Экологические аспекты применения азотных удобрений

Обновлено: 05.10.2024

Применение минеральных удобрений – один из основных приемов интенсивного земледелия. С таким показателем как повышение урожаев любых культур данный вид удобрений справляется достаточно легко. Так же одними из немаловажных факторов использования минеральных удобрений является стоимость и относительная легкость внесения в грунт.

Основными причинами отрицательного влияния удобрений на качество урожая являются нарушение оптимальных доз, соотношения питательных элементов в удобрениях без учета их содержания в почве, форм и сроков их внесения, что отрицательно влияет на метаболизм органических соединений, особенно на синтез аминокислот и белков в растениях. Одновременно в растениях накапливаются в избыточном количестве нитраты, нитриты, которые в кислой среде образуют нитрозоамины, обладающие канцерогенными и мутагенными свойствами. Избыток в почве нитратов ухудшает качество выращиваемых овощей, фруктов, зерновых культур и др. При потреблении в повышенных количествах нитраты в пищеварительном тракте частично восстанавливаются до нитритов (более токсичных соединений), последние при поступлении в кровь могут вызвать метгемоглобинемию. Кроме того, из нитритов в присутствии аминов могут образовываться N-нитрозамины, обладающие канцерогенной активностью (способствуют образованию раковых опухолей). 12

Из всего сказанного можно сделать вывод о последствиях употребления некачественных продуктов:

• развитие онкологических заболеваний;

• появление заболевания, при котором кровь не способна удерживать кислород;

• нарушение деятельности щитовидной железы и др.

При недостатке азота растение медленно растет, имеет мелкие, бледные, преждевременно желтеющие листья. При избытке азота бурно развивается вегетативная часть растений, а генеративная (наряду с клубнями и корнеплодами) оказывается в угнетенном состоянии.

Если в почве избыток нитратов, то они не успевают полностью превратиться в аминокислоты. Нитраты по корню поднимаются и могут осесть в любой части растения. Они превращаются в нитриты и отравляют организм. Кроме того, избыток соединений азота вымывается из верхнего слоя водой и просачивается в грунтовые воды. Далее они попадают в наш дом с обыкновенной питьевой водой.

Нарушение научно обоснованной технологии использования в земледелии различных видов органических удобрений также снижает качество продукции. Среднегодовая доза ежегодновносимого навоза (без опасения ухудшения качества урожая и поедаемости корма) рекомендуется эквивалентной не более 200 кг/га, а наиболее эффективный срок внесения навоза – осень, под зяблевую вспашку. Поскольку навоз влияет на ряд культур севооборота, то важно знать действие систематического внесения высоких доз бесподстилочного навоза, а в сочетании его с соломой и минеральными удобрениями – действие на плодородие и свойства почвы, накопление в ней тяжелых металлов, образование гумуса и процессы его минерализации, на миграцию элементов питания растений по профилю почвы, загрязнение грунтовых вод нитратами и солями тяжелых металлов и другие вопросы. Важно также учитывать связь перечисленных показателей с комплексным воздействием на качество урожая всех культур севооборота.

Внесение агрохимических средств может вызвать в почве мобилизацию или иммобилизацию биогенных и токсических элементов и изменение качества урожая. В этом случае большая роль отводится гумусу почвы, который связывает тяжелые металлы в комплексные соединения хелатного типа, т.е. малодоступные для растений формы, снижая их токсичность. Этим можно объяснить частое отсутствие зависимости между содержанием тяжелых металлов и выносом их растениями на высокогумусированных почвах. 13

Список литературы

Авдонин Н.С. Почвы, удобрения и качество растениеводческой продукции / Н.С. Авдонин. - М.: Колос, 2009. – 377с.

Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных и плодовых культур.М.: Изд-во ТСХА, 2008. – 271с.

Ефимов В. Н. и др. Система применения удобрений. М.: Колос.2004. – 185с.

Журбицкий З.И. Агрохимические и физиологические основы применения удобрений.М.: Изд-во АН СССР, 1993. – 487с.

Магницкий К. Диагностика потребности растений в удобрениях М.: Московский рабочий, 2002–271с

Минеев В.Г. Агрохимия. / В.Г. Минеев. - М.: Издательство Московского университета, 2010. – 396с.

Минеев В.Г. Химизация земледелия и природная среда. М.: Агропромиздат, 2010. – 309с.

Муравин, Э.А. Агрохимия: учебник / Э.А.Муравин.- М.: КолосС, 2004. – 346с .

Ягодин Б.А., Смирнов П.М., Петербургский А.В. и др. Агрохимия. М.: Колос.20114. – 285с.

1 Авдонин Н.С. Почвы, удобрения и качество растениеводческой продукции / Н.С. Авдонин. - М.: Колос, 2009. – 122-125с.

2 Ефимов В. Н. и др. Система применения удобрений. М.: Колос.2004. – 87с.

3 Муравин, Э.А. Агрохимия: учебник / Э.А.Муравин.- М.: КолосС, 2004. – 54с.

5 Минеев В.Г. Химизация земледелия и природная среда. М.: Агропромиздат, 2010. – 134с.

6 Минеев В.Г. Химизация земледелия и природная среда. М.: Агропромиздат, 2010. – 157с.

7 Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных и плодовых культур.М.: Изд-во ТСХА, 2008. – 78с.

8 Ягодин Б.А., Смирнов П.М., Петербургский А.В. и др. Агрохимия. М.: Колос.20114. – 109с.

9 Журбицкий З.И. Агрохимические и физиологические основы применения удобрений.М.: Изд-во АН СССР, 1993. – 201-203с.

10 Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных и плодовых культур.М.: Изд-во ТСХА, 2008. – 165с.

11 Муравин, Э.А. Агрохимия: учебник / Э.А.Муравин.- М.: КолосС, 2004. – 96-99с.

12 Магницкий К. Диагностика потребности растений в удобрениях М.: Московский рабочий, 2002– 178с.

13 Минеев В.Г. Агрохимия. / В.Г. Минеев. - М.: Издательство Московского университета, 2010. – 136с.

Высокие нормы применения азотных удобрений опасны. Избыточное азотное питание может приводить к накоплению вредных для людей и животных количеств нитратов в растениях. Нитраты могут вымываться из почвы с осадками и дренажными водами и попадают в грунтовые воды, загрязняя водные источники. Выделяющиеся в результате денитрификации окислы азота способны разрушать озоновый слой атмосферы.

Чтобы этого не происходило необходимо оптимизировать азотное питание растений, необходимо применять экологически и экономически безопасные дозы внесения. Необходимо правильно применять эти удобрения. Например нитратные удобрения не следует вносит осенью, особенно в районах с промывным водным режимом. натриевую и кальциевую селитру предпочтительнее применять весной под предпосевную культивацию и в подкормки растений во время из вегетации. В зонах с влажным климатом и в орошаемых районах (под рис, хлопчатник и др культуры)) предпочтительнее вносить аммиачные уд-я. Аммиачные (аммонийные) удобрения вносят приемущ-но до посева в качестве основных, можно как весной, так и осенью, не опасаясь вымывания азота. Но не следует применять их для припосевного внесения в рядки или под предпосевную культивацию, т.к.интенсивное применение аммиачного азота в молодые проростки растений может привести к их аммиачному отравлению в следствие его избыточного накопления в растениях. При нейтральной реакции среды лучше усваивается аммонийный азот, при кислой-нитратный. Повышенное содержание в почве калия, кальция и магния создает более благоприятные условия для поглощения аммонийного азота. При нитратном питании важное значение имеет достаточная обеспеченность растений фосфором и молибденом.

53. содержание и формы фосфора в растениях. Динамика потребления фосфора различными с-х культурами.

Содержание его 0,2-1,0 %от массы сухого в-ва растений.(его много там где много азота). Больше всего его накапливается в репродуктивных органах и в тех органах, где интенсив идут процессы синтеза органич в-в.

Ф.в растениях содержиться в мин-х (5-15%) и орг-х соединениях (85-95). Мин формы представлены кальциевыми, калиевыми, магниевыми и аммонийными солями ортофосфорн кис-ты. Органич фосфор входит в состав НК (РНК и ДНК), нуклеопротеидов, фосфатопротеидов, аденозинфосфатов (АТФ и АДФ) ,сахарофосфатов, фосфатидов, фитина. НК-ты и Аденозинфосфаты уч-ют в синтезе белков, передачи наследст-х свойст и энергетич обмене. Нуклеиды имеют в своем составе азотистые основания, сахар и фосфорнуюкислоту. Содержание Р2О5 в НК около 20%. Они содержаться во всех тканях и органах растен (листья, стебли, пыльца, зародыши семян, кончики корней). В листьях и стеблях растений нк составляют примерно 0,1-1%. Нуклеопротеиды—это комплекс НК с белками- важнейшее в-во клеточных ядер. Без аденозинфосфатов невозможен энергетич обмен растительной клетки, с помощью которого происходит биосинтез белков, жиров, крахмала, углеводов и т.д. В их составе содержаться остатки фосфорной к-ты, связанные между собой макроэргич связями , способные при гидролизе выделять большое кол-во энергии. (АМФ, АДФ, АТФ-три остатка ортофосфорн кислоты).Фосфатиды (фосфолипиды)входят в состав фосфолипидных мембран-регулир-их проницаемость клеточных органелл в различные в-ва. (например лицитин-жироподобные в-ва– содержит 1,37% Р2О5)Сахарофосфаты (реакция фосфорилирования) их содержание в раст-ях примерно 0,1-1%.(играют важ роль при дыхании, превращении простых углеводов в сложные в процессе фотосинетза и .т.Фитинсодержит 27,5% Р2О5. Содержится в молод органах и тканях раст, особенно много в молодых частях. В семенах боб. и масличн.кул-р 1-2% сух.массы, в семенах злак-0,5-1%. Фитин в семенах служит запасным в-вом, входящий в его состав фосфор используется проростками.

Большая часть фосфора находится в репродукт органах и молодых частях растен. Ф-ускоряет формиров-е корнев с-мы-она сильнее ыитвится и глубже проникает в почву.Основное кол-во ф-ра растения потребл в первые фазы роста и развития,создавая его определенные запасы.дальше он легко передвиг из стар тканей в молодые и используется повторно(реутилизируется)

В первые периоды роста с-х кул-ры поглащают фосфаты интенсивнее, все растения чувствительны к фосфатному голоданию в самом раннем возрасте. Кукуруза и хлопчатник сравнительно быстро после всходов исчерпывают запасы фосфора (необходимо небольшое кол-во легкоусвояемой фосфорнокислой соли внесенной с припосевным удобр-м. для кук-суперфосфата 5-7 кг на га Р2О5, зерновые-15 кг, карт-20.) в фазе образования и созревания репродукт органов отмечается энергичное передвиж-е к ним фосфатов из вегетатив частей раст-й (из соломины и листьев- в колос, из из ветвей и стебля- в плоды)

Лен-долгунец поглощает максим-ое колво Ф.во время цветения, пшеница-от выхода в трубку до выколащивания, картоф-в июле. Сах.свекла более энергично берет фосфор в листья, но его поступление в корнеплод сильно растянуто (убыль Р2О5 к концу вегетации в составе ботвы объясняется ее постепенным отмиранием в тот период, когда еще продолжает расти корнеплод); хлопчатникпоглощает 9/10 фосфора после цветения.

Сведения о динамике поглощения фосфора определенной кул-ой позволяют принимать меры к устранению недостатка этого пит в-ва в ходе вегетации. Абсолютное содержание фосфора в составе растений на определ-ой площади продолжает возрастать до полного созревания культуры, пройентное содержание его систематически уменьшается с возрастом растения.

Содержание и формы фосфора в почвах, доступность его растениям

В природных условиях основной источник фосфора для раст –соли ортофосфорн к-ты. Она трехосновная и может отдисоциировать три аниона: Н2РО4(-), НРО4(2-) и РО4(3-). В слабокислой реакции среды наиболее доступными для раст явл 1, и в меньшей степени 2-ой иноны, 3-ий практически не используется в питании растений. Но существуют растения способные усваивать ф.из трехзамещенных фосфатов: люпин, гречиха, горчица, горох, эспарцет, конопля ( у них происходит значительное выделение кислот через корни и преобладание в их составе кальция над фосфором)

Все встречающиеся в почве соли ортофосфорн к-ты одновален-х катионов (NH4, Na, K) и однозамещенные соли двухвален-х катионов (Ca(H2PO4)2, и Mg(H2PO4)2) хорошо растворяются в воде и поэтому легко усваиваются корнев системой. Но их в почве крайне мало (1 мг на 1 кг сух почвы). Двузамещенные соли двухвалентных катионов(CaHPO4, и MgHPO4) не растворимы в воде, но растворимы в слабых кислотах(уг.), в том числе и в кислых корневых выделениях растений и в орнганич кислотах(лимон, яблочн, щук), образующихся в процессе жизнедеят микроорганизмов, тоже усваиваются растениями. Трехзамещенные соли двухвалент-х катионов(типа Ca3(PO4)2, не растворимы в воде и малорастворимы в слабых кислотах и растения их не усваивают (кроме растений искл, см.выше). Особенно плохо усваивается растениями фосфор средних и основных солей трехвалентных катионов ортофосфорн кис-ты (AlPO4, Al(OH)3PO4, FePO4, Fe(OH)3PO4 и тд), а они составляют значительную часть минер-х фосфатов кислых повчв.

Хорошим источником Р2О5 для раст явл анионы ортофосфорн к-ты, обменно-поглощенные (адсорбированные) почвенными коллоидами. Эти анионы м.б.вытеснены анионами мин и орг кислот и использоваться растениями(агентами десорбции)(уг, лимон, ябл, щук).

Применение минеральных удобрений – один из основных приемов интенсивного земледелия. С таким показателем как повышение урожаев любых культур данный вид удобрений справляется достаточно легко. Так же одними из немаловажных факторов использования минеральных удобрений является стоимость и относительная легкость внесения в грунт.

Основными причинами отрицательного влияния удобрений на качество урожая являются нарушение оптимальных доз, соотношения питательных элементов в удобрениях без учета их содержания в почве, форм и сроков их внесения, что отрицательно влияет на метаболизм органических соединений, особенно на синтез аминокислот и белков в растениях. Одновременно в растениях накапливаются в избыточном количестве нитраты, нитриты, которые в кислой среде образуют нитрозоамины, обладающие канцерогенными и мутагенными свойствами. Избыток в почве нитратов ухудшает качество выращиваемых овощей, фруктов, зерновых культур и др. При потреблении в повышенных количествах нитраты в пищеварительном тракте частично восстанавливаются до нитритов (более токсичных соединений), последние при поступлении в кровь могут вызвать метгемоглобинемию. Кроме того, из нитритов в присутствии аминов могут образовываться N-нитрозамины, обладающие канцерогенной активностью (способствуют образованию раковых опухолей). 12

Из всего сказанного можно сделать вывод о последствиях употребления некачественных продуктов:

• развитие онкологических заболеваний;

• появление заболевания, при котором кровь не способна удерживать кислород;

• нарушение деятельности щитовидной железы и др.

При недостатке азота растение медленно растет, имеет мелкие, бледные, преждевременно желтеющие листья. При избытке азота бурно развивается вегетативная часть растений, а генеративная (наряду с клубнями и корнеплодами) оказывается в угнетенном состоянии.

Если в почве избыток нитратов, то они не успевают полностью превратиться в аминокислоты. Нитраты по корню поднимаются и могут осесть в любой части растения. Они превращаются в нитриты и отравляют организм. Кроме того, избыток соединений азота вымывается из верхнего слоя водой и просачивается в грунтовые воды. Далее они попадают в наш дом с обыкновенной питьевой водой.

Нарушение научно обоснованной технологии использования в земледелии различных видов органических удобрений также снижает качество продукции. Среднегодовая доза ежегодновносимого навоза (без опасения ухудшения качества урожая и поедаемости корма) рекомендуется эквивалентной не более 200 кг/га, а наиболее эффективный срок внесения навоза – осень, под зяблевую вспашку. Поскольку навоз влияет на ряд культур севооборота, то важно знать действие систематического внесения высоких доз бесподстилочного навоза, а в сочетании его с соломой и минеральными удобрениями – действие на плодородие и свойства почвы, накопление в ней тяжелых металлов, образование гумуса и процессы его минерализации, на миграцию элементов питания растений по профилю почвы, загрязнение грунтовых вод нитратами и солями тяжелых металлов и другие вопросы. Важно также учитывать связь перечисленных показателей с комплексным воздействием на качество урожая всех культур севооборота.

Внесение агрохимических средств может вызвать в почве мобилизацию или иммобилизацию биогенных и токсических элементов и изменение качества урожая. В этом случае большая роль отводится гумусу почвы, который связывает тяжелые металлы в комплексные соединения хелатного типа, т.е. малодоступные для растений формы, снижая их токсичность. Этим можно объяснить частое отсутствие зависимости между содержанием тяжелых металлов и выносом их растениями на высокогумусированных почвах. 13

Список литературы

Авдонин Н.С. Почвы, удобрения и качество растениеводческой продукции / Н.С. Авдонин. - М.: Колос, 2009. – 377с.

Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных и плодовых культур.М.: Изд-во ТСХА, 2008. – 271с.

Ефимов В. Н. и др. Система применения удобрений. М.: Колос.2004. – 185с.

Журбицкий З.И. Агрохимические и физиологические основы применения удобрений.М.: Изд-во АН СССР, 1993. – 487с.

Магницкий К. Диагностика потребности растений в удобрениях М.: Московский рабочий, 2002–271с

Минеев В.Г. Агрохимия. / В.Г. Минеев. - М.: Издательство Московского университета, 2010. – 396с.

Минеев В.Г. Химизация земледелия и природная среда. М.: Агропромиздат, 2010. – 309с.

Муравин, Э.А. Агрохимия: учебник / Э.А.Муравин.- М.: КолосС, 2004. – 346с .

Ягодин Б.А., Смирнов П.М., Петербургский А.В. и др. Агрохимия. М.: Колос.20114. – 285с.

1 Авдонин Н.С. Почвы, удобрения и качество растениеводческой продукции / Н.С. Авдонин. - М.: Колос, 2009. – 122-125с.

2 Ефимов В. Н. и др. Система применения удобрений. М.: Колос.2004. – 87с.

3 Муравин, Э.А. Агрохимия: учебник / Э.А.Муравин.- М.: КолосС, 2004. – 54с.

5 Минеев В.Г. Химизация земледелия и природная среда. М.: Агропромиздат, 2010. – 134с.

6 Минеев В.Г. Химизация земледелия и природная среда. М.: Агропромиздат, 2010. – 157с.

7 Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных и плодовых культур.М.: Изд-во ТСХА, 2008. – 78с.

8 Ягодин Б.А., Смирнов П.М., Петербургский А.В. и др. Агрохимия. М.: Колос.20114. – 109с.

9 Журбицкий З.И. Агрохимические и физиологические основы применения удобрений.М.: Изд-во АН СССР, 1993. – 201-203с.

10 Дерюгин И.П., Кулюкин А.Н. Питание и удобрение овощных и плодовых культур.М.: Изд-во ТСХА, 2008. – 165с.

11 Муравин, Э.А. Агрохимия: учебник / Э.А.Муравин.- М.: КолосС, 2004. – 96-99с.

12 Магницкий К. Диагностика потребности растений в удобрениях М.: Московский рабочий, 2002– 178с.

13 Минеев В.Г. Агрохимия. / В.Г. Минеев. - М.: Издательство Московского университета, 2010. – 136с.

golos.today

Азот в качестве элемента питания играет первостепенную роль в росте, развитии и плодоношении растений, принимая разные химические формы. С одной стороны, азот — это благо, а с другой — угроза, поскольку опасны многочисленные изменения, которые с ним происходят в окружающей среде при внесении азотных и органических удобрений. Растениям для развития нужно строго определенное количество азота, а его избыток или недостаток вызывают неблагоприятные последствия.

Меняющийся климат, распространение болезней и вредителей, повторяющиеся засухи, высокие затраты в аграрной сфере и неопределенная ситуация на рынках показывают, что небольшая ошибка в обращении с азотом может дорого обойтись земледельцу и окружающей среде. Поэтому проводимую в аграрном секторе деятельность следует ориентировать на моделирование высококачественного производства при сохранении оптимальных затрат и заботе об экологии.

Откуда взялся азот и в чем его польза?

Наиболее важны функции азота в процессах структурообразования у растений — в качестве основного строительного компонента, регулирования усвоения других макро- и микроэлементов, протекания в растении биохимических реакций. В качестве компонента генетической информации азот участвует в репродуктивной функции, а как переносчик энергии молекул обеспечивает энергетическую функцию. В итоге азот оказывает огромное влияние на продуктивность и качество урожая сельскохозяйственных культур.

Чтобы быть эффективным для культур, азоту нужно постоянное присутствие других макро- и микроэлементов (калия, фосфора, кальция, магния, серы, железа, бора, меди, марганца, цинка, молибдена, кобальта, кремния и др.), необходимых для правильного функционирования растений. Недостаток каждого из них также вызывает нарушения в развитии растений (табл. 1).


Формы азота в почве подвержены преобразованиям

В наших минеральных почвах общее содержание азота составляет в среднем 0,06-0,3%, а органические почвы могут содержать до 3,5% азота. Из всего общего количества азота только 1-5% приходится на долю минеральных соединений, которые потребляют растения в форме иона аммония NH₄+ и нитрат иона NO₃-. Остальное количество азота в почве (95%) составляют органические соединения Nорг, для разложения и перевода которых в доступную для растений минеральную форму требуется время и условия.

К легкоразлагаемому в почве органическому азоту относятся корневые и надземные послеуборочные остатки, виды органических удобрений, солома и зеленые удобрения.


Формы азота в питании растений

Состояние питания растений определяется формами азота, которые поглощает растение: NH₄+ и нитрат иона NO₃-. В природе также существует несколько десятков видов микроорганизмов, которые способны связывать атмосферный азот N₂. Многие растения из семейства бобовых, благодаря симбиозу с клубеньковыми бактериями, способны фиксировать атмосферный азот.

Почвенный поглощающий комплекс имеет отрицательный заряд, поэтому способен притягивать и удерживать положительно заряженные элементы питания и отталкивать отрицательно заряженные. Если поглощающий комплекс почвы притягивает определенные формы азота, то они не выщелачиваются, что полезно для плодородия. Некоторые формы азота могут отталкиваться частицами почвы, что вызывает большие потери элемента.

Катион аммония NH₄+ имеет положительный электрический заряд, благодаря которому хорошо удерживается почвой. А вот нитратная форма NO₃- является анионом с отрицательным зарядом, поэтому слабо удерживается почвой и легко вымывается (табл. 2).


Что наиболее выгодно с точки зрения питания растений, экологической безопасности и экономики? Это взаимодействие нитратной и аммонийной формы.

Потери азота

Какой коэффициент использования азота растениями из минеральных удобрений? Обычно не более 70%, и это хороший результат. Исследования показывают, что в отдельных случаях азот из минеральных удобрений может использоваться всего на 20%, что свидетельствует о впустую затраченных средствах.

Какие процессы оказывают влияние на размеры потерь азота? Выщелачивание и улетучивание NO₃-, а также вызываемая бактериями Alcaligenes, Pseudomonas, Flavobacterium, Bacillus денитрификация, которая с химической точки зрения выглядит следующим образом:

C₆H₁₂O₆ + 4NO₃- → 6CO₂ + ↑2N₂ + 6H₂O + энергия

Газообразные потери N₂ представляют собой экологическую проблему, поскольку восстановление нитратов до N₂ — это естественный процесс. К сожалению, образующиеся закись NO и окись N₂O азота являются парниковыми веществами, разрушающими озон.

Вымыванию больше подвержена нитратная форма азота NO₃-. Нитрат-ионы мигрируют с дождевой водой, перемещаются в почвенном профиле с капиллярной водой. Это еще один источник потерь. Избыток нитратов на песчаных почвах осенью — это практически 100% вымывание из почвы. В глинистых почвах риск вымывания снижается до 50%.

На вымывание нитратов из почвы влияет погода, затяжная осень, мягкая зима, сильные снегопады, быстрые оттепели ранней весной, проливные дожди.

На потери азота от вымывания влияет стратегия внесения азотного удобрения:

  • большое количество минерального азота в почве с осени;
  • высокие дозы минерального азота ранней весной;
  • трансформация минерального азота в почве;
  • вид азотного удобрения;
  • срок внесения и доза удобрения.

Сдерживает потери азота в холодное время растительный покров и правильная агротехника: севооборот, структура почвы, уклон и фактура участка.

уреаза
H₂N - CO – N-H₂ + 2H₂O → (NH₄)₂CO₃

Гидролиз мочевины обычно приводит к газообразным потерям азота в виде аммиака NH₃. Это происходит вскоре после поверхностного внесения мочевины без заделки в почву и при длительном отсутствии осадков. Процесс потерь аммиака ускоряется при высокой температуре, недостаточном уровне рН и на легких почвах. По оценкам разных ученых, потери азота из мочевины в разных условиях (луга, культуры) могут достигать 20-90%. Почему они такие высокие?

После поверхностного внесения мочевины без заделки в почву и при длительном отсутствии осадков происходят газообразные потери азота в виде аммиака!

Чем дольше мочевина лежит на почве или в почве в нерастворенном виде, тем больше потери азота в виде аммиака и не только. Аммиак повреждает растения, снижает всхожесть, а попадая в атмосферу, возвращается в окружающую среду с дождем, способствуя подкислению почвы и эвтрофикации водоемов.

Однако у мочевины много преимуществ. Прежде всего, низкая стоимость, низкая взрывоопасность производства, транспортировки и хранения. Благодаря высокому содержанию азота она удобна для внесения на поля.

Глобальная задача современного сельского хозяйства

Как снизить потери азота из мочевины и максимально использовать азот из минеральных удобрений? Проблема повышения эффективности использования питательных веществ давно беспокоит ученых. За последние годы для решения этой задачи были разработаны и предложены производству разные технологии, призванные решить экономические (повышение рентабельности производства), социальные (более высокое качество сельхозкультур) и экологические (азотный баланс) аспекты.

Важнейшей задачей на данный момент является повышение эффективности всех видов удобрений, в том числе и азотных, значительная часть питательных элементов из которых теряется. Наукой доказано, что в первый год после внесения минеральных удобрений растениями используется: азот — до 70%, калий — на 50-60%, фосфор — на 10-25%.

Уже много лет наука трудится над способами снижения потерь азота, решая экологические и экономические проблемы. Агрохимическая промышленность разрабатывает особые виды удобрений, которые сдерживают потери азота из минеральных удобрений. К этой группе относятся стабилизированные удобрения, содержащие ингибиторы нитрификации или ингибиторы уреазы. Ингибиторы — это вещества, замедляющие процессы превращения азота.

Ингибиторы нитрификации замедляют окисление иона аммония (NH₄+) до иона нитрата (NO₃-) многочисленными почвенными бактериями (включая Nitrosomonas и Nitrobacter). Задерживая превращение аммония в нитрат — уменьшают количество нитратов в почве, процесс их вымывания и денитрификации. Такое замедление на практике длится от 4 до 10 недель и сильно зависит от температуры почвы. Цель использования ингибиторов нитрификации — повышение эффективности использования азота культурами.

Многие природные и искусственно созданные соединения обладают свойствами, замедляющими процесс нитрификации. Однако большая часть таких соединений обладает токсичностью по отношению к почвенным микроорганизмам, животным и человеку.

Поэтому к ингибиторам нитрификации предъявляют высокие требования, которые должны иметь способность:

  • замедлять или блокировать окисление катиона аммония (NH₄+) без превращения анионов нитрита (NO₂-), что делает невозможным дальнейшее окисление до нитрат-аниона (NO₃-);
  • блокировать процесс нитрификации на несколько недель после применения;
  • быть безопасными для фауны, флоры и человека в используемых дозах;
  • быть рентабельными.


Как добиться максимальной эффективности азота через сбалансированное питание растений

Преимущества использования ингибиторов нитрификации сводятся к более низким выбросам парниковых газов (NO и N₂O), снижению вымывания азота в поверхностные и грунтовые воды, улучшению усвоения растениями фосфора и микроэлементов из почвы.

К недостаткам ингибиторов нитрификации можно отнести то, что полевые испытания в большинстве случаев не показывают значительного воздействия этих вещества на урожай. Ингибиторы нитрификации отрицательно влияют на почвенные микроорганизмы, а имеющиеся на рынке вещества работают недостаточно долго (не стабильны). К тому же замедление нитрификации снижает вымывание азота в грунтовые воды, но не устраняет его полностью.

Что можно сказать об ингибиторах уреазы, которые замедляют гидролиз мочевины ферментом уреазой. Мочевина содержит азот в амидной форме, которую растения не могут напрямую усвоить. После перехода амидной формы в аммонийную (гидролиз мочевины) растения способны поглощать азот из мочевины.

Гидролиз мочевины вызывает большие потери газообразного азота в виде улетучивания аммиака, что происходит при поверхностном внесении удобрения. Летучий аммиак может повредить проростки или рассаду, уменьшая всхожесть и силу роста растениий, приводя к экономическим потерям. В зависимости от температуры воздуха, влажности почвы и инсоляции потери азота могут составлять 80% (особенно при подкормке кукурузы). Ингибитор уреазы позволяет устранить или значительно уменьшить эти потери.

Образующаяся из амидной формы мочевины аммонийная форма азота очень мало перемещается в почве, поэтому азот размещается в верхней части почвенного профиля, что неблагоприятно для большинства культур. Процесс нитрификации в этом случае также более интенсивен. Причина этого — более быстрое повышение температуры на небольшой глубине почвы и большая доступность кислорода. Нитрификация, а значит большое количество нитратного азота в почве — это потеря денег и экологический риск.


Влияние азотного питания на фитосанитарное состояние посевов озимой пшеницы в Северо-Западном регионе РФ

Ингибитор уреазы останавливает гидролиз мочевины. Продолжительность блокирования действия уреазы зависит от дозы используемого ингибитора. Амидная форма мочевины благодаря нейтральному электрическому заряду подвижна в почве, в отличие от аммонийной формы.

Следовательно, гидролиз мочевины на поверхности почвы при подкормке или неглубоко в почве (мелкие обработки почвы) провоцирует ситуацию образования в верхнем слое почвы большого количества аммиачной формы, что делает корневую систему ленивой для поиска питания (неспособна проникать в более глубокие слои). Ингибитор уреазы, замедляющий гидролиз мочевины, заставляет амидную форму азота перемещаться в корневую зону, где происходит переход в аммонийную форму.

Современные ингибиторы уреазы блокируют гидролиз мочевины на поверхности почвы, поэтому потеря аммиака сводится к нулю. Ослабление процесса нитрификации также вызывает снижение потерь азота в результате процессов денитрификации и вымывания.

Читайте также: