 8 налево). Полусложные и сложные зерна встречаются в картофельных клубнях, наряду с обыкновенными простыми, но в гораздо меньшем количестве. Обладая двойным светопреломлением, К. зерна кроме того относятся к свету подобно сферокристаллам, т. е. так, как если бы они состояли из игольчатых кристаллов, лучисто расположенных вокруг ядра зерна. Поэтому каждое зерно в темном поле поляризационного микроскопа (также и в сложных) дает характерный темный крест, центр которого совпадает с ядром зерна. У зерен с концентрической слоистостью крест правильный, тогда как, при эксцентрической слоистости, ветви креста неодинаковой длины и образуют между собой непрямые углы.

К. зерна нерастворимы в холодной воде, а в горячей сильно разбухают, причем слоистость исчезает; при дальнейшем нагревании зерна превращаются в так назыв. клейстер. Еще быстрее разбухают зерна в слабых растворах едких щелочей (напр. едкого кали или натра); при этом слоистость сначала выступает явственнее, нежели была прежде, но потом скоро совершенно исчезает. От действия раствора йода (обыкновенно применяют раствор йода в йодистом кали — так назыв. йод-иод-кали, условно обозначаемый JJK.) К. зерна синеют. По реакции с йодом можно судить (до известной степени) также и о количестве крахмала, напр. в листьях (йодная проба Сакса). Для этого сначала из листьев извлекают хлорофилл, а затем действуют йодом. Если в листьях нет крахмала, то они принимают светлую буровато-желтую окраску, листья же богатые крахмалом (напр. листья многих наших двудольных растений летом под вечер) становятся от йода черны, как уголь. При среднем содержании крахмала и окраска получается средняя. Чтобы обнаружить в растительных органах присутствие небольшого количества крахмала, извлекают хлорофилл спиртом, а потом действуют концентрированным водным раствором хлорал-гидрата, содержащим немного йода (Арт. Мейер). От хлорал-гидрата К. зерна сильно разбухают, а белковые тела, которые могли бы своей желто-бурой окраской (от йода) маскировать голубую окраску крахмала, разрушаются. По химическому составу6Н10О5)n К. зерна представляют углевод, весьма близкий к клетчатке (целлюлозе). Прежде, следуя Карлу Негели, принимали, что К. зерно состоит собственно из целлюлозы, образующей так назыв. скелет К. зерна, и гранулезы, которая одна только способна синеть от йода. Впоследствии Вальтер Негели (сын К. Негели) показал, что "скелет" встречается лишь у химически изменившихся от слабых кислот зерен и состоит из амилодекстрина, гранулеза же вещество, сохранившее реакции крахмала [У некоторых растений попадаются К. зерна, окрашивающиеся от йода не в синий, а в фиолетовый и даже красный цвет. Полагают, что такие зерна, кроме неизмененного крахмала, содержат еще большее или меньшее количество амилодекстрина и декстрина. У других, очень немногих растений, в клеточном соке растворено вещество, синеющее подобно крахмалу от йода, но химический состав его пока совершенно неизвестен.]. При дальнейшем действии кислоты вся масса зерна превращается в смесь декстрина и сахара. Для суждения о строении К. зерна особенное значение имеют первые фазы растворения зерна под влиянием диастаза; они протекают не вполне одинаково у различных сортов К. зерен, о чем см. Диастаз. К. зерна образуются только в живых клетках. Мертвые элементы, например в древесине сосуды или трахеиды, потерявшие живое содержимое (протоплазму и клеточное ядро), теряют вместе с тем и способность образовать крахмал. Кроме того, К. зерна возникают не прямо в массе протоплазмы, а в особых плазматических тельцах, так наз. пластидах или лейцитах. В зеленых хлорофиллоносных клетках К. зерна образуются в хлоропластах: в хлорофилльных зернах или в образованиях, им по функции соответствующих, у водорослей центрами, очагами образования К. зерен в хлоропласте являются маленькие белковые тельца — пиреноиды, имеющие иногда явственно кристаллическую форму (ср. Крахмал ботан.). В бесцветных тканях, в глубине клубней, луковиц, корневищ и т. п. К. зерна возникают также в специальных плазматических шариках, которые сначала были названы Шимпером "крахмалообразователями", а потом получили название лейкопластов. Маленькие зерна совершенно заключены внутри лейкопластов; у крупных уже эксцентрически-слоистых зерен лейкопласт является только маленьким придатком, сидящим на более удаленном от ядра конце зерна.

Лейкопласты с зернами крахмала из надземного клубня Phajus grandifolius. A, C, D и Е — сбоку; В — сверху. Увелич. 540.

Вообще, если зерно залагается в центре лейкопласта, то оно со всех сторон питается равномерно и выходит концентрически-слоистым, если же оно залагается близ его края, то питается с одной стороны гораздо сильнее, нежели с другой и вырастает эксцентрически-слоистым (ср. рис. лейкопластов Phajus grandifolius). Когда зерно вполне вырастет, то остаток лейкопласта совсем исчезает и зерно оказывается лежащим в массе протоплазмы [По другому мнению, К. зерна всегда окружены веществом хлоро-или лейкопласта.]. Возможно, что в некоторых случаях К. зерна образуются и прямо (Бельцунг), в вакуолях протоплазмы ("зародышевый крахмал"). Допустив возникновение К. зерна так или иначе, требуется еще уяснить особенно происхождение их характерной слоистости. Первоначально (годов с 30-х, начиная) полагали, что на ядро зерна постепенно отлагается с поверхности крахмальное вещество слоями. В конце пятидесятых годов эту теорию наслоения или аппозиции (appositio) сменила теория внедрения или интуссусцепции (intussusceptio), подробно разработанная К. Негели; в К. зернах из воспринимаемого ими из окружающей среды крахмалообразовательного вещества образуются очень маленькие частички — "мицеллы" К. вещества, из коих каждая, однако, представляет целый комплекс химических молекул. Путем внедрения таких частичек между прежними и разрастаются К. зерна. Слоистость же происходит лишь впоследствии через внутреннюю дифференцировку первоначального гомогенного вещества зерна: по мере возрастания, последнее постепенно дифференцируется на плотные и мягкие слои. В пользу теории Негели говорит особенно то, что ядро зерна всегда мягкое, а самый наружный слой всегда плотный, в то время как маленькие молодые зернышки всегда состоят из плотного вещества. Кроме того, часто наблюдаемое появление при разрастании зерен радиальных трещин лучше согласуется с теорией внедрения. Тем не менее, в последнее время (с конца 70-х годов) снова стали раздаваться голоса в пользу старой теории наслоения, так что некоторые стороны воззрения Негели несомненно должны быть изменены. Так образование сложных и полусложных зерен происходит обыкновенно через срастание отдельных зернышек (Шимпер), а не через внутреннюю дифференцировку простых зерен.

Литература о К. зернах весьма обширна. Здесь кроме главнейших специальных сочинений (I), указываются еще некоторые учебники и руководства (II), в коих можно найти подробности и остальную литературу: I. С. Naegeli: "Die Stärkeköruer" (1858) и "Ueber das Wachsthum der Stärkekörner durch Intussusception" ("Mittheil. der bair. Akademie d. Wiss zu München", 1881); W. Naegeli, "Beiträge zur näheren Kenntniss der Stärkegruppe" (1874); Schimper, "Untersuchungen über die Entstehung der Stärkekörner" ("Botanische Zeitung", 1880) и "Untersuchungen über das Wachsthum der Stärkekörner" (там же, 1881); A. Meyer, "Ueber die Structur der Stärkekörner" (там же 1881) и "Ueber die wahre Natur der Stärkecellulose Naegeli's" (там же, 1886); O. Bütschli, "Ueber den feineren Bau der Starkekörner" ("Verhandlungen d. Naturhist.-Med. Vereins zu Heidelberg", N. F., V Bd., 1 Heft, 1893) и "Vorläufiger Bericht über fortgesetzte Untersuchungen an Gerinnungsschäumen, Sphärokrystallen etc." (т. же, Heft 3, 1894); Belzung, "Recherches sur l'amidon et les grains de chlorophylle" ("Annales d. Sciences naturelles, Botan.", 7-e sér., т. V, 1887); "Nouvelles recherches sur l'origine des grains d'amidon etc." (там же, т. XIII); "Marche totale des phenomènes amylochlorophylliens" ("Journal de Botanique", 1895); Art. Meyer, "Untersuchangen über die Stärkekörner" (1895, подробная критика воззрений Негели; учение о К. зернах, как о сферокристаллах). II. Бородин, "Курс анатомии растений" (1888); Ротерт, "Анатомия растительной клетки" (1895); Zimmermann, "Die Morphologie und Physiologie der Pflanzenzelle" (1888); "Die botanische Mikrotechnik" (1892); Tschirch. "Angewandte Pflazenanatomie" (1889); Van Tieghem, "Traité de botanique" (vol. 1, 1891).

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон . 1890—1907 .

Читайте также: