При скрещивании двух сортов гороха различающихся по трем признакам

Обновлено: 18.09.2024

Развитие признака может определяться не одной, а двумя или более парами неаллельных генов, располагающимися в разных хромосомах. Если хотя бы одна пара находится в гомозиготном рецессивном состоянии, то признак не развивается или отличен от доминантного.

С биохимической точки зрения зачастую это может быть связано с тем, что развитие признаков обычно представляет собой многостадийный процесс, каждый этап которого контролируется отдельным ферментом (информация о ферменте находится в определенном гене). Если хотя бы один ген находится в рецессивном состоянии, то синтезируется измененный фермент, реакция не идет, и конечный продукт не образуется:

ген A B C D
фермент E1 E2 E3 E4
реакции S1 S2 S3 S4 P (признак)

Расщепление при скрещивании дигетерозигот при комплементарном наследовании обычно бывает в пропорции 9:7, 9:3:4, или 9:3:3:1, 9:6:1 (часть особей с минимальным выражением признака 7/16, 4/16 и 1/16).

У душистого горошка окраска цветов проявляется только при наличии двух доминантных генов А и В . Если в генотипе имеется только один доминантный ген, то окраска не развивается. Какое потомство F1 и F2 получится от скрещивания растений с генотипами ААbb и ааВВ ?

    Генотип исходных растений известен по условию задачи. Они гомозиготны и будут давать один тип гамет, которые можно объединить единственным образом. Потомство F1 будет единообразно по генотипу ( АаВb ) и фенотипу (розовые цветы):

Схема скрещивания

В F1 все потомство будет единообразным и будет иметь розовую окраску цветов. В F2 9/16 растений будут иметь розовые, а 7/16 – белые цветы.

Окраска цветов душистого горошка в красный цвет обусловлена двумя парами генов. Если хотя бы одна пара находится в рецессивном состоянии, то окраска не развивается. Одновременное присутствие в генотипе обоих доминантных генов вызывает развитие окраски. Каков генотип растений с белыми цветами, если при их скрещивании друг с другом все растения получились красного цвета?

  1. Поскольку потомство F1 имело окрашенные цветки, то в его генотипе присутствуют оба доминантных гена А и В .
  2. Все потомство единообразно, следовательно, скрещивались гомозиготные особи.
  3. Родители имели неокрашенные цветки, значит, они не могут нести оба доминантных гена.
  4. Генотип родителей не может быть одинаковым (иначе потомство было бы таким же, то есть имело бы неокрашенные цветки).
  5. Этим условиям удовлетворяет только тот вариант, когда у одного родителя генотип ААbb , а у другого – ааВВ .

Схема скрещивания

Р ♀ АAbb
белый
× ♂ aаBB
белый
гаметы Ab aB aB
F1 AaBb
красный
100%

При скрещивании двух растений тыквы со сферической формой плодов получено потомство, имеющее только дисковидные плоды. При скрещивании этих гибридов между собой были получены растения с тремя типами плодов:

  • 9 частей – с дисковидными плодами,
  • 6 частей – со сферической формой плодов,
  • 1 часть – с удлиненными плодами.

Какая закономерность наблюдается в данном случае? Каковы генотипы родителей и потомства?

  1. Потомство F1 отличалось от родителей и было единообразным, следовательно, оно является гетерозиготным, а исходные особи были гомозиготными.
  2. Исходные особи должны отличаться по генотипу друг от друга, так как при одинаковом генотипе их потомство не отличалось бы от них. Это указывает на то, что в данном случае имеет место комплементарное взаимодействие генов. Генотип родительских особей – ААbb и ааВВ , а потомства F1 – АаВb (см. решение задачи 5-2).
  3. Таким образом, форма плодов определяется двумя парами генов. Если обе пары находятся в доминантном состоянии (генотипы ААВВ , АаВb , ААВb или АаВВ ), то форма плодов дисковидная. Если в доминантном состоянии находится только одна пара генов (генотипы ААbb , Ааbb , ааВВ или ааВb ), – форма плодов сферическая.
  4. Расщепление в потомстве F2 (9:6:1) отличается от расщепления 9:7, обычно наблюдаемого при комплементарном взаимодействии. 1/16 часть растений имела плоды удлиненной формы. Это может быть только в том случае, если генотип таких особей – ааbb , то есть оба гена находятся в рецессивном состоянии.
  5. Анализ решетки Пеннета подтверждает полученные результаты.

Среди ферментов, участвующих в образовании хлорофилла у ячменя, имеется два фермента, отсутствие которых приводит к нарушению синтеза этого пигмента. Если нет одного из них, то растение становится белым, если нет другого – желтым. При отсутствии обоих ферментов растение также белое. Синтез каждого фермента контролируется доминантным геном. Гены находятся в разных хромосомах. Какое потомство следует ожидать при самоопылении гетерозиготного по обоим генам ячменя?

У кукурузы нормальный рост определяется двумя доминантными неаллельными генами. Гомозиготность по рецессивным аллелям даже одной пары генов приводит к возникновению карликовых форм. При скрещивании двух карликовых растений кукурузы выросли гибриды нормальной высоты, а при скрещивании этих гибридов в их потомстве было получено 812 нормальных и 640 карликовых растений. Определить генотипы родителей и потомков.

У норки известно два рецессивных гена – р и i , гомозиготность по каждому из которых, или по обоим одновременно, обуславливает платиновую окраску меха. Дикая коричневая окраска получается при наличии обоих доминантных аллелей Р и I . При каком типе скрещивания двух платиновых норок все их потомство будет коричневым?

При скрещивании двух карликовых растений кукурузы получено потомство нормальной высоты. В F2 от скрещивания потомства первого поколения было 452 растения нормальной высоты и 352 – карликовых. Предложите гипотезу, объясняющую эти результаты.

В двух цветоводческих хозяйствах, не связанных друг с другом, длительное время разводили чистые линии душистого горошка с белыми цветами. Какое потомство можно ожидать от скрещивания этих двух чистых линий?

Окраска шерсти у кроликов определяется двумя парами генов, расположенных в разных хромосомах. При наличии доминантного гена С доминантный ген А другой пары обуславливает серую окраску шерсти, рецессивный ген а – черную окраску. В отсутствии гена С окраска будет белая. Крольчата какого цвета получатся от скрещивания серых дигетерозиготных кроликов?

Окраска бобов может быть пурпурной, желтой и белой. Под действием гена А неокрашенное соединение переводится в пурпурный пигмент. Ген В вызывает превращение пурпурного вещества в желтое. Какое потомство получится от скрещивания растений с генотипами АаВb и ааВВ ?

Для получения окрашенных луковиц необходимо наличие у растений лука доминантного гена С . При гомозиготности по рецессивному аллелю с получаются бесцветные луковицы. При наличии доминантного гена С вторая пара аллелей определяет цвет луковицы – красный ( R ) или желтый ( r ). Краснолуковичное растение было скрещено с белолуковичным. В потомстве были растения с красными, желтыми и бесцветными луковицами. Определить генотипы скрещиваемых растений. Какое расщепление по фенотипу произошло в потомстве? Какое расщепление было бы в потомстве, если бы обе исходные особи были красного цвета?

У лука ген R определяет красную окраску чешуй, а ген r – желтую. Любая окраска проявляется только при наличии в генотипе доминантного гена С , при его отсутствии чешуи имеют белую окраску. Определить генотипы исходных форм луковиц с белыми и красными чешуями, если все гибридные луковицы имели красную окраску чешуй.

От скрещивания белых и серых мышей в потомстве F1 все особи были черными, а в F2 было 77 черных, 37 серых и 45 белых мышей. Как наследуется окраска у этих мышей? Определить генотипы родителей и потомков.

Собаки породы кокер-спаниель при генотипе А*В* имеют черную масть, при генотипе А*bb – рыжую, при генотипе ааВ* – коричневую, а при генотипе ааbb – светло-желтую. При скрещивании черного кокер-спаниеля со светло-желтым родился светло-желтый щенок. Какое соотношение по масти следует ожидать от спаривания того же черного спаниеля с собакой одинакового с ним генотипа?

При моногибридном скрещивании изучается
- один признак;
- один ген;
- одна пара альтернативных генов;
- одна пара альтернативных признаков (все это одно и то же).

Моногибридные расщепления

1) Расщепления нет (все дети одинаковые) – скрещивали двух гомозигот АА х аа (первый закон Менделя).

2) Расщепление 3:1 (75% / 25%) – скрещивали двух гетерозигот Аа х Аа (второй закон Менделя).

3) Расщепление 1:2:1 (25% / 50% / 25%) – скрещивали двух гетерозигот Аа х Аа при неполном доминировании.

4) Расщепление 1:1 (50% / 50%) – скрещивали гетерозиготу и рецессивную гомозиготу Аа х аа (анализирующее скрещивание).

Первый закон Менделя
(закон единообразия, закон доминирования)

При скрещивании чистых линий (гомозигот) все потомство получается одинаковое (единообразие первого поколения, расщепления нет).

У всех потомков первого поколения (F1) проявляется доминантный признак (желтый горох), а рецессивный признак (зеленый горох) находится в скрытом состоянии.

Второй закон Менделя (закон расщепления)

При самоопылении гибридов первого поколения (при скрещивании двух гетерозигот) в потомстве получается расщепление 3:1 (75% доминантного признака, 25% рецессивного признака).

Анализирующее скрещивание

При скрещивании гетерозиготы Aa с рецессивной гомозиготой aa получается расщепление 1:1 (50% / 50%).

Еще можно почитать

Задания части 1

Выберите один, наиболее правильный вариант. Определите генотип родительских растений гороха, если при их скрещивании образовалось 50% растений с желтыми и 50% - с зелеными семенами (рецессивный признак)
1) АА х аа
2) Аа х Аа
3) АА х Аа
4) Аа х аа

Выберите один, наиболее правильный вариант. При скрещивании мух дрозофил с длинными и короткими крыльями получено равное число длиннокрылых и короткокрылых потомков (длинные крылья В доминируют над короткими b). Каковы генотипы родителей
1) bb х Bb
2) BB x bb
3) Bb x Bb
4) BB x BB

Выберите один, наиболее правильный вариант. Каков генотип родителей, если при анализирующем скрещивании наблюдалось соотношение фенотипов 1:1?
1) Аа и аа
2) Аа и Аа
3) АА и аа
4) Аа и АА

Выберите один, наиболее правильный вариант. От гибридов первого поколения во втором поколении рождается 1/4 особей с рецессивными признаками, что свидетельствует о проявлении закона
1) сцепленного наследования
2) расщепления
3) независимого наследования
4) промежуточного наследования

Выберите один, наиболее правильный вариант. Какое число фенотипов образуется в потомстве при скрещивании Aa x Aa в случае полного доминирования?
1) 1
2) 2
3) 3
4) 4

Выберите один, наиболее правильный вариант. По закону расщепления соотношение фенотипов в F2 (при полном доминировании) равно
1) 1:1
2) 3:1
3) 1:2:1
4) 1:1:1:1

Выберите один, наиболее правильный вариант. Определите, какие генотипы могут иметь дети, если у гетерозиготной матери волнистые волосы, а у отца прямые (полное доминирование признака).
1) BB, Bb, bb
2) Bb, bb
3) BB, Bb
4) BB, bb

Выберите один, наиболее правильный вариант. При самоопылении гетерозиготного растения гороха с желтой окраской семян расщепление по фенотипу составит
1) 1:1
2) 3:1
3) 1:2:1
4) 9:3:3:1

Выберите один, наиболее правильный вариант. При моногибридном скрещивании гетерозиготной особи с гомозиготной рецессивной в их потомстве происходит расщепление признаков по фенотипу в соотношении
1) 3:1
2) 9:3:3:1
3) 1:1
4) 1:2:1

Выберите один, наиболее правильный вариант. Если при скрещивании двух гомозиготных организмов во втором поколении у 1/4 потомства обнаружится рецессивный признак, значит проявился закон
1) сцепленного наследования
2) независимого наследования
3) промежуточного характера наследования
4) расщепления признаков

Выберите один, наиболее правильный вариант. Расщепление по фенотипу во втором поколении в отношении 3:1 характерно для скрещивания
1) дигибридного
2) анализирующего
3) моногибридного
4) полигибридного

АА х аа: ВЕРОЯТНОСТЬ ГФ, СООТНОШЕНИЕ ГФ, КОЛИЧЕСТВО ГФ
КОЛИЧЕСТВО ГЕНОТИПОВ АА х аа
Сколько генотипов получится в анализирующем скрещивании гомозиготного по доминантному признаку организма? Ответ запишите в виде числа.

Аа х Аа: ВЕРОЯТНОСТЬ ГФ, СООТНОШЕНИЕ ГФ, КОЛИЧЕСТВО ГФ
ВЕРОЯТНОСТЬ ГЕНОТИПА ПРИ СКРЕЩИВАНИИ Аа х Аа
1. Определите вероятность в процентах появления рецессивной гомозиготы в потомстве от скрещивания гетерозиготных растений при полном доминировании. Ответ запишите в виде числа.

ВЕРОЯТНОСТЬ ДОМИНАНТНОГО ФЕНОТИПА ПРИ СКРЕЩИВАНИИ Аа х Аа
1. Определите вероятность (%) получения потомков с доминантным проявлением признака в моногибридном скрещивании гетерозиготных гибридов между собой при полном доминировании этого признака. Ответ запишите в виде числа.

2. Фенилкетонурия наследуется как рецессивный признак. Определите вероятность рождения здоровых детей у гетерозиготных по этому признаку родителей. Ответ запишите в %.

ВЕРОЯТНОСТЬ РЕЦЕССИВНОГО ФЕНОТИПА ПРИ СКРЕЩИВАНИИ Аа х Аа
1. Какова процентная доля карликовых форм при самоопылении гетерозиготного высокорослого растения гороха (высокий стебель – А)? В ответе запишите только число процентов.

2. Какова вероятность рождения у темноволосых родителей (Аа) детей со светлыми волосами (темный цвет доминирует над светлым)? Ответ запишите в виде только числа.

3. У кур наличие гребня (С) доминирует над его отсутствием (с). При скрещивании гетерозиготных петуха и курицы, имеющих гребни, какой процент цыплят будет без гребня? В ответе укажите только число.

4. Какова вероятность (в %) появления потомства с рецессивным признаком при самоопылении гетерозиготных растений? В ответе запишите только соответствующее число.

СООТНОШЕНИЕ ГЕНОТИПОВ Аа х Аа

1. Какое соотношение генотипов получится при скрещивании двух гетерозигот при полном доминировании? Ответ запишите в виде последовательности цифр в порядке их убывания.


2. Определите соотношение генотипов в потомстве при скрещивании Аа х Аа. В ответе запишите последовательность цифр в порядке уменьшения.

3. Определите соотношение генотипов у потомства, образовавшегося при скрещивании двух гетерозиготных растений тыквы с желтыми плодами при полном доминировании. Ответ запишите в виде последовательности цифр, расположенных в порядке уменьшения.

4. Определите соотношение по генотипу в потомстве при моногибридном скрещивании двух гетерозиготных организмов. Ответ запишите в виде последовательности цифр в порядке их убывания.

5. Какое соотношение генотипов у потомков может получиться при самоопылении растения томата, гетерозиготного по признаку формы плодов? Ответ запишите в виде последовательности чисел, показывающих соотношение получившихся генотипов, в порядке их убывания.

СООТНОШЕНИЕ ФЕНОТИПОВ Аа х Аа
1. Определите соотношение фенотипов у гибридов, полученных в результате скрещивания родительских форм с генотипами Аа х Аа. Ответ запишите в виде последовательности цифр, расположенных в порядке убывания.

2. Определите соотношение фенотипов у потомства, образовавшегося при скрещивании двух гетерозиготных растений тыквы с желтыми плодами при полном доминировании. Ответ запишите в виде последовательности цифр, показывающих соотношение фенотипов, в порядке их убывания.

3. Определите соотношение фенотипов у потомков при моногибридном скрещивании двух гетерозиготных организмов при полном доминировании. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов, в порядке их убывания.

4. Определите соотношение фенотипов у потомков при самоопылении гетерозиготы при моногибридном скрещивании и полном доминировании. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов, в порядке их убывания.

КОЛИЧЕСТВО ГЕНОТИПОВ Аа х Аа
Сколько разных генотипов может получиться у потомков при моногибридном скрещивании двух гетерозиготных черных кроликов. Ответ запишите в виде числа.

КОЛИЧЕСТВО ФЕНОТИПОВ Аа х Аа
1. Какое число фенотипов образуется в потомстве при скрещивании Aa x Aa в случае полного доминирования? В ответе укажите только число.

2. Сколько фенотипов у потомков может получиться при самоопылении растения душистого горошка, гетерозиготного по признаку окраски плодов, при полном доминировании этого признака? Ответ запишите в виде числа.

Аа х аа: ВЕРОЯТНОСТЬ ГФ, СООТНОШЕНИЕ ГФ, КОЛИЧЕСТВО ГФ
ВЕРОЯТНОСТЬ ГЕНОТИПА ПРИ СКРЕЩИВАНИИ Аа х аа
1. Какова вероятность (в %) рождения гомозиготного потомства при скрещивании гомозиготного и гетерозиготного организмов? В ответе запишите только целое число.

2. Определите вероятность (%) получения гомозиготного по рецессивному аллелю потомства в моногибридном анализирующем скрещивании гетерозиготных растений флокса с белыми цветками. Ответ запишите в виде числа.

ВЕРОЯТНОСТЬ ФЕНОТИПА ПРИ СКРЕЩИВАНИИ Аа х аа
1. С какой вероятностью у потомков может проявиться патологический ген, если скрещивается организм, гетерозиготный по данному признаку (гены не сцеплены), с организмом, имеющим рецессивный генотип по данному признаку? Ответ запишите в виде числа (в %), показывающего искомую вероятность.

2. Исследуемая особь имеет темный цвет волос и является гомозиготной по данному признаку. При проведении анализирующего скрещивания, какова вероятность рождения потомства со светлым цветом волос (А - темный цвет волос, а - светлый цвет волос)? В ответе укажите только число.

3. Какова вероятность (%) получения коричневых щенков в моногибридном анализирующем скрещивании гетерозиготной чёрной собаки при полном доминировании признака? Ответ запишите в виде числа.

4. Миоплегия (приступы паралича конечностей) передается по наследству как доминантный признак. Определите (в %) вероятность рождения детей с аномалиями в семье, где отец гетерозиготен, а мать не страдает миоплегией. В ответе запишите только соответствующее число.

СООТНОШЕНИЕ ГЕНОТИПОВ Аа х аа
1. Определите соотношение генотипов у потомков при скрещивании гетерозиготного и гомозиготного по рецессивному аллелю организмов при полном доминировании. Ответ запишите в виде последовательности цифр, расположенных в порядке убывания.

2. Определите соотношение генотипов при скрещивании гетерозиготного растения гороха с гладкими семенами и растения с морщинистыми семенами. Ответ запишите в виде цифр, показывающих соотношение получившихся генотипов, расположенных в порядке уменьшения.

3. Определите соотношение генотипов у потомков при моногибридном скрещивании гомо- и гетерозиготного организмов при полном доминировании. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся генотипов.

СООТНОШЕНИЕ ФЕНОТИПОВ Аа х аа
1. У морских свинок ген черной окраски доминирует над геном белой окраски. Определите соотношение фенотипов у потомков, полученных в результате скрещивания гетерозиготной самки и белого самца. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов.

2. Определите соотношение фенотипов у потомков при моногибридном скрещивании гетерозиготной особи с гомозиготной особью, имеющей фенотипическое проявление рецессивного признака. Ответ запишите в виде последовательности цифр, расположенных по убыванию.

КОЛИЧЕСТВО ФЕНОТИПОВ Аа х аа
1. Сколько фенотипов получится у потомства при анализирующем моногибридном скрещивании гетерозиготного организма? В ответе запишите только соответствующее число.

2. Сколько разных фенотипов получится при скрещивании черной гетерозиготной самки и белого самца кролика? В ответе запишите только соответствующее число.

3. Сколько фенотипов может получиться в потомстве у овса при моногибридном скрещивании, если скрестить рецессивное (раннеспелое) растение с гетерозиготной (позднеспелой) особью? Ответ запишите в виде числа.

4. Сколько разных фенотипов потомков образуется в анализирующем скрещивании гетерозиготного растения гороха с желтыми семенами? В ответе запишите только количество фенотипов.

СЛОЖНО
Скрестили растения чистых линий томата с округлыми и грушевидными плодами (А – округлая форма плодов). Получившихся потомков в F1 скрестили между собой. Определите соотношение потомков по фенотипу во втором (F2) поколении при полном доминировании признака. Ответ запишите в виде последовательности цифр, показывающих соотношение получившихся фенотипов, в порядке их убывания.

От скрещивания чёрных кроликов в потомстве появились семь чёрных и два белых кролика. Какая вероятность получения белых кроликов от последующих скрещиваний этих же родителей? Ответ запишите в виде числа, показывающего вероятность получения белых кроликов в последующих поколениях в %.

Определите соотношение фенотипов у гибридов второго поколения при моногибридном скрещивании (полное доминирование). В ответе запишите последовательность цифр, показывающую соотношение полученных фенотипов, в порядке убывания.

Определите вероятность (в %) рождения ребенка со II группой крови, если родители имеют IV группу крови. В ответе запишите только соответствующее число.

Определите вероятность в процентах рождения ребёнка с I группой крови у гетерозиготных родителей со II и III группами. Ответ запишите в виде числа.

Какое количество различных групп крови может быть у детей в браке гетерозиготных мужчины и женщины со второй и третьей группами крови? В ответе запишите число вариантов.

Скрещивание мышей


Рассмотрите схемы скрещиваний, представленных на рисунке, и определите соотношение фенотипов в F2. В ответе запишите последовательность цифр, показывающих соотношение получившихся фенотипов, в порядке убывания.

Аа х Аа
Приведенные ниже утверждения, кроме двух, используются для описания результатов скрещивания особей с генотипами Аа х Аа при полном доминировании. Определите эти два утверждения, выпадающие из общего списка, и запишите цифры, под которыми они указаны.
1) 75% потомков имеют в фенотипе рецессивный признак
2) соотношение фенотипов составило 3:1
3) проявляется закон расщепления признаков
4) расщепление по генотипу составило 1:2:1
5) 25% потомков имеют доминантный признак в фенотипе

Помогииитие 1. При скрещивании двух сортов гороха, различающихся по трем признакам, все растения первого поколения имели фенотип одного из родителей, а во втором наблюдались четыре фенотипа.Можно предположить,что: а) признаки определяются тремя разными генами, наследуемые независимо. б) два признака определяются одним геном в) наблюдается комплементарное взаимодействие генов г) наблюдается эпистатическое взаимодействие генов д) признаки определяются тремя генами,два из которых наследуются сцеплено 2. Периодические колебания численности(популяционные волны), наблюдаемые у хищников и фитофагов, входящих в состав одного биоценоза: а) никак не связаны друг с другом б) полностью совпадают по времени и амплитуде в) находятся в противофазе г) у хищников всегда запаздывают по отношению к фитофагам д) у хищников имеют меньшую амплитуду,чем у фитофагов


Моногибридное скрещивание. Мендель начал свои исследования закономерностей наследования с моногибридного скрещивания. Он выбрал две чистые линии растений гороха, которые отличались только по одному признаку: у одних окраска горошин была всегда жёлтая, а у других – всегда зелёная (при условии самоопыления). Если пользоваться современной терминологией, то можно сказать, что клетки растений гороха одного сорта содержат по два гена, кодирующих только жёлтую окраску, а другого сорта – по два гена, кодирующих только зелёную окраску семян. Гены, ответственные за проявление одного признака (например, формы или цвета семян), получили название аллельных генов. Если организм содержит два одинаковых аллельных гена (например, оба гена зеленого цвета семян или, наоборот, оба гена жёлтого цвета), то такие организмы называют гомозиготными. Если же аллельные гены различны (например, если один из них определяет жёлтую окраску семян, а другой – зелёную), то такие организмы называют гетерозиготными. Чистые линии образованы только гомозиготными растениями, поэтому при самоопылении они всегда воспроизводят один вариант проявления признака. В опытах Менделя, например, это был один из двух возможных цветов семян гороха – или всегда жёлтый, или всегда зелёный.

Правило единообразия гибридов первого поколения. Г. Мендель начал свои исследования со скрещивания растений гороха, исходно отличающихся только цветом горошин (жёлтым или зелёным). В первом поколении семена у всех растений оказались исключительно жёлтыми. Когда Г. Мендель повторил свои опыты по моногибридному скрещиванию, но использовал в них растения, отличающиеся друг от друга по другому признаку, по форме семян (гладкие или морщинистые), то все гибридные растения первого поколения имели гладкие семена. Проявляющиеся у гибридов признаки (желтизну или гладкость семян) Мендель назвал доминантными, а подавляемые признаки (зелёный цвет или морщинистую форму семян) – рецессивными. Доминантный признак принято обозначать прописными латинскими буквами (А, Б, С), а рецессивные – строчными (а, b, с).

На основе полученных в своих экспериментах данных Г. Мендель сформулировал правило единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.

Правило расщепления. Г. Мендель продолжил свои опыты, вырастив растения гороха из семян, полученных в первом поколении. Затем он скрестил эти растения и обнаружил, что у растений второго поколения большинство горошин, а именно 3 /4, были жёлтыми, а меньшая часть, а именно 1 /4, – зелёными. Конечно, Г. Мендель подсчитывал число жёлтых и зелёных горошин в потомстве от многих пар скрещиваемых растений гороха, чтобы добиться статистической надёжности полученного результата.

Явление, при котором скрещивание приводит к образованию части потомства с доминантным, а части – с рецессивным признаком, получило название расщепления.

Затем Г. Мендель подтвердил характер расщепления в опытах с другими признаками растений гороха и обосновал правило расщепления: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют 1 /4 часть от всего числа потомков второго поколения.


Рис. 57. Цитологические основы моногибридного скрещивания

Цитологические основы закономерностей наследования при моногибридном скрещивании. Как можно схематически представить себе закономерности наследования признаков, открытые Г. Менделем, используя современные понятия?

Символ обозначает женскую особь, символ – мужскую, X – скрещивание, Р – родительское поколение, F1 – первое поколение потомков, F2 – второе поколение потомков, А – доминантный ген, отвечающий за жёлтый цвет горошин, а – рецессивный ген, отвечающий за зелёный цвет семян гороха (рис. 57).

В результате мейоза в гаметах родительских особей будут присутствовать по одному гену, отвечающему за наследование цвета семян: в случае женской гаметы – А, в случае мужской – а. В первом поколении (F1) соматические клетки будут гетерозиготными (Аа), поэтому половина гамет гибридов первого поколения будет содержать ген А, а другая половина – а. В результате случайных комбинаций гамет во втором поколении (F2) возникнут следующие комбинации: АА, Аа, аА, аа. Растения с тремя первыми комбинациями генов будут иметь жёлтые семена, а с четвёртой – зелёные.

Аллельные гены. Гомозиготы. Гетерозиготы. Доминантные и рецессивные гены. Правило единообразия. Правило расщепления. Закон чистоты гамет.

1. Почему Г. Мендель опылял растения гороха искусственно?

2. Какие организмы называются гомозиготными по какому-либо признаку?

§ 40. Множественные аллели. Анализирующее скрещивание

1. Какое доминирование называется неполным?

2. Что такое фенотип; генотип?

Неполное доминирование. Иногда один аллельный ген не до конца подавляет действие второго. При этом возникают промежуточные признаки, и признак у гомозиготной по доминантному гену особи будет не таким, как у гетерозиготной особи. Это явление получило название неполного доминирования. Поясним его на примере.


Рис. 58. Схема наследования признака в случае неполного доминирования

При скрещивании растения ночной красавицы, имеющего пурпурные цветки (АА), с растением, имеющим белые цветки (аа), все растения – гибриды первого поколения будут иметь розовые цветки (рис. 58). При скрещивании двух особей ночной красавицы из первого поколения во втором поколении происходит расщепление, но не 3: 1 (как при полном доминировании), а в другом соотношении – 1:2:1, т. е. 1 /4 растений с белыми цветками (аа), 2 /4 – с розовыми (Аа) и 1 /4 – с пурпурными (АА) (см. рис. 58).

Явление неполного доминирования встречается часто, например при наследовании цвета шерсти крупного рогатого скота, строения перьев птиц. Встречается это явление и у человека при наследовании брахидактилии – укорочения фаланг пальцев. У здорового человека имеется два доминантных гена ВВ, и развитие скелета происходит нормально. У гетерозигот (Вb) наблюдается укорочение фаланг пальцев, а у рецессивных гомозигот (bb) проявляются множественные нарушения в развитии скелета, и такие люди погибают ещё в раннем детстве. Таким образом, ген В не полностью подавляет действие гена b, и у гетерозигот вследствие этого развивается брахидактилия.

Сверхдоминирование. Изредка при взаимодействии двух аллельных генов наблюдается явление сверхдоминирования. При сверхдоминировании доминантный признак сильнее проявляется у гетерозигот (Аа), чем у доминантных гомозигот (АА). В частности, были выведены сорта томатов с набором аллельных генов Аа, который определяет их более высокую урожайность по сравнению с особями, имеющими набор АА.

До сих пор мы рассматривали случай наследования одного признака, определяемого одним геном. Но любой организм имеет громадное количество признаков, причём это не только внешние, видимые особенности, но и признаки биохимические (строение молекул, активность ферментов, концентрация веществ в тканях, крови и т. д.), анатомические (форма и размер внутренних органов) и т. п. Любой признак, каким бы простым он ни казался, определяется множеством физиологических и биохимических процессов, каждый из которых, в свою очередь, зависит от действия ферментов.

Совокупность всех внешних и внутренних признаков и свойств организма называют фенотипом.

Совокупность всех генов организма называют генотипом.

Фенотипические признаки, определяемые теми или иными генами, в различных условиях существования проявляются по-разному.

По фенотипу не всегда можно определить, какие гены содержит данная особь. Например, у растения гороха, имеющего жёлтые семена, генотип может быть как АА, так и Аа. А вот рецессивный признак – зелёный цвет семян – проявляется только у гомозиготных растений с генотипом аа. Иными словами, всегда можно определить генотип особи с рецессивным признаком.

Анализирующее скрещивание. Для установления генотипа особей, которые не различаются по фенотипу, используют так называемое анализирующее скрещивание. При этом особь, генотип которой нужно установить, скрещивают с особью, гомозиготной по рецессивному гену (аа). Например, для того чтобы выяснить, какие из растений гороха с жёлтыми семенами имеют генотип АА, а какие – Аа, их следует скрестить с растением с зелёными семенами (аа). Если потомство будет иметь только жёлтые горошины, значит, исследуемое растение было доминантной гомозиготой (АА). Если же в потомстве наблюдается расщепление на растения с жёлтыми и зелёными горошинами в соотношении 1:1, то изучаемое растение было гетерозиготно (Аа).

Генофонд. Итак, благодаря множественному аллелизму каждый вид имеет целый набор аллельных генов, хотя каждая особь благодаря диплоидности содержит в каждой аллели только два гена. Совокупность всех вариантов всех генов, входящих в состав генотипов особей какого-либо вида, получила название генофонда вида. Можно также говорить о генофонде популяции или иной группы особей вида.

Множественный аллелизм. Кодоминирование. Неполное доминирование. Сверхдоминирование. Фенотип. Генотип. Анализирующее скрещивание. Генофонд вида.

1. Что такое множественный аллелизм?

2. Какие виды доминирования вам известны?

3. Какое практическое значение может иметь изучение видов доминирования?

4. В чём отличие двух понятий: фенотип и генотип?

5. Какой метод используется для установления генотипа особей, не различающихся по фенотипу?

6. Как наследуется брахидактилия?

§ 41. Дигибридное скрещивание. Закон независимого наследования признаков

1. Какое скрещивание называется моногибридным?

2. Сильно ли различается набор генов в клетках корня и клетках листа одной и той же особи клёна?

Дигибридное скрещивание. В природе не встречаются две абсолютно одинаковые особи какого-либо вида живых существ – все организмы отличаются друг от друга по многим признакам. Исключение могут представлять растения, развивающиеся в результате самоопыления (например, пшеница, горох, картофель и др.), а также однояйцевые близнецы животных и человека, хотя говорить об абсолютной схожести таких особей также нельзя.

Скрещивание особей, у которых учитывают отличия друг от друга по двум признакам, называется дигибридным, если по трём – то тригибридным и т. д. В общем случае скрещивание особей, отличающихся по многим признакам, называется полигибридным.

Закон независимого наследования признаков. Г. Мендель приступил к изучению результатов дигибридного скрещивания после того, как установил закономерности моногибридного скрещивания. Для этого он исследовал характер расщепления при скрещивании двух чистых линий гороха, различающихся по двум признакам: цвету семян (жёлтые или зелёные) и их форме (гладкие или морщинистые). При таком скрещивании признаки определяются различными парами генов: одна пара генов отвечает за цвет семян, другая – за их форму. При этом жёлтая окраска горошин (А) доминирует над зелёной (а), а их гладкая форма (B) – над морщинистой (b).

По закону единообразия гибридов первого поколения семена гороха в поколении F1 были жёлтыми и гладкими. Для того чтобы было легче понять, как будет проходить комбинация признаков при скрещивании двух гибридов из первого поколения, американский исследователь Реджинальд Пеннет предложил заносить результаты опыта в таблицу, которую назвали решёткой Пеннета (рис. 59). В результате слияния четырёх видов гамет, возникающих у растений из F1 (AB, Аb, аВ, аb), во втором поколении (F2) возникает 9 различных генотипов. Но эти девять генотипов проявляются в виде четырёх фенотипов: жёлтые – гладкие, жёлтые – морщинистые, зелёные – гладкие и зелёные – морщинистые, причём соотношение фенотипов будет 9:3:3:1. Если же подсчитать, каким будет соотношение между жёлтыми и зелёными горошинами, то оно будет равняться 3:1. Такое же соотношение будет и между гладкими и морщинистыми семенами. То есть выполняется правило расщепления. Отсюда следует, что при дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга. Этот факт получил название закона независимого наследования признаков. Закон справедлив в тех случаях, когда гены рассматриваемых признаков располагаются в разных негомологичных хромосомах.

Решётка Пеннета. Закон независимого наследования признаков.

1. Какое скрещивание называется дигибридным?

2. В чём сущность закона независимого наследования признаков?

3. В каком случае закон независимого наследования признаков несправедлив?

4. Сколько фенотипов гороха наблюдал Г. Мендель во втором поколении при дигибридном скрещивании гороха?


Рис. 59. Схема наследования признаков при дигибридном скрещивании

§ 42. Хромосомная теория наследственности

1. Что такое хромосомы? Какова их роль?

2. Знал ли Г. Мендель о существовании хромосом?

3. Можно ли назвать гены, определяющие цвет семян гороха, и гены, определяющие цвет венчика цветков гороха, аллельными?

В 1902 г. американец Уильям Сеттон предположил, что элементы наследственности, которые мы сегодня называем генами, могут располагаться в хромосомах. Но вместе с тем стали накапливаться сведения о том, что в некоторых случаях расщепления по правилам Менделя не происходит. Например, у душистого горошка два признака – форма пыльцы и окраска цветков – не дают независимого расщепления в потомстве в соотношении 3:1, и потомки остаются похожими на родительские особи. При последующем анализе оказалось, что гены этих двух признаков лежат в одной хромосоме.

Действительно, генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным подсчётам, у человека 30–40 тыс. генов, а видов хромосом всего 23. Все это огромное количество генов размещается в этих хромосомах.

Каковы же принципы наследования генов, расположенных на одной хромосоме? Современная хромосомная теория наследственности создана выдающимся американским генетиком Томасом Морганом (1866–1945).

Первое положение этой теории гласит: ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группы сцепления генов.

Второе положение утверждает, что аллельные гены (гены, отвечающие за один признак) расположены в строго определённых местах (локусах) гомологических хромосом.

Наконец, согласно третьему положению, гены располагаются в хромосомах линейно, т. е. друг за другом.

Основным объектом, с которым работали Морган и его ученики, была плодовая мушка дрозофила, имеющая диплоидный набор из 8 хромосом. Эксперименты показали, что гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, т. е. наследуются сцепленно. Это явление получило название закона Моргана.

Кроссинговер. Однако в тех же опытах было описано и отклонение от этого закона. Среди гибридов второго поколения обязательно было малое число особей с перекомбинацией тех признаков, гены которых лежат в одной хромосоме. Как это можно объяснить?

Для этого необходимо вспомнить ход мейоза, а именно то, что в профазу первого мейотического деления гомологичные хромосомы конъюгируют и могут обмениваться гомологичными участками. Этот процесс, как мы помним, называется кроссинговер; он очень важен для повышения разнообразия потомков. Кроссинговер также был открыт Т. Морганом и его сотрудниками, поэтому хромосомную теорию можно дополнить ещё одним, четвёртым, положением: в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т. е. может происходить кроссинговер.

Таким образом, при кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцепленно, так как часть из них заменяется на аллельные гены гомологичной хромосомы. Иными словами, сцепление генов является неполным.

Хромосомные карты. Явление кроссинговера помогло учёным установить расположение каждого гена в хромосоме, создать генетические карты хромосом. Морган и его сотрудники сделали вывод о том, что чем дальше друг от друга расположены на хромосоме два гена, тем чаще они будут расходиться в разные хромосомы в процессе кроссинговера. Если два гена А и D расположены на противоположных концах одной хромосомы (рис. 60), то они разойдутся в разные хромосомы при любом варианте кроссинговера. Но если речь идёт о двух генах Б и С, расположенных в хромосоме рядом, то они могут разойтись по разным хромосомам только в том случае, если точка перекреста окажется на одном-единственном участке между этими двумя генами. Вероятность такого события не очень велика. Таким образом, вероятность расхождения двух генов по разным хромосомам в процессе кроссинговера зависит от расстояния между ними в хромосоме. Следовательно, подсчитав частоту кроссинговера между какими-либо двумя генами одной хромосомы, отвечающими за различные признаки, можно точно определить расстояние между этими генами, а значит, и начать построение генетической карты, которая представляет собой схему взаимного расположения генов, составляющих одну хромосому.


Рис. 60. Возможные варианты кроссинговера, происходящие между гомологичными хромосомами (вероятность расхождения двух генов в различные хромосомы тем выше, чем дальше друг от друга они расположены)

Хромосомная теория наследственности. Закон Моргана. Кроссинговер. Генетические карты.

1. Что представляет собой ген?

2. В каких случаях справедливо правило независимого наследования признаков?

Читайте также: