Составить схему моногибридного скрещивания второго поколения гибридов на примере горошка или фиалки

Обновлено: 18.09.2024

Данный урок входит в раздел "Генетика", раскрываются основные понятия и термины, решение простых генетических задач на моногибридное скрещивание. Помимо презентации входит файл для лабораторной работы по решению аналогичных задач

ВложениеРазмер
monogibridnoe_skreshchivanie_bio_10.ppt 82.5 КБ
лабораторная работа 43.5 КБ

Предварительный просмотр:

Подписи к слайдам:

Основные определения генетики Гибридологический метод – система скрещиваний, позволяющая проследить в ряду поколений наследование признака и выявить новообразования. Это основной метод генетики

Моногибридное скрещивание – скрещивание по одной паре признаков (цвет, форма и т.д.) Гетерозигота –особь, которая дает гаметы разных сортов, противоположные аллели одного гена (пример, Аа, Вв) Гомозигота – особь, которая дает гаметы одного сорта, одинаковые аллели одного гена (АА, ВВ, аа, вв) Аллельные гены – гены, расположенные в одних и тех же местах (локусах) гомологичных хромосом

Основные определения генетики Ген –единица наследственного материала (генетической информации); участок молекулы ДНК (у высших организмов) и РНК (у вирусов), содержащий информацию о первичной структуре одного белка. Генотип – совокупность генов, полученных от родителей Фенотип –совокупность внешних и внутренних признаков и свойств организмов

Основные определения генетики Доминантный признак – преобладающий признак, проявляющийся всегда в потомстве, в гомо- и гетерозиготном состоянии(АА, ВВ, Ав, аВ и т.д.) Рецессивный признак – подавляемый признак, проявляющийся в гомозиготном состоянии (аа, вв)

Основные определения генетики Р ( parenta) – родительские особи, родители F ( гибриды) –потомки, поколение (дети) G - гаметы

Практикум Ген черной масти у крупнорогатого скота доминирует над геном красной масти. Какое потомство F1 получится от скрещивания чистопородного черного быка с красными коровами? Какое потомство F2 получится от скрещивания между собой гибридов?

А – ген черной масти, а – ген красной масти. Красные коровы несут рецессивный признак, следовательно, они гомозиготны по рецессивному гену и их генотип – аа . Бык несет доминантный признак черной масти и является чистопородным, т.е. гомозиготным. Следовательно, его генотип – АА . Гомозиготные особи образуют один тип гамет, поэтому черный бык может продуцировать только гаметы, несущие доминантный ген А , а красные коровы несут только рецессивный ген а . Они могут сочетаться только одним способом, в результате чего образуется единообразное поколение F1 с генотипом Аа . Гетерозиготы с равной вероятностью формируют гаметы, содержащие гены А и а . Их слияние носит случайный характер, поэтому в F2 будут встречаться животные с генотипами АА (25%), Аа (50%) и аа (25%), то есть особи с доминантным признаком будут составлять примерно 75%. Схема скрещивания Р ♀ aa красные × ♂ AA черный гаметы a A F 1 Aa 100% черные F 1 ♀ Aa черные × ♂ Aa черные гаметы A a A a F 2 AA Aa Aa aa 75% черные 25% красные

Практикум Черный цвет щетины у свиней доминирует над рыжим. Какое потомство следует ожидать от скрещивания черной свиньи с генотипом FF и черного хряка с генотипом Ff?

Объект: свинья. Признак: цвет щетины F – черный f – рыжий Ответ: все потомство имеет черный цвет щетины (100%)

Практикум Женщина с прямыми волосами (в) вступила в брак с мужчиной, имеющим курчавые волосы. Определите генотип отца, если у их сына прямые волосы


Вернемся к Грегору Менделю и гороху. Как говорилось ранее, он использовал в своих опытах горох, но не любой, а только чистые линии – группы организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В качестве такого признака был выбран цвет горошин: одна линия была только зеленая во всех поколениях, а друга – желтая.

Таким образом Мендель скрещивал разные родительские особи гороха и далее подсчитывал результаты по некоторым признакам: количество гороха с желтой/зеленой кожурой, гладкие горошины и морщинистые, карликовое растение/нормальное/высокое и так далее. Ученый использовал 22 чистых линии и около 10.000 растений бобового.

Моногибридное скрещивание

Такое скрещивание было выбрано первым для опытов. Моногибридное скрещивание – скрещивание особей, отличающихся друг от друга лишь одним признаком. Ген , в котором заключена информация об этом одном из признаков называется аллельным геном или аллелью.

В зависимости от комбинации генов в паре, организм может быть гомозиготным или гетерозиготным. В первом случае оба гена несут одну разновидность признака, во втором – две разные. Гомозиготами будут являться горох, оба аллели которого несут окраску только желтого или только зеленого цвета. Гетерозиготами – те, у которых один ген несет желтый цвет, а другой – зеленый.


Есть доминантные и рецессивные гены. Первые преобладают, вторые – подавляются. Посмотрим на схему моногибридного скрещивания выше и разберемся в некоторых правилах записи.

Здесь мы видим 2 признака: цвет и текстуру кожуры. Разные типы признаков обозначаются разными буквами. Например, желтый – А, зеленый – В. Доминантные признаки записываются заглавными буквами, а рецессивные – строчными. Один ген аллели – одна буква.

Исходя из этого, монозиготы могут быть либо аа (рецессивная гомозигота ), либо АА (доминантная монозигота).

Законы Менделя

В результате такого скрещивания Мендель открыл закон единообразия гибридов первого поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся друг от друга только по одному признаку, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по этому признаку будет единообразно.

Далее Мендель продолжил изучать потомство гороха, теперь он скрестил то самое единообразное поколение.


Так Мендель вывел закон расщепления. Из него следует, что при скрещивании потомков первого поколения, во втором снова появляются особи с рецессивным признаком, эти особи составляют 1: 4 часть от всего числа потомков второго поколения.

Фенотип – внешнее проявление признака.

Ранее мы говорили о том, что доминирующий признак подавляет рецессивный. Если у гороха генотип Аа, где доминирующий цвет желтый, то горошины будут этого цвета. Однако, все не всегда так однозначно.

Если скрестить пурпурные и белые цветы ночной красавицы, то гетерозиготное потомство приобретет отличный от родителей цвет: розовый. По закону неполного доминирования при скрещивании доминантной и рецессивной гомозигот , все особи в потомстве проявят либо признаки родителей, либо промежуточный признак.


Если скрещиваются организмы, отличающиеся друг от друга не по одному признаку (моногибридное), а по двум, то скрещивание называется дигибридным.

Для своих опытов в этом направлении Мендель взял горох двух цветов и двух фактур.


Независимое наследование признаков

Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.

Если пересчитать количество потомков каждого фенотипа, то получится следующее:

9 шт. – желтый гладкий

3 шт. – желтый морщинистый

3 шт. – зеленый гладкий

1 шт. – зеленый морщинистый

Так Мендель пришел к закону независимого наследования признаков, из которого следует, что при дигибридном скрещивании гены и признаки, за которые отвечают эти гены, наследуются независимо друг от друга.


Задание ollbio09101120172018в2 У одного из представителей семейства Колокольчиковые (Campanulaceae) – платикодона крупноцветкового (Platycodon grandiflorum) пентамерные цветки, состоящие из круга чашелистиков, круга лепестков, круга тычинок и круга плодолистиков (см. рис.). Иногда среди платикодонов можно найти махровые цветки, у которых на месте тычинок развиваются лепестки. А. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка. Предложите для него формулу. Б. Предположим, что в природной популяции платикодона крупноцветкового возникла форма с махровыми цветками (по остальным признакам форма не отличается от нормы). Образование махровых цветков определяется одной рецессивной мутацией. Ученые пересадили из природы на экспериментальный участок два мутантных и одно нормальное растение. Считая, что при опылении пыльца всех особей смешивается, пыльца из природных популяций не попадает на участок, и при этом возможно самоопыление, рассчитайте, каким может быть расщепление в потомстве первого поколения по генотипам и фенотипам. В. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные, а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли. Каким может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу?

А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых завязь нижняя, но это не принципиально для дальнейшего решения.) Можно предложить следующую формулу для типичного цветка в сем. Колокольчиковые: * Ч5 Л(5) Т5 П( — 3) или * Ca5 Co(5) A5 G( — 3) . Поскольку у махровых форм происходит замена тычинок на лепестки, в формуле вместо тычинок нужно указать дополнительный круг лепестков: * Ч5 Л(5)+(5) П( — 3) или * Ca5 Co(5)+(5) G( — 3) . При построении диаграммы должны выполняться следующие принципы: 1. Органы в круге располагаются друг относительно друга под углом 360 : 5 = 72 градуса. 2. В двух соседних кругах органы должны чередоваться, т.е. положение медианы каждого органа должно приходиться строго на промежуток между органами предыдущего круга. Для пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На рисунке видно, что плодолистики (поскольку из три) не могут правильно чередоваться с пятью тычинками. 3. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга (органы противолежат). 4. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все линии будут проводиться через центр завязи и центральную (медианную) жилку органа. 5. На рисунке показан цветок с центрально-угловой плацентацией ( гинецей синкарпный). Между гнездами завязи находятся перегородки (септы). Для плодолистика медианой считается линия, делящая угол между септами ровно пополам. Б. Обозначим ген , отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков. Из природы были взяты два махровых и одно немахровое растение, и по семенной продуктивности все три растения одинаковы, следовательно, 2/3 семян будет собрано с махровых, и 1/3 – с немахровых растений. Однако пыльцу может образовать только растение с немахровыми цветками. Вариант 1. Немахровое растение – гомозигота АА. Тогда среди потомков в данном скрещивании должно оказаться: 1/3 (≈33.3%) АА 2/3 (≈66.7%) Аа или 1 АА : 2 Аа По фенотипу все потомки окажутся немахровыми. Вариант 2. Немахровое растение – гетерозигота Аа. Среди женских гамет соотношение вклад каждого из растений останется прежним, т.е. 2/3 от всех аллелей а придут от махровых растений. Среди оставшихся 1/3 женских гамет 1/6 будет нести аллель а, и еще 1/6 – аллель А. Таким образом, соотношение среди женских гамет будет 5/6 а и 1/6 А. Среди мужских гамет 1/2 будет нести аллель А, и еще 1/2 – аллель а. Таким образом, среди потомков первого поколения возможно следующее расщепление по генотипам : 1/12 АА (≈8.3%) 6/12=1/2 Аа (50.0%) 5/12 аа (≈41.7%) 1 АА : 6 Аа : 5 аа По фенотипам: 7/12 (≈50.3%) немахровых 5/12 (≈41.7%) махровых 7 немахровых : 5 махровых В. В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков по генотипам и фенотипам во втором поколении. 1/3 (≈33.3%) АА дадут только гаметы А, тогда как 2/3 растений с генотипом Аа дадут половину гамет А и вторую половину гамет а. Таким образом, суммарно гамет А в популяции окажется 2/3, и 1/3 гамет, несущих аллель а. Таким образом, среди потомков второго поколения возможно следующее расщепление по генотипам: 4/9 АА (≈44.4%) 4/9 Аа (44.4%) 1/9 аа (≈11.1%) 4 АА : 4 Аа : 1 аа По фенотипам: 8/9 (≈88.9%) немахровых 1/9 (≈11.1%) махровых 8 немахровых : 1 махровых. Во втором случае (из природы было взято гетерозиготное немахровое растение) после того, как мы удалим все махровые растения, останется 1/7 АА (≈14.3%) и 6/7 Аа (≈85.7%). Последние дадут половину гамет А (3/7) и половину гамет а (3/7). Суммарная доля гамет А составит 4/7. Тогда: Во втором случае расщепление среди потомков второго поколения будет: по генотипам: 16/49 АА (≈32.6%) 24/49 Аа (≈49.0%) 9/49 аа (≈18.4%) 25 АА : 30 Аа : 9 аа По фенотипам: 40/49 (≈81.6%) немахровых 9/49 (≈18.4%) махровых 40 немахровых : 9 махровых.

pазбирался: Надежда | обсудить разбор | оценить

Задание ollbio02101120172018в2 Грегор Мендель исследовал признаки формы семян у гороха, и выяснил, что гладкая форма доминирует над морщинистой. В этом случае различие вызвано тем, что: А. У морщинистых семян замедлен процесс образования крахмала, а у гладких – нет; Б. У морщинистых семян при созревании разрушается хлорофилл, а у гладких не разрушается; В. Семенная кожура у морщинистых семян слишком плотная, она не расправляется по мере развития зародыша; Г. У морщинистых семян накапливается слишком много воды, и они сморщиваются при созревании; Д. В морщинистых семенах при созревании часть белков разрушается, а в гладких – нет.

Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.

Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.

Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.

Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.

Схема наследования красной и белой окраски цветков у гороха

Схема наследования красной и белой окраски цветков у гороха

При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Схема реципрокного моногибридного скрещивания

Схема реципрокного моногибридного скрещивания


Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Схема анализирующего скрещивания

Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:

Расщепление в F2

Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.

Схема дигибридного скрещивания
(решетка Пеннета)

Схема дигибридного скрещивания (решетка Пеннета)

Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:

В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.

Расщепление по генотипу соответствует следующей формуле:

1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.

Сокращенно - 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.

Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.

Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:

(3 : 1) 2 = 9 : 3 : 3 : 1,

тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.

Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.

Формулы расчета других характеристик гибридов представлены в таблице 1.

Таблица 1. Количественные закономерности расщепленияв гибридном потомстве
при различных типах скрещиваний

Расщепление по фенотипу в F2

Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:

  1. Равновероятное образование гибридом всех сортов гамет.
  2. Всевозможное сочетание гамет в процессе оплодотворения.
  3. Одинаковая жизнеспособность всех сортов зигот.

Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.

Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.

Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).

Схема неполного доминирования при наследовании окраски цветков у ночной красавицы

Схема неполного доминирования при наследовании окраски цветков

Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.

Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.

Похожие материалы по теме "Законы Менделя":

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":

Моногибридное скрещивание – такое, при котором исследуют только два варианта одного признака, например, белую и пурпурную окраску цветов. Этот обманчиво простой вид гибридизации приводит к пониманию природы наследования.

Семь характеристик садового гороха, изученных Менделем в его экспериментах, обладали двумя противоположными вариантами, которые хорошо визуально распознавались:

  • жёлтая и зелёная окраска семян;
  • высокий и низкий рост побега;
  • морщинистые и гладкие горошины;
  • пурпурная и белая окраска венчика цветка;
  • жёлтая и зелёная окраска плодов;
  • выпуклая и перетянутая форма плодов;
  • аксиальное и терминальное расположение цветков на побеге.

Мы подробно рассмотрим моногибридное скрещивание растений на примере наследования альтернативной окраски венчиков цветов. Эксперименты Менделя с другими признаками гороха были похожими и имели такие же результаты.

Моногибридное скрещивание, первый закон Менделя: единообразия гибридов первого поколения, или доминирования

Когда Мендель скрещивал чистые линии растений с белыми и пурпурными венчиками, у гибридов не было цветов смешанной окраски, как происходит при промежуточном наследовании. Вместо этого в каждом случае цветы были окрашены одинаково, как у одного из родителей (полное доминирование). Эти потомки обычно упоминаются в качестве первого поколения F1. При скрещивании белоцветкового гороха с растениями с пурпурными цветами всё потомство F1 имело пурпурные цветы. Такие же результаты получали и другие исследователи, работающие до Менделя.

Мендель назвал форму признака, выраженного в поколении F1 доминирующей по отношению к его альтернативной форме, которая была экспрессированной – рецессивной. У каждого из 7 исследуемых Менделем пар признаков один его вариант оказался доминантным, другой –рецессивным.

Моногибридное скрещивание: закон расщепления, второй закон Менделя

После того как гибриды первого поколения самоопылились и образовали плоды, Мендель собрал их семена и посадил. Затем он произвёл перекрёстное опыление выросших растений и обнаружил, что большинство распустившихся цветков имели пурпурный цвет, но у меньшей части проявился рецессивный признак – белый цвет венчиков. Скрытый в первом поколении, он снова показал себя во второй волне потомков.

Полагая, что пропорции числа потомков F2 помогут понять механизмы наследственности, Мендель подсчитал количество особей с каждым проявленным признаком. Из 929 наблюдаемых растений 705 (75,9%) имели пурпурные цветы, а 224 (24,1%) – белые. Таким образом, примерно ¼ часть исследуемых особей демонстрировала рецессивную форму признака.

Те же результаты Мендель наблюдал при исследовании всех остальных 6 признаков гороха: из растений F2 ¾ части достались доминантные признаки, ¼ части – рецессивные. Другими словами, доминантно-рецессивное соотношение всегда было близко к соотношению 3:1.

Соотношение 1:2:1 на самом деле представляет собой расщепление 3:1

Мендель продолжал наблюдать, как растения F2 передают черты последующим поколениям при самоопылении. Он обнаружил, что горох с белыми цветами производит только растения с белыми венчиками. Напротив, 1/3 часть растений с доминантным признаком – пурпурными цветами в поколении F3 снова демонстрировала расщепление в соотношении 3:1, где ¼ часть снова украсилась белыми цветами.

Закон расщепления объясняет результаты моногибридного скрещивания

Из своих экспериментов Мендель смог понять о природе наследственности четыре закономерности.

  • Растения, которые он скрещивал, не давали в потомстве промежуточных признаков, иначе наследование было бы предсказуемым. Напротив, каждый родительский признак передавался отдельно (дискретно).
  • Из каждой пары альтернативных признаков один не был выражен у гибридов поколения F1, хотя он вновь появлялся у особей поколения F2. Черта, которая исчезала в первом поколении, была просто временно скрытой (подавленной).
  • Изученные пары альтернативных признаков были разделены среди потомства растений, взятых для скрещивания. Одни особи проявляли одну черту, вторые – другую.
  • Эти альтернативные черты были выражены в поколении F2 в соотношении ¾ доминантные, ¼ рецессивные. Эта характеристика (3:1) называется менделевским соотношением моногибридного скрещивания.

Современное объяснение первого и второго законов Менделя

Результаты, полученные Менделем, объясняются с помощью простой модели, которая выдержала испытание временем. Используя более современный язык, их можно резюмировать следующим образом.

Генетики называют общий набор аллелей, который содержит индивид, генотипом. А внешний вид или другие наблюдаемые характеристики, к которым привело выражение этих аллельных признаков – фенотипом. Другими словами, генотип – это проект, чертёж, а фенотип – это видимый результат, воплощение проекта на практике.

Всё это позволяет нам представить соотношение Менделя в более современных терминах. Соотношение 3:1 – это разделение по фенотипу при моногибридном скрещивании (3 пурпурных, 1 белый). Соотношение 1:2:1 – это разделение потомства по генотипу, по наборам пар аллельных генов.

Символическая запись моногибридного скрещивания

Чтобы проверить свою гипотезу, Мендель сначала выразил все данные при помощи набора символов. Затем использовал эти символы для интерпретации результатов.

В этой системе генотип чистой линии гороха с белыми цветами (рецессивный признак) будет обозначаться двумя строчными буквами (аа), а генотип самоопыляемого гороха с пурпурными цветами (доминантный признак) обозначаем двумя заглавными буквами (АА). Для обозначения скрещивания пурпурных цветов с белыми сделаем следующую запись АА Х аа.

Современный закон Доминирования формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

Это тип скрещивания при записи генетическими символами будет выглядеть следующим образом:

По генотипу: 100% — гетерозиготы (Аа)

По фенотипу: 100% — растения с пурпурными цветами.

Запишем этот тип скрещивания при помощи генетических символов.

Соотношение по фенотипу: 3:1 (75% к 25%)

Закон расщепления, моногибридное скрещивание фото

Соотношение по генотипу: 1 АА (доминантная гомозигота):2 Аа (гетерозиготы):1 аа (рецессивная гомозигота), т.е. 1:2:1. Процентное соотношение: 25% АА, 50% Аа, 25% аа

Второй закон Менделя формулируется следующим образом: при скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Это можно визуально продемонстрировать на модели решётки Пеннета, названной в честь её создателя английского генетика Р.К. Пеннета. В ней наглядно видно, что поколение F2 должно состоять на ¾ из растений с фиолетовыми цветками и на ¼ с цветами, окрашенными в белый цвет, т. е. соотношение по фенотипу составляет 3:1.

Моногибридное скрещивание, закон расщепления, решётка Пеннета фото

Моногибридное скрещиване, первый и второй законы Менделя фото

Некоторые черты людей проявляются как доминантные или рецессивные признаки. Анализ родословных

Исследования показали, что некоторые признаки человека передаются по наследству в соответствии с законами Менделя – как доминантные или рецессивные (таб. 1). Учёные не могут искусственно скрещивать людей ради того, чтобы проследить эту закономерность, как это делал Мендель на горохе. Поэтому они изучают родословные людей.

Родословная – это графическое представление скрещивания и потомства в течение нескольких поколений для того, чтобы проследить тип наследования какого-либо признака. При анализе родословных важно помнить, что вызывающие болезнь аллели довольно редки в популяциях людей.

Наследование ювенильной глаукомы: доминантный признак

Одна из самых больших родословных построена для прослеживания наследования формы слепоты, спровоцированной доминантным аллелем. Он вызывает одну из форм наследственной ювенильной глаукомы. Заболевание ведёт к дегенерации нервных волокон в зрительном нерве и к слепоте.


Эта родословная построена при наблюдении за тремя поколениями родственников в маленьком городке на северо-западе Франции. Этой семьи нет с 1495 года, показана лишь небольшая часть родословной. Доминирующий характер признака очевиден, так как болезнь проявляется в каждом поколении. Для рецессивных признаков такое наследование маловероятно, так как супруги людей, имеющих ген болезни тоже должны быть либо носителями, либо больными.

Наследование рецессивного признака на примере альбинизма

Альбинизм – это состояние, при котором не синтезируется пигмент меланин, он наследуется по рецессивному принципу. Долгое время считалось, что это связано с одним геном, но теперь известно несколько генов, приводящих к альбинизму. Их общей чертой является отсутствие пигмента волос, кожи и радужной оболочки глаз. Потеря пигмента делает кожу человека чувствительной к солнечным лучам.


Родословная на рисунке относится к одной из форм альбинизма, при которой не синтезируется фермент тирозиназа, необходимый для образования пигмента меланина. По родословной видно, что такой формой альбинизма страдают одинаково как мужчины, так и женщины, большинство больных людей имеют здоровых родителей, носящие рецессивный ген родители имеют больше здоровых потомков.

Примеры задач на моногибридное скрещивание с решением

Большинство признаков подчиняются описанным выше закономерностям. Например, наследование цвета глаз у человека происходит по доминантно-рецессивному типу.

Карий цвет глаз наследуется как доминантный признак, голубой – как рецессивный. Какого цвета будут глаза у детей, если у матери и отца карие глаза? У мамы и папы голубые глаза? У мамы карие, у папы – голубые глаза?

Читайте также: