Почему мендель искусственно опылял растения гороха искусственно

Обновлено: 18.09.2024

Почему Г. Мендель опылял растения гороха искусственно?

  • Кубич Геннадий
  • Подготовка к ЕГЭ/ОГЭ
  • 2019-10-30 21:41:21
  • 18
  • 1

Мендель решил пронаблюдать интересующее его явление наследственность у гороха. Горох очень комфортен для исследования наследственности, его просто растить и весь актуальный цикл проходит быстро. Также он склонен к самоопылению, а без самоопыления, опыты Менделя были бы невозможны.
В первую очередь, признак, наследование которого наблюдается, обязан верно различаться визуально. Проще всего взять признак, который проявляется в 2-ух вариантах. Мендель избрал окраску семядолей. Семядоли у семян гороха могут быть либо зеленоватые, или желтые. Такие проявления признака хорошо различимы и верно делят все зёрна на две группы.
Не считая того, необходимо быть уверенным, что наблюдаемая картина наследования является следствием скрещивания растений с разными проявлениями избранного признака, а не вызвана какими-то иными обстоятельствами (откуда, требовательно разговаривая, он мог знать, что цвет семядолей не зависит, к примеру, от температуры, при которой горох рос?). Как этого достигнуть?
Мендель вырастил две полосы гороха, в одной из которых появлялись только зеленоватые зёрна, а в иной только желтоватые. При этом на протяжении многих поколений в этих чертах картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) разговаривают, что применена незапятнанная линия.
Всех причин, влияющих на наследственность, Мендель не знал, поэтому сделал необычный логический ход. Он изучил, какие результаты дает скрещивание между собой растений с семядолями 1-го цвета (в данном случае отпрыски точная копия родителей). После этого он провел скрещивание растений с семядолями различных цветов (у 1-го зеленые, у другого желтоватые), но в тех же критериях. Это отдало ему основания утверждать, что различия, которые проявятся в картине наследования, вызваны разными фенотипами родителей при этих 2-ух скрещиваниях, а не каким-или другим фактором.

Ответ. Аллельные гены - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологических хромосом. Аллели определяют варианты развития одного и того же признака. В нормальной диплоидной клетке могут присутствовать не более двух аллелей одного локуса одновременно. В одной гамете два аллеля находиться не могут.

2. Что представляют собой гены с точки зрения биохимика?

Ответ. С точки зрения биохимика, ген – это участок молекулы ДНК, содержащий информацию о структуре определённого белка (либо рРНК, либо тРНК). Гены расположены в хромосомах.

В ходе реализации наследственной информации, содержащейся в генах, осуществляется синтез соответствующих белков. Каждый белок выполняет определённую функцию, что ведёт к проявлению того или иного признака организма. Эту связь можно отразить следующей схемой: ген → белок → признак.

Вопросы после §39

1. Почему Г. Мендель опылял растения гороха искусственно?

Ответ. Мендель решил пронаблюдать интересующее его явление – наследственность – у гороха. Горох очень удобен для изучения наследственности, его легко выращивать и весь жизненный цикл проходит быстро. Также он склонен к самоопылению, а без самоопыления, опыты Менделя были бы невозможны.

В первую очередь, признак, наследование которого наблюдается, должен четко различаться визуально. Проще всего взять признак, который проявляется в двух вариантах. Мендель выбрал окраску семядолей. Семядоли у семян гороха могут быть либо зеленые, либо желтые. Такие проявления признака хорошо различимы и четко делят все семена на две группы.

Кроме того, нужно быть уверенным, что наблюдаемая картина наследования является следствием скрещивания растений с разными проявлениями выбранного признака, а не вызвана какими-то другими обстоятельствами (откуда, строго говоря, он мог знать, что цвет семядолей не зависит, например, от температуры, при которой горох рос?). Как этого добиться?

Мендель вырастил две линии гороха, в одной из которых появлялись только зеленые семена, а в другой – только желтые. Причем на протяжении многих поколений в этих линиях картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) говорят, что использована чистая линия.

Всех факторов, влияющих на наследственность, Мендель не знал, поэтому сделал нестандартный логический ход. Он изучил, какие результаты дает скрещивание между собой растений с семядолями одного цвета (в данном случае потомки – точная копия родителей). После этого он провел скрещивание растений с семядолями разных цветов (у одного – зеленые, у другого – желтые), но в тех же условиях. Это дало ему основания утверждать, что различия, которые проявятся в картине наследования, вызваны различными фенотипами родителей при этих двух скрещиваниях, а не каким-либо другим фактором.

2. Какие организмы называются гомозиготными по какому-либо признаку?

Ответ. Гомозиготность (от греч. "гомо" равный, "зигота" оплодотворенная яйцеклетка) диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.

3. Почему именно Г. Менделя считают основоположником генетики?

Ответ. Г. Менделю принадлежит открытие явлений дискретной наследственности и ее законов. Это открытие заложило основы генетики — науки о наследственности и изменчивости организмов. Установление принципа дискретной наследственности и ее законов наложило печать на все развитие биологии XX в.

Г. Мендель внес в генетику количественный метод и принципы теории вероятности. Он показал, что биологические законы общего значения допускают функциональные выражения, они могут быть выражены математически. Язык алгебры, который раскрыл перед Менделем законы расщепления в их обобщенной форме, явился первым шагом в современном математическом анализе проблем наследственности.

Функциональное выражение законов расщепления позволило использовать их для предсказаний хода расщепления, которые оправдываются с поразительной точностью. Мендель в своей работе сам сделал несколько таких предсказаний, часть из них была получена им самим, а часть была доказана уже в XX в.

Исходя из поведения гибридов при их скрещивании, Мендель предсказал, что их зародышевые клетки получат в половине случаев один ген и в другой половине — другой ген из пары аллелей. Его эксперимент с обратным скрещиванием точно доказал правоту предсказания. Затем в XX в. изучение мейоза раскрыло, что этому явлению есть причинное объяснение на основе поведения гомологов в паре хромосом. Г. Мендель показал, что число генотипов при сложном расщеплении во втором поколении составляет 3n. Это предсказание было положено в основу громадного количества опытов в XX в., и какой бы сложности случай ни был изучен, предсказание оправдывалось с поразительной точностью. Эта реализация предсказаний была следствием всеобщности принципов, открытых Менделем на горохе. Эта общность вытекает из единства поведения хромосом при образовании половых клеток и из осуществления всех вероятностей встреч разных классов гамет друг с другом, которые всегда имеют место при наличии достаточно большого числа случаев.

Т. Мендель обосновал идею о наследственных факторах и разработал для них знаковую модель на базе использования идей математической статистики. В результате центральный пункт современной молекулярной генетики — проблема гена берет свои прямые истоки из открытия Менделя. Мендель строит весь свой анализ на базе введенного им метода генетического анализа. Он кропотливо во всех опытах изучает, в какой мере генотип каждого класса растений отвечает гипотезе. Апогей этого метода достигается в экспериментах по скрещиванию гибридов с рецессивным гомозиготом (анализатором), когда Мендель в прямом опыте раскрывает наследственные структуры гамет гибридов. Таким образом, основа основ генетики, ее генетический метод, который раскрыл законы наследования, позволил, сочетаясь с цитологией, войти в глубины генетического строения хромосом, а затем, войдя в комплекс с физикой, химией и математикой, создал современное учение о записи генетической информации и, наконец, раскрыл тайну строения гена. Все это находит свои прямые истоки в работе Г. Менделя. Мендель доказал важнейшее положение, что оплодотворение у растений базируется на слиянии одной яйцеклетки с одним спермием. Мендель на примере группы самоопыляющихся растений впервые провел исследования по генетике популяций.

Все это создало работе Г. Менделя положение исходного пункта в теоретическом анализе явлений наследственности.

В наши дни генетика составляет сердцевину всей биологии. Исследования в биологии, посвященные сущности жизни, имеют громадное значение для сельского хозяйства и медицины. Так же как в центре атомной науки стоит изучение глубин атома, его строения из элементарных частиц и сил, обеспечивающих их взаимодействие, так в центре современной генетики стоит изучение глубин гена, его химических и физических свойств как биологической единицы наследственности. Мендель обосновал алгебру биологии, обозначив отдельные гены буквами. В его знаковой системе это были буквы A, В, С и др.

Аббат Грегор Мендель

Чтобы разобраться в этом, проследим ход его экспериментов.

Явление наследственности (передачи признаков от родителей потомкам) известно с незапамятных времен. Ни для кого не секрет, что дети похожи на родителей. Знал это и Грегор Мендель. А если дети не похожи на родителей? Ведь известны случаи рождения голубоглазого ребенка от кареглазых родителей! Велик соблазн объяснить это супружеской неверностью, но, например, опыты с искусственным опылением растений показывают, что потомки первого поколения могут быть непохожи ни на одного из родителей. А тут уж точно все честно. Следовательно, признаки потомков не являются просто суммой признаков их родителей. Что же получается? Дети могут быть какими угодно? Тоже нет. Так существует ли вообще какая-нибудь закономерность в наследовании? И можем ли мы предсказать совокупность признаков (фенотип) потомков, зная фенотипы родителей?

Подобные рассуждения и привели Менделя к постановке проблемы исследований. А если поставлена проблема, можно перейти к ее решению. Только как? Каков должен быть метод? Придумать метод – вот с этим Мендель блистательно справился.

Сад, где Мендель проводил свои опыты

Сад, где Мендель проводил свои опыты

Естественное желание ученого при исследовании какого-либо явления – обнаружить закономерность. Мендель решил пронаблюдать интересующее его явление – наследственность – у гороха.

Надо сказать, что горох был выбран Менделем не случайно. Вид Pisum sativum L. очень удобен для изучения наследственности. Во-первых, его легко выращивать и весь жизненный цикл проходит быстро. Во-вторых, он склонен к самоопылению, а без самоопыления, как увидим далее, опыты Менделя были бы невозможны.

Но на что, собственно, нужно обращать внимание при наблюдениях, чтобы выявить закономерность и не заблудиться в хаосе данных?

В первую очередь, признак, наследование которого наблюдается, должен четко различаться визуально. Проще всего взять признак, который проявляется в двух вариантах. Мендель выбрал окраску семядолей. Семядоли у семян гороха могут быть либо зеленые, либо желтые. Такие проявления признака хорошо различимы и четко делят все семена на две группы.

Опыты Менделя: а – желтые и зеленые семена гороха; б – гладкие и морщинистые семена гороха

Опыты Менделя: а – желтые и зеленые семена гороха; б – гладкие и морщинистые семена гороха

Кроме того, нужно быть уверенным, что наблюдаемая картина наследования является следствием скрещивания растений с разными проявлениями выбранного признака, а не вызвана какими-то другими обстоятельствами (откуда, строго говоря, он мог знать, что цвет семядолей не зависит, например, от температуры, при которой горох рос?). Как этого добиться?

Мендель вырастил две линии гороха, в одной из которых появлялись только зеленые семена, а в другой – только желтые. Причем на протяжении многих поколений в этих линиях картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) говорят, что использована чистая линия.

Растения гороха, на которых ставил опыты Г.Мендель

Растения гороха, на которых ставил опыты Г.Мендель

Всех факторов, влияющих на наследственность, Мендель не знал, поэтому сделал нестандартный логический ход. Он изучил, какие результаты дает скрещивание между собой растений с семядолями одного цвета (в данном случае потомки – точная копия родителей). После этого он провел скрещивание растений с семядолями разных цветов (у одного – зеленые, у другого – желтые), но в тех же условиях. Это дало ему основания утверждать, что различия, которые проявятся в картине наследования, вызваны различными фенотипами родителей при этих двух скрещиваниях, а не каким-либо другим фактором.

Вот какие результаты получил Мендель.

Микроскоп, с которым работал Г.Мендель

У потомков первого поколения от скрещивания растений с желтыми и зелеными семядолями наблюдалось только одно из двух альтернативных проявлений признака – все семена получились с зелеными семядолями. Такое проявление признака, когда наблюдается преимущественно один из вариантов, Мендель назвал доминантным (альтернативное проявление, соответственно, рецессивным), а результат этот получил название закона единообразия гибридов первого поколения, или первого закона Менделя.

Микроскоп, с которым работал Г.Мендель

Во втором поколении, полученном с помощью самоопыления, появились семена как с зелеными, так и с желтыми семядолями, причем в соотношении 3:1.
Это соотношение носит название закона расщепления, или второго закона Менделя.
Но эксперимент не кончается получением результатов. Существует еще такой важный этап, как их интерпретация, т. е. осмысление полученных результатов с точки зрения уже накопленных знаний.

Что же знал о механизмах наследования Мендель? Да ничего. Во времена Менделя (середина XIX в.) еще не знали никаких генов и хромосом. Даже идея о клеточном строении всего живого не была еще общепризнанной. Например, многие ученые (в том числе и Дарвин) считали, что наследуемые проявления признаков составляют непрерывный ряд. Это значит, например, что при скрещивании красного мака с желтым потомство должно быть оранжевым.

Мендель в принципе не мог знать биологической природы наследования. Что же дали его опыты? На качественном уровне получается, что потомки действительно бывают какие угодно и никакой закономерности нет. А на количественном? И о чем в данном случае может вообще говорить количественная оценка результатов опыта?

К счастью для науки, Грегор Мендель был не просто любознательным чешским монахом. В юности его очень интересовала физика, он получил хорошее физическое образование. Мендель изучал также и математику, в том числе и начала теории вероятностей, разработанной Блезом Паскалем в середине XVII в. (При чем тут теория вероятностей станет ясно ниже.)

Мемориальная бронзовая доска, посвященная Г.Менделю, открытая в г. Брно в 1910 г.

Мемориальная бронзовая доска, посвященная Г.Менделю, открытая в г. Брно в 1910 г.

Как же интерпретировал свои результаты Мендель? Он вполне логично предположил, что существует некая реальная субстанция (он назвал ее наследственным фактором), определяющая цвет семядолей. Допустим, наличие наследственного фактора А определяет зеленый цвет семядолей, а наличие наследственного фактора а – желтый. Тогда, естественно, растения с зелеными семядолями содержат и передают по наследству фактор А, а с желтыми – фактор а. Но почему же тогда среди потомков растений с зелеными семядолями встречаются растения с желтыми семядолями?
Мендель предположил, что каждое растение несет по паре наследственных факторов, отвечающих за данный признак. Причем при наличии фактора А фактор а уже не проявляется (зеленая окраска доминирует над желтой).
Надо сказать, что после замечательных работ Карла Линнея* европейские ученые достаточно хорошо представляли процесс полового размножения у растений. В частности, было понятно, что в дочерний организм переходит что-то от матери, а что-то от отца. Не понятно было только, что и как.
Мендель предположил, что при размножении наследственные факторы материнского и отцовского организмов комбинируются между собой как попало, но таким образом, что в дочерний организм попадает один фактор от отца, а другой от матери. Это, прямо скажем, довольно смелое предположение, и любой скептически настроенный ученый (а ученый обязан быть скептиком), поинтересуется почему, собственно, Мендель построил на этом свою теорию.
Здесь и выходит на авансцену теория вероятностей. Если наследственные факторы комбинируются между собой как попало, т.е. независимо, то одинакова вероятность попадания в дочерний организм каждого фактора от матери или от отца?
Соответственно, по теореме умножения, вероятность формирования в дочернем организме конкретной комбинации факторов равна: 1/2 х1/2 = 1/4.
Очевидно, возможны комбинации АА, Аа, аА, аа. С какой же частотой они проявляются? Это зависит от того, в каком соотношении факторы А и а представлены у родителей. Рассмотрим с этих позиций ход опыта.
Сначала Мендель взял две линии гороха. В одной из них желтые семядоли не появлялись ни при каких обстоятельствах. Значит фактор а в ней отсутствовал, и все растения несли комбинацию АА (в случаях, когда организм несет два одинаковых аллеля, он называется гомозиготным). Точно так же все растения второй линии несли комбинацию аа.
Что же происходит при скрещивании? От одного из родителей с вероятностью 1 приходит фактор А, а от другого с вероятностью 1 – фактор а. Далее они с вероятностью 1х1=1 дают комбинацию Аа (организм, несущий разные аллели одного гена, называется гетерозиготным). Это отлично объясняет закон единообразия гибридов первого поколения. Все они имеют зеленые семядоли.
При самоопылении от каждого из родителей первого поколения с вероятностью 1/2 (предположительно) приходит либо фактор А, либо фактор а. Это означает, что все комбинации будут равновероятны. Какова же должна быть в данном случае доля потомков с желтыми семядолями? Очевидно, одна четверть. Но это и есть результат опыта Менделя: расщепление по фенотипу 3:1! Следовательно, предположение о равновероятных исходах при самоопылении было верным!
Теория, предложенная Менделем для объяснения явлений наследственности, базируется на строгих математических выкладках и носит фундаментальный характер. Можно даже сказать, что по степени строгости законы Менделя больше похожи на законы математики, чем биологии. Долгое время (да и до сих пор) развитие генетики состояло в проверке приложимости этих законов к тому или иному конкретному случаю.

Герб рода Г.Менделя

Герб рода Г.Менделя

Задачи

1. У тыквы белая окраска плодов доминирует над желтой.

А. Родительские растения гомозиготны и имели белые и желтые плоды. Какие плоды получатся от скрещивания гибрида первого поколения с его белым родителем? А с желтым родителем?
Б. При скрещивании белой тыквы с желтой получено потомство, половина которого имеет белые плоды, а половина – желтые. Каковы генотипы родителей?
В. Можно ли получить желтые плоды при скрещивании белой тыквы и ее белого потомка из предыдущего вопроса?
Г. Скрещивание белой и желтой тыкв дало только белые плоды. Какое потомство дадут две такие белые тыквы при скрещивании между собой?

2. Черные самки двух разных групп мышей были скрещены с коричневыми самцами. От первой группы было получено 50% черных и 50% коричневых мышат. От второй группы получено 100% черных мышат. Объясните результаты опытов.

3 закона Менделя или менделевская генетика являются наиболее важными утверждениями о биологическом наследовании. Грегорио Мендель, монах и австрийский натуралист, считается отцом генетики. В ходе своих экспериментов с растениями Мендель обнаружил, что определенные черты наследуются по определенным закономерностям..

Мендель изучал наследование, экспериментируя с горохом от растения этого вида. Pisum Sativum он был в своем саду. Это растение было отличной тестовой моделью, потому что оно могло самоопыляться или перекрестно оплодотворяться, в дополнение к наличию нескольких признаков, которые имеют только две формы.


  • 1 История Грегора Менделя
  • 2 эксперимента Менделя
    • 2.1 Результаты экспериментов
    • 2.2 Как проводились эксперименты Менделя?
    • 2.3 Почему Мендель выбрал растения гороха?
    • 3.1 Первый закон Менделя
    • 3.2 Второй закон Менделя
    • 3.3 Третий закон Менделя
    • 4.1 Доминирующая
    • 4.2 Рецессивный
    • 4.3 Гибрид
    • 8.1 Наследие, связанное с полом

    История Грегора Менделя

    Грегор Мендель считается отцом генетики, поскольку он оставил свои три закона. Он родился 22 июля 1822 года, и, как говорят, с самого раннего возраста он находился в непосредственном контакте с природой, и это вызвало у него интерес к ботанике..

    В 1843 году он вошел в монастырь Брюнн, а через три года был рукоположен в священники. Позже, в 1851 году он решил изучать ботанику, физику, химию и историю в Венском университете..

    После обучения Мендель вернулся в монастырь, и именно там он провел эксперименты, которые позволили ему сформулировать так называемые законы Менделя..

    К сожалению, когда он представил свою работу, она осталась незамеченной, и говорят, что Мендель отказался от экспериментов по наследству.

    Тем не менее, в начале двадцатого века его работы начали получать признание, когда несколько ученых и ботаников провели аналогичные эксперименты и нашли свои исследования.

    Эксперименты Менделя

    Мендель изучил семь характеристик растения гороха: цвет семени, форму семени, положение цветка, цвет цветка, форму стручка, цвет стручка и длину стебля..


    Для экспериментов Менделя было три основных шага:

    1-путем самооплодотворения производится поколение чистых растений (гомозигот). То есть растения с фиолетовыми цветами всегда производили семена, которые производили фиолетовые цветы. Он назвал эти растения поколением P (родителей).

    2-Затем он скрестил пары чистых растений с разными чертами, и потомки их он назвал сыновьями второго поколения (F1)..

    3-Наконец, он получил третье поколение растений (F2) путем самоопыления двух растений поколения F1, то есть скрещивания двух растений поколения F1 с одинаковыми признаками.

    Результаты экспериментов

    Мендель нашел невероятные результаты своих экспериментов.

    Поколение F1

    Мендель обнаружил, что поколение F1 всегда производило одну и ту же черту, хотя у обоих родителей были разные характеристики. Например, если вы пересекли растение с фиолетовыми цветами с растением с белыми цветами, все растения-потомки (F1) имели фиолетовые цветы..

    Это потому, что фиолетовый цветок является чертой доминирующий. Поэтому белый цветок - это черта рецессивный.


    Поколение F2

    В поколении F2 Мендель обнаружил, что 75% цветов были фиолетовыми и 25% были белыми. Ему показалось интересным, что хотя у обоих родителей были фиолетовые цветы, у 25% потомства были белые цветы.

    Появление белых цветов связано с геном или рецессивным признаком, присутствующим у обоих родителей. Вот диаграмма Punnett, показывающая, что у 25% потомков было два гена "b", которые произвели белые цветы:


    Как проводились эксперименты Менделя?

    Эксперименты Менделя были проведены с растениями гороха, довольно сложная ситуация, так как каждый цветок имеет мужскую часть и женскую часть, то есть самоопыляющуюся..

    Так как же Мендель мог контролировать потомство растений? Как я мог их пересечь?.

    Ответ прост: чтобы иметь возможность контролировать потомство растений гороха, Мендель создал процедуру, которая позволила ему предотвратить самооплодотворение растений..

    Процедура состояла в том, чтобы срезать тычинки (мужские органы цветов, которые содержат пыльцевые мешочки, то есть те, которые производят пыльцу) из цветов первого растения (называемого ВВ) и посыпать пыльцу из второго растения в пестик (женский орган цветов, который находится в его центре) первого.

    Этим действием Мендель контролировал процесс оплодотворения, ситуацию, которая позволяла ему проводить каждый эксперимент снова и снова, чтобы всегда получать одно и то же потомство..

    Вот как он достиг формулировки того, что сейчас известно как законы Менделя..

    Почему Мендель выбрал горох?

    Грегор Мендель выбрал растения гороха для проведения своих генетических экспериментов, потому что они были дешевле, чем любое другое растение, и потому что время их образования очень короткое и имеет большое количество потомства.

    Потомки были важны, так как было необходимо провести много экспериментов, чтобы сформулировать свои законы..

    Он также выбрал их из-за большого разнообразия, которое существовало, среди прочего, зеленого горошка, желтого горошка, круглых стручков..

    Разнообразие было важно, потому что было необходимо знать, какие признаки могут быть унаследованы. Вот где возникает термин менделевского наследства.

    3 закона Менделя суммированы

    Первый закон Менделя


    Первый закон Менделя или закон единообразия гласит, что при скрещивании двух чистых индивидуумов (гомозигот) все потомки будут равны (однородны) по своим признакам.

    Это связано с преобладанием некоторых персонажей, их простой копии достаточно, чтобы замаскировать эффект рецессивного персонажа. Следовательно, как гомозиготные, так и гетерозиготные потомки будут иметь одинаковый фенотип (видимый признак)..


    Второй закон Менделя

    Второй закон Менделя, также называемый законом сегрегации персонажей, гласит, что при образовании гамет аллели (наследственные факторы) разделяются (сегрегируются) таким образом, что потомство получает аллель от каждого родственника..


    Третий закон Менделя

    Третий закон Менделя также известен как закон независимого разделения. При формировании гамет персонажи разных черт наследуются независимо друг от друга..

    В настоящее время известно, что этот закон не распространяется на гены на одной хромосоме, которые будут наследоваться вместе. Тем не менее, хромосомы отделяются независимо во время мейоза.


    Термины, введенные Менделем

    Мендель придумал несколько терминов, которые в настоящее время используются в области генетики, в том числе: доминантный, рецессивный, гибридный.

    доминирующий

    Когда Мендель использовал доминирующее слово в своих экспериментах, он имел в виду характер, который внешне проявлялся в человеке, был ли он только один или два из них.

    рецессивный

    Под рецессивным Мендель подразумевал, что это характер, который не проявляется вне индивидуума, потому что доминирующий характер препятствует этому. Поэтому, чтобы это преобладало, человеку необходимо будет иметь два рецессивных символа.

    гибрид

    Точно так же именно он установил использование заглавной буквы для доминантных аллелей и строчных букв для рецессивных аллелей..

    Впоследствии другие исследователи завершили свою работу и использовали остальные термины, которые используются сегодня: ген, аллель, фенотип, гомозигот, гетерозигот.

    Менделевское наследство применительно к людям

    Черты человеческих существ могут быть объяснены через менделевское наследство, пока семейная история известна.

    Необходимо знать семейную историю, так как с их помощью вы можете собрать необходимую информацию о той или иной особенности.

    Для этого создается генеалогическое древо, в котором описывается каждая из черт членов семьи, и, таким образом, можно определить, от кого они унаследованы..

    Пример наследования у кошек


    В этом примере цвет шерсти обозначается буквой B (коричневый, доминантный) или b (белый), а длина хвоста - S (короткий, доминантный) или s (длинный)..

    Когда родители гомозиготны по каждому признаку (SSbb и ssBB), их дети в поколении F1 гетерозиготны по обоим аллелям и показывают только доминантные фенотипы (SsbB).

    Если потомки спариваются друг с другом, в поколении F2 создаются все комбинации цвета меха и длины хвоста: 9 - коричневые / короткие (фиолетовые прямоугольники), 3 - белые / короткие (розовые прямоугольники), 3 - коричневый / длинный (синие прямоугольники) и 1 белый / длинный (зеленое поле).

    4 примера менделевских черт

    -альбинизмэто наследственная особенность, которая заключается в изменении выработки меланина (пигмента, которым обладают люди и который отвечает за цвет кожи, волос и глаз), поэтому во многих случаях наблюдается отсутствие Всего этого. Эта черта рецессивна.

    -Мочки свободного уха: это доминирующая особенность.

    -Мочки ушей соединены: это рецессивная черта.

    -Волосы или клюв вдовы: эта особенность относится к тому, как кончик волоса заканчивается на лбу. В этом случае это закончится вершиной в центре. Те, кто представляет эту функцию, имеют форму буквы "w" вверх ногами. Это доминирующая особенность.

    Факторы, которые меняют менделевскую сегрегацию

    Наследственность, связанная с сексом

    Наследование, связанное с полом, относится к тому, что связано с парой половых хромосом, то есть тех, которые определяют пол индивида..

    У людей есть Х-хромосомы и Y-хромосомы. У женщин есть ХХ-хромосомы, а у мужчин - Х-Y..

    Некоторые примеры наследования, связанного с полом:

    -Дальтонизм: это генетическое изменение, которое делает цвета не различимыми. Обычно вы не можете различить красный и зеленый, но это будет зависеть от степени дальтонизма, который человек представляет.

    Дальтонизм передается рецессивным аллелем, связанным с Х-хромосомой, поэтому, если мужчина наследует Х-хромосому, которая представляет этот рецессивный аллель, он будет дальтоником.

    В то время как для женщин, чтобы иметь это генетическое изменение, необходимо, чтобы они имели две измененные Х-хромосомы. Именно поэтому число женщин с дальтонизмом ниже, чем у мужчин.

    -гемофилия: это наследственное заболевание, которое, как и дальтонизм, связано с хромосомой X. Гемофилия - это заболевание, вызывающее неправильную свертываемость крови людей..

    По этой причине, если человек, страдающий гемофилией, порезан, его кровотечение будет длиться намного дольше, чем у другого человека, у которого его нет. Это происходит потому, что у вас недостаточно белка в крови, чтобы контролировать кровотечение.

    -Мышечная дистрофия Дюшенна: это рецессивное наследственное заболевание, которое связано с хромосомой X. Это нервно-мышечное заболевание, для которого характерно наличие значительной мышечной слабости, которая развивается в генерализованном и прогрессирующем виде.

    -гипертрихозЭто наследственное заболевание, присутствующее в Y-хромосоме, которое передается только от отца к ребенку мужского пола. Этот тип наследования называется голодендическим.

    Гипертрихоз - это рост лишних волос, так что у того, кто страдает, есть части тела, которые являются чрезмерно волосатыми. Это заболевание также называют синдромом оборотня, так как многие из тех, кто страдает, почти полностью покрыты волосками..

    Читайте также: