Как организмы влияют на состав и плодородие почв

Обновлено: 05.10.2024

Живые организмы и почва — неразрывные звенья единой и цельной экосистемы — биогеоценоза. Живые организмы почвы находят здесь и убежище, и питание. В свою очередь, именно обитатели почвы снабжают ее органическими компонентами, без которых почва не имела бы такого важнейшего качества как плодородность.

Фауна почв имеет свое особое наименование — педобионты. К педобионтам относятся не только животные и беспозвоночные, но и микроорганизмы почвы.

Население почвы весьма обширно — в одном кубическом метре грунта могут содержаться миллионы живых организмов.

Почва как среда обитания

Значительное содержание растений в почве создает питательную среду для огромного числа насекомых, которые, в свою очередь, становятся добычей для кротов и других подземных животных. Насекомые почвы представлены значительным количеством разнообразных видов.

Почва как среда жизни неоднородна. Для различных видов существ она предоставляет разнообразные условия обитания. Например, наличие воды в почве создает особую систему миниатюрных водоемов, в которых проживают нематоды, коловратки, различные простейшие.

Почвенная среда

Категории почвенной фауны

Другая категория почвенной жизни — микрофауна. Это существа размером в 2-3 мм. В эту категорию попадают преимущественно членистоногие, не обладающие способностью к рытью ходов — они пользуются существующими грунтовыми полостями.

Более крупные размеры имеют представители мезофауны — личинки насекомых, многоножки, дождевые черви и др. — от 2 мм до 20 мм. Данные представители способны самостоятельно прорывать себе ходы в грунте.

Существует еще группа животных, которые не являются постоянными обитателями почвы, но при этом некоторую часть жизни проводят в подземных убежищах. Это такие норные животные как суслики, кролики, тушканчики, барсуки, лисы и другие.

Почва и черви

Почва и черви


Наиболее важную роль в процессе образования биогумуса, обеспечивающего плодородность почвы, играют дождевые черви. Продвигаясь в толще грунта, они заглатывают земляные элементы вместе с органическими частицами, пропуская через свою пищеварительную систему.

В результате такой переработки дождевыми червями утилизируется огромное количество органических отходов и производится снабжение почвы гумусом.

Другая очень существенная роль дождевых червей — разрыхление почвы, благодаря чему улучшается ее влагопроницаемость и снабжение воздухом.

Дождевые черви, несмотря на свои малые размеры, выполняют грандиозный объем работ. Например, на участке размером в 1 гектар за год дождевые черви перерабатывают более ста тонн земли.

Микрофлора почвы

sad-dizain.ru

Почва является местом обитания для большого количества микроорганизмов, таких как бактерии, нематоды, вирусы, грибы и простейшие. Микроорганизмы почвы повышают плодородие, поддерживают устойчивость экосистем.

В последние годы значительно возросло число оппортунистических грибных инфекций и виды родов Aspergillus, Mucor, Penicillium, Rhizopus, Fusarium, Alternaria и др. становятся причиной различных инфекций у человека, что непосредственно связано с изменением фитопатогенного потенциала почвы. Mucor, например, вызывает поражение глаз людей с низким уровнем иммунитета.

Комплексный подход к здоровью почвы предполагает, что почва является живой системой, а её здоровье — результат различных процессов, оказывающих влияние на активность почвенной микробиоты и урожайность культур.

Грибы выполняют важные функции, связывая влагу, высвобождая доступные для растений формы элементов питания и подавляя возбудителей болезней. Наряду с бактериями, грибы играют важную роль в качестве биодеструкторов в пищевой цепочке. Они разлагают трудноусвояемую органику на более простые формы, которые могут использовать другие микроорганизмы в этой цепи питания. Грибы физически создают стабильные агрегаты, которые помогают увеличить водоудерживающую способность почвы, превращая субстрат в почву.

Почвенные грибы в целом делятся на три категории:

Биодеструкторы: сапрофиты, превращающие мертвый органический материал в переработанную биомассу, CO₂ и органические кислоты, спирты и фенолы. Как правило, они разлагают целлюлозу и лигнин древесины.

Патогены: паразиты, вызывают болезни растений, колонизируя корни. Вертицилл, ризоктония, фузариум и питиум ежегодно наносят серьезный вред сельскому хозяйству.

Микоризообразователи: колонизируют корни растений. В обмен на углеводы микоризные грибы поставляют растению легкодоступный фосфор и питательные вещества (азот, микроэлементы). Эктомикориза растет на поверхности корней и обычно ассоциируется с деревьями (могут образовывать единую микоризу для целого леса), а эндомикориза, растущая внутри корней, обычно формируется с травами, пропашными культурами, овощами и кустарниками. Практически у всех семейств обнаружена микориза, исключая крестоцветные.

Ключевой эффект микоризообразователей для обработки семян и рассады – улучшение укоренения, стимуляция эффективности использования питательных веществ, улучшение структуры почвы, повышение устойчивости растений к стрессам. Болезни культурных растений могут контролировать виды Glomus sp. или Trichoderma sp., подавляющие грибные патогены: виды T. asperellum, T. atroviride, T. harzianum, T. virens и Т. viride часто используются в биоконтроле, как и инокуляцию микробными консорциумами вместе с ризобактериями, способствующими росту растений, азотфиксации и доступности фосфатов.

Грибы — единственные организмы, которые могут расщеплять лигнин — соединение, которое придает древесине жёсткость. Сапрофитные грибы разлагают мёртвую древесину, возвращая органическое вещество в почву.

На следующем этапе деструкции органики за дело берутся бактерии, разрушая растительный материал до более простых соединений.

Среднее количество микроорганизмов на 1 г плодородной почвы, экз.:

  • бактерии: 1х10 8 …10 9 ;
  • актиномицеты: 1х10 7 …10 8 ;
  • грибы: 1х10 5 …10 6 ;
  • водоросли: 1х10 4 …10 5 ;
  • простейшие: 1х10 3 …10 4 .

Отсутствие в почве дождевых червей также косвенно указывает на низкий уровень плодородия почвы, так как в этом случае в почве отсутствуют простейшие, которые являются основным источником их пищи.

supersadovnik.ru

Так, цикл питания поддерживается углеводами, которые растения выделяют корнями, обеспечивая источник энергии для почвенных микроорганизмов, а последние потребляют органику, минералы и друг друга. Минералы, питательные вещества и вода, которые хранятся в их телах, после их гибели снова высвобождаются и, по мере их минерализации, становятся доступными растениям. Так проходит круговорот всего в природе.

Сохранение всего 1% органического вещества может привести к эффективному удерживанию почвой до 200 тонн доступной влаги на гектар.

Важно понимать, что внесение органического вещества в почву не будет иметь эффекта без устойчиво функционирующего микробного сообщества.

Негативно сказываются на продуктивности почвы:

  • удаление растительных остатков с поля;
  • частое механическое перемешивание плодородного слоя;
  • внесение удобрений без агрохимического обследования (изменение кислотности почвы изменяет состав и соотношение микроорганизмов, а высокий уровень фосфора не позволяет сформировать микоризу);
  • чистые пары (в отсутствие растений с корневыми выделениями обедняется микробиологический состав почвы, остаются только патогены и условные патогены).

Микроорганизмы и элементы питания

Следующие 17 элементов питания жизненно важны для правильного роста и развития растений — макроэлементы, которые далее делятся на:

  • структурные: C, H, O;
  • первичные: N, P, K;
  • вторичные: S, Ca, Mg

и микроэлементы: Fe, B, Cu, Cl, Mn, Mo, Zn, Ni. Помимо структурных питательных веществ (растения, которые получают из воздуха и воды), остальные поглощаются растением только в конкретных доступных формах:

  • Азот (N) в виде NH4 + (аммоний) и NO3 − (нитрат);
  • Фосфор (P) в виде H2PO4 − и HPO4 2- (ортофосфат);
  • Калий (K) в виде K + , серу (S) в виде SO4 2- (сульфат);
  • Кальций (Ca) в виде Ca 2+ , магний (Mg) в виде Mg 2+ ;
  • Железо (Fe) в виде Fe 2+ и Fe 3+ , цинк (Zn) в виде Zn 2+ ;
  • Марганец (Mn) в виде Mn 2+ , молибден (Mo) в виде MoO4 2- (молибдат);
  • Медь (Cu) в виде Cu 2+ , хлор (Cl) в виде Cl − и бор (B) в виде H3BO3 (борная кислота).

Многие микроорганизмы являются частью различных биогеохимических циклов и переводят органические и неорганические вещества в доступные формы для растений, подавляют почвенные патогены с помощью антибиотиков и помогают в защите растений от болезней.

Фиксация атмосферного азота

Азот (N), важный элемент для синтеза аминокислот и нуклеотидов, необходим всем формам жизни в больших количествах.

Атмосфера является крупнейшим хранилищем азота (78% от воздуха), хотя N₂ и не является свободно доступным для большинства живых организмов, он доступен только для азотфиксирующих бактерий и архей, которые первыми вводят его в круговорот элементов питания. Этот фиксированный N составляет менее 0,1% от всего N₂ на планете и способен ограничить первичное накопление органики как в наземных, так и в морских экосистемах. Внутри организмов N существует в большинстве восстановленных форм, и во время лизиса клеток он нитрифицируется до нитрата, который, в свою очередь, денитрифицируется до газа N₂.

На первом этапе азотфиксации помогает группа бактерий, называемых диазотрофами (цианобактерии, зеленые сернистые бактерии, азотобактеры, ризобии и франкии) в различных экосистемах; первые три группы фиксируют азот как свободноживущие микроорганизмы, а последние две — путём симбиоза с высшими растениями.

Такие культуры, как пшеница, рис, сахарный тростник и некоторые древесные также обладают способностью поглощать атмосферный азот, используя свободноживущие или ассоциативные диазотрофы. Однако вклад симбиоза бобовых и ризобий (13…360 кг/га накопленного азота) намного больше, чем несимбиотических систем (10…160 кг/га).

Помимо своей роли в эффективном питании, ризобии способствуют росту, интенсивному поглощению элементов питания, выработке фитогормонов и снижению последствий от биотического и абиотического стресса.

Помимо ризобий, ассоциативные и свободноживущие азотфиксирующие бактерии также коммерциализированы в качестве биоудобрений.

glavagronom.ru

Важным родом является Azotobacter, свободноживущий азотфиксатор, который включает виды: A. chroococcum, A. vinelandii, A. beijerinckii, A. paspali, A. armeniacus, A. nigricans. Помимо способности к фиксации азота, он производит фитогормоны, ферменты, повышает мембранную активность, пролиферацию корневой системы, усиливает поглощение влаги и минералов, мобилизует минеральное питание, смягчяет последствия факторов стресса окружающей среды, а также оказывает прямой и косвенный биоконтроль против многочисленных фитопатогенов.

Нитрификация азота дополнительно осуществляется двумя группами микроорганизмов: окислителями аммиака, которые превращают аммиак в нитриты (нитрозомонады, нитрозоспиры и нитрозококки) и окислители нитритов (истинные нитрирующие бактерии), которые превращают нитриты в нитраты (нитробактерии и нитрококки) ферментативным путём.

Доступность фосфора

Фосфор (Р) является ключевым компонентом нуклеиновых кислот, молекулы энергии АТФ и фосфолипидов мембран. P составляет около 0,2…0,8% от сухого веса растения, но только 0,1% этого Р доступно для растений из почвы.

Почвенные микроорганизмы помогают в высвобождении растениям доступных форм фосфора (растения поглощают только растворимый Р, как одноосновной (H2PO4 − ) и двухосновной (H2PO4 2− ) формы. Многие виды бактерий (Pseudomonas и Bacillus), и некоторые виды грибов (Aspergillus, Penicillium и Trichoderma) и актиномицетов (Streptomyces и Nocardia) также способны переводить фосфор в доступные для высших растений формы.

glavagronom.ru

Минерализация органического Р происходит с помощью нескольких ферментов микробного происхождения, такими как кислые фосфатазы, фосфогидролазы, фитазы, фосфоноацетатгидролазы, D-α-глицерофосфатазы и др. Другие минеральные элементы также превращаются в свою доступную форму любым из вышеперечисленных механизмов.

Доступность серы

Более 95% от общего количества почвенной серы связано с органическими молекулами, т.е. находится в недоступной непосредственно растениям форме, а неорганическая сера составляет около 5%. Это минимальная часть доступной S в почвах приводит к симптомам дефицита серы у растений, который очень похож на недостаток азота.

Сера, как и P, K, Ca, Mg, является недоступной на щелочных почвах.

Окисление элементарной серы и неорганических соединений серы до сульфатов осуществляется хемоавтотрофными (Thiobacillus sp., T. ferrooxidans и Т. tiooxidans) и фотосинтетическими (зеленые и фиолетовые бактерии, хлоробии, хроматии) бактериями. Также известно, что бациллы, псевдомонады и артробактерии, а также грибы, такие как аспергиллы и пенициллы, некоторые актиномицеты окисляют соединения серы.

glavagronom.ru

Взаимосвязь некоторых элементов питания, фитосанитарного состояния посева и урожайности

Даже при достаточном количестве азота (а большинство так и ориентируется только на азот, как на главный фактор формирования урожая), его превышающий дисбаланс по фосфору не решает ничего, и даже наоборот усиливает поражение листовыми пятнистостями, мучнистой росой, корневыми гнилями, увеличивает риск полегания.

В растении фосфор в принципе накапливается достаточно медленно, и поэтому его доступность до кущения должна быть обеспечена на 100% (фосфор, напомню, не мигрирует по профилю вообще), но с накоплением азота и фосфора до оптимальных значений (разные показатели для каждой географии, сорта и погодных условий) лимитирующими факторами становятся другие (в основном микроэлементы).

На стадии кущения (в момент формирования колоса и количества продуктивных стеблей) необходимость как в макроэлементах (S, Mg, K), так и в микроэлементах (Zn, Mn, Cu, Fe) в растениях пшеницы выше, чем в колошение-молочную спелость. Это ещё раз доказывает эффективность внесения микроэлементов именно в ранние фазы развития пшеницы (кущение — выход в трубку), а не в поздние (по колосу), как часто принято на практике.

А потом симптомы его недостатка называют вирусами, бактериозами, пятнистостями, или ещё чем-то…

Поэтому если вносите высокие дозы азота и фосфора, не забывайте про магний, серу и марганец для фолиарного внесения как наиболее дефицитные (или недоступные в почве по различным причинам) даже в неплохих чернозёмах.

Биологический фактор очень важен в почвообразовании. Ведь сам процесс формирования почвы начинается с поселения на горной породе живых организмов. Благодаря их жизнедеятельности образуется гумус, накапливаются органические вещества , и грунт обретает плодородие.

Основную роль в почвообразовании играют следующие группы организмов:

  • Растения
  • Микроорганизмы и грибы
  • Животные

О них мы расскажем в этой статье.

Группы организмов, активно влияющие на процесс формирования почвы

Роль растений в почвообразовании

Растения самостоятельно создают органические вещества путем фотосинтеза и являются их основным источником в почве. От особенностей флоры во многом зависит состав почвенного покрова, его характеристики и плодородие.

По своему строению растения условно разделяются на:

  • Низшие (не имеют четкой дифференциации тканей)
  • Высшие (ткани дифференцированы)

В ботанике эти понятия считаются немного устаревшими. Но для понимания особенностей почвообразования они до сих пор используются.

Низшие растения

К низшим растениям относятся:

Роль водорослей в почвообразовании

Водоросли – это первые растения, которые поселяются на разрушенной горной породе и формируют тонкий плодородный слой. Они содержат хлорофилл и путем фотосинтеза образуют органические вещества. Водоросли выделяют щелочи , снижающие кислотность горной породы и почвы.

Эти растения бывают:

Сначала на породе поселяются одноклеточные организмы. В зрелой почве встречаются и многоклеточные водоросли, нити которых покрывают поверхность покрова, проникают в горную породу и разрушают ее.

Сине-зеленые и некоторые другие виды водорослей способны фиксировать азот. Благодаря этим растениям в почве накапливается фосфор. Они становятся источником питания бактерий, грибов и некоторых мелких беспозвоночных. Диатомовые водоросли принимают активное участие в превращении кремния и кальция.

Масса водорослей в 1 га сформировавшейся почвы – от 0,5 до 1,5 т. Чаще всего они покрывают тонкой пленкой верхний слой покрова. Особенно ярко это проявляется на поливных землях в тропической и субтропической зонах. Иногда слой водорослей там может достигать 2-8 мм. Их слизистые оболочки и нити скрепляют частицы грунта , предотвращают ветровую и водную эрозию. На скудных пустынных грунтах они играют едва ли не главную роль в накоплении органического вещества.

С микроорганизмами водоросли могут создавать симбиозы – бактерии поставляют растениям углекислый газ и питаются продуктами их жизнедеятельности. Это стимулирует развитие микрофлоры в почве, ускоряет распад органических веществ и образование гумуса.

В зрелой почве встречаются многоклеточные водоросли, нити которых покрывают поверхность

Роль лишайников в почвообразовании

Лишайники – это специфические организмы, образованные симбиозом гриба и водоросли. Они способствуют разрушению породы и первичному накоплению мелкозема (примитивной почвы, обладающей плодородием). Днем лишайники ведут аутотрофный образ жизни благодаря фотосинтезу водоросли. Ночью эти растения гетеротрофны, используют для питания минералы и органику из субстрата.

Когда водоросль активна, лишайники выделяют в окружающую среду щелочные продукты жизнедеятельности, в период активности гриба – кислые. В результате рН за сутки меняется от 2,5 до 8,5. Это разрушающе действует на горную породу, нарушаются кристаллические связи, высвобождаются минералы, в камнях появляются трещины. Биологическому выветриванию способствуют и органические кислоты, которые выделяют растения. Гифы (нитевидные образования) гриба , входящего в состав лишайника, проникают в мелкие трещины и механически разрушают породу.

Первыми на грунте поселяются накипные (корковые) лишайники. Они плотно связаны с субстратом, отделить их от камня можно только ножом или скальпелем. После их разложения на накопившемся мелкоземе появляются листовые и кустистые лишайники, которые почти полностью покрывают породу. Под ними создаются благоприятные условия для роста водорослей, мха, сохранения тонкого слоя плодородного грунта.

После разложения лишайников образуется почва, в которой содержится до 40% гумуса. Он представлен в основном фульвокислотами, обладает кислой реакцией и низким плодородием. Лишайниковые примитивные почвы встречаются в северной тундре, на лавовых вулканических полях.

Лишайники поселяются прямо на камнях

Лишайники постепенно разрушают прочную горную породу

Высшие растения

Группа высших растений включает:

  • Деревья и кустарники
  • Травы
  • Мох

После отмирания органов высших растений образуется опад. Он поступает в грунт и разлагается до простых органических и минеральных соединений. Из опада формируется гумус, обеспечивающий плодородие почвы.

Роль деревьев и кустарников в почвообразовании

Лесная растительность составляет основную массу флоры на земле. Она представлена многолетними деревьями и кустарниками. В почвообразовании принимают участие не все части растений. Основную роль играют опавшая листва и хвоя, мелкие ветки. Из них образуется лесная подстилка, которая постепенно разлагается и превращается в гумус. Из разложившегося опада в почву возвращается около 100 кг минеральных веществ на 1 га.

Органические вещества в лесах поступают в верхние слои грунта. Испарение воды здесь замедленное. При высокой влажности и большом количестве осадков питательные вещества вымываются в нижние слои п р офиля. Поэтому лесные почвы обладают низким или средним плодородием.

Тип почвы во многом зависит от вида деревьев, которые преобладают в конкретной климатической зоне.

В северных таежных лесах растут в основном хвойные. Их опад богат восками, дубильными веществами и органическими кислотами, в нем мало азота, кальция и магния. Он разлагается медленно при участии грибов, выделяющих кислые продукты жизнедеятельности. В хвойных лесах образуются подзолистые почвы. В их гумусе преобладают фульвокислоты, его слой тонкий, с примесями кремнезема. рН подзолистых почв 4-6, плодородие у них низкое.

В смешанных лесах кроме хвои в грунт попадают листья деревьев. Они богаты основаниями, азотом, кальцием, магнием. Это способствует снижению кислотности и ощелачиванию почвы. В гумусе, наряду с фульвокислотами, содержится много гуминовых кислот, улучшающих плодородие. В смешанных лесах формируются дерново-подзолистые почвы.

Опад широколиственных лесов богаче, чем хвойных и смешанных. Он содержит много азота, кальция, фосфора. Листья разлагаются при помощи бактерий, питательные вещества лучше фиксируются в подстилке и меньше вымываются в нижние слои профиля. Слой гумуса тут толстый, состоит в основном из гуминовых кислот. В таких лесах формируются серые и бурые лесные почвы со средним и высоким плодородием.

Лесная подстилка разлагается, со временем превращаясь в гумус

Хвойный опад

Роль травянистых растений в почвообразовании

Травянистые растения покрывают обширные территории степей, лесостепей, саванн. В основном это однолетние или двухлетние виды, которые полностью отмирают в течение 1-3 сезонов. Источником гумуса являются корни, масса которых значительно превосходит надземную часть. Органические вещества попадают непосредственно в почву, что способствует об р азованию мощного плодородного слоя. В грунт после разложения растений возвращается около 1000 кг/га минеральных веществ.

Травяной опад быстро разлагается. В нем содержится много минералов, азота, кальция, калия и других питательных элементов. Корни трав образуют плотный дерновой слой, в котором задерживается влага. Поэтому полезные вещества не вымываются в нижние слои профиля. Основную часть гумуса составляют гуматы и гуминовые кислоты. Почва обладает нейтральной или слабощелочной реакцией, высоким плодородием. В местах с травянистой растительностью формируются черноземы.

Травянистые растения

Корни травянистых растений уходят глубоко в почву

Роль мха в почвообразовании

Мох появляется на горной породе уже на начальных этапах почвообразования, после водорослей и лишайников. Он растет на мелкоземе, созданном этими низшими растениями. После его появления на рухляке начинают интенсивно развиваться бактерии, появляются первые беспозвоночные (мелкие черви и насекомые), создаются условия для заселения трав, кустов и деревьев.

Нижняя часть стебля мха образует примитивную дернину. Она задерживает влагу и питательные вещества, формирует слой гумуса (иногда мощностью до 15-20 см). В примитивной мохово-лишайниковой почве содержится до 10-40% перегноя.

Мох хорошо впитывает воду и аккумулирует питательные вещества, прежде всего калий, кальций и серу. На втором месте среди химических элементов находятся фосфор и магний, на третьем – натрий и марганец. Немного меньше в почве закрепляются алюминий и кремний. Поскольку разложение мхов идет с участием бактерий, в гумусе много гуминовых кислот , высокое содержание азота – до 0,45-0,95% (в лесной подстилке – 0,20-0,25%).

Мох – это влаголюбивое растение. Его стебли способны впитывать воду. Поэтому мох часто растет в переувлажненных долинах и способствует их заболачиванию. Он играет одну из основных ролей в образовании торфа.

мох

Роль микроорганизмов и грибов в почвообразовании

Микроорганизмы заселяют верхние 20 см плодородного слоя грунта. В 1 г насчитывается от 200 млн (в глинистой почве) до 1-3 млрд (в черноземах) клеток. В 1 га масса микроорганизмов составляет 1-5 т.

Основную роль в почвообразовании играют бактерии и грибы. Они превращают сложные органические вещества в более простые, способствуют образованию гумуса. Одна из важных функций микрофлоры – фиксация азота в грунте.

Микроорганизмы участвуют в разрушении минеральных веществ и горной породы.

При этом задействуются следующие механизмы:

  • Растворение минералов сильными кислотами, образующимися в процессе нитрификации и окисления серы
  • Действие органических кислот, выделяемых грибами и бактериями в процессе брожения
  • Взаимодействие с аминокислотами, которые выделяют бактерии
  • Разрушение минералов соединениями, образующимися при разложении микроорганизмами растительных остатков (полифенолами, флавоноидами, танинами и другими)
  • Разрушение минералов продуктами микробного синтеза (полисахаридами и другими соединениями)

Бактерии и грибы также синтезируют минеральные вещества. Процесс связан с обменом веществ и химических элементов в микроорганизмах (железа, калия, алюминия, фосфора, серы, кальция). Например, благодаря бактериям, накапливающим алюминий , образуются бокситы. Эти микроорганизмы могут обогащать почвы соединениями кальция, глиноземами, кремнеземами, железом.

Каждый вид микроорганизмов играет свою особую роль в почвообразовании. Дальше мы рассмотрим основные две группы – грибы и бактерии.

Роль грибов в почвообразовании

Грибы – это одноклеточные или многоклеточные организмы с гетеротрофным типом питания. Они разлагают лигнин, клетчатку, дубильные вещества, протеины. Во внешнюю среду грибы выделяют ферменты и кислоты, которые участвуют в разрушении минералов.

Многоклеточные грибы образуют разветвленный мицелий. Его нити пронизывают и укрепляют плодородный грунт, формируют его зернистую структуру. На начальных этапах почвообразования гифы (нитевидные образования) проникают в микротрещины породы и разрушают ее. Многие виды вступают в симбиоз с высшими растениями. От них они получают органические вещества, отдавая взамен азот и минералы. Ряд грибов паразитирует на вредителях корней (насекомых, нематодах).

Больше всего грибов в лесной подстилке. Они хорошо чувствуют себя в кислой среде. Продукты их жизнедеятельности способствуют формированию подзолистых почв.

Роль бактерий в почвообразовании

Бактерии играют едва ли не главную роль в разложении органических и минеральных веществ, синтезе вторичных минералов, образовании гумуса. Они бывают автотрофными и гетеротрофными, аэробными (нуждаются в свободном кислороде) и анаэробными (получают кислород из продуктов окисления).

Аэробное разложение проходит в верхних слоях грунта и на хорошо разрыхленной земле. Оно приводит к полному распаду органики, выделению энергии. Образуются минеральные вещества , доступные для растений.

Анаэробный распад характерен для затопленных участков, глубинных слоев грунта. Проходят брожение и неполный распад остатков растений с образованием сложных органических и минеральных соединений. Если такие процессы преобладают, образуются болотистые или глеевые почвы с кислой реакцией.

Основные функции бактерий в почве:

  • Фиксация азота
    Этот элемент поступает в почву из воздуха и образуется после разложения белка. Главные фиксаторы азота – фотобактерии, клубневые бактерии (живут у корней бобовых растений), азотобактерии.
  • Нитрификация и денитрификация
    Бактерии превращают аммиак в азотистую и азотную кислоту. После этого азот становится доступным для усвоения растениями. Эту функцию выполняют псевдомонады, почкующиеся бактерии.
  • Разложение сложных углеводов (лигнина, целлюлозы, полисахаридов)
    В процессе участвуют цитофаги, спорообразующие бациллы и сахаролитические бактерии.
  • Разложение белков
    В аэробных условиях распад белков обеспечивают энтеробактерии, в анаэробных – клостридии.
  • Сбраживание пуринов и пиримидинов
    Этот процесс в анаэробных условиях обеспечивают пуринолитические бактерии.
  • Окисление органических кислот
    Окисление происходит сульфатредуцирующими бактериями.
  • Минерализация органических веществ
    Она обеспечивается артробактериями.
  • Распад гуминовых веществ
    Сложные гуминовые вещества распадаются благодаря нокардиям.

Вся деятельность микроорганизмов сводится к тому, чтобы превратить сложные органические вещества в простые элементы, доступные для растений. Без их участия отмершие остатки не разлагались бы , образование почвы стало бы невозможным.

Роль животных в почвообразовании

Почва – это место обитания сотен видов животных, от одноклеточных амеб и инфузорий до млекопитающих. Их роль в почвообразовании хоть и не основная, но очень важная.

Всех почвенных животных условно можно разделить на 4 группы:

  • Микрофауна (размеры до 0,2 мм)
    Группа включает одноклеточные организмы, миниатюрных насекомых, нематод, эхинококки, личинки.
  • Мезофауна (от 0,2 мм до 4 мм)
    Сюда входят мелкие насекомые, их личинки, некоторые виды червей.
  • Макрофауна (от 4 мм до 80 мм)
    Группа включает дождевых и других крупных червей, муравьев, жуков, термитов, моллюсков.
  • Мегафауна (больше 80 мм)
    Сюда входят очень крупные насекомые и черви, земляные крабы, земноводные, пресмыкающиеся (змеи, ящерицы, земляные черепахи), млекопитающие (роющие норы кроты, мыши, кролики, барсуки, лисы, тушканчики, травоядные животные).

Одну из важнейших функций в почвообразовании играют дождевые черви. Эти животные питаются полуразложившейся органикой, пропуская через себя огромные массы грунта (от 50 до 400 т/га). По мнению ученых, практически весь чернозем проходит через организм дождевых червей. За год на гектаре образуется около 25 т копролитов (выделений червей).

Черви в почве

Вместе с копролитами в почву попадают продукты жизнедеятельности червей, богатые полисахаридами, аминокислотами. Они становятся средой для обитания грибков и бактерий. Микроорганизмы разлагают органические вещества до простых химических элементов, доступных для растений.

Кроме переработки грунта, дождевые черви улучшают его структуру. Они роют многочисленные ходы, обеспечивая хорошую аэрацию. Частицы, пропущенные через кишечник, становятся липкими. Вокруг них формируются специфичные комки почвы , хорошо сохраняющие питательные вещества.

Простейшие регулируют численность бактерий, принимают участие в переработке простых органических соединений. Мелкие и крупные беспозвоночные животные, как и дождевые черви, перерабатывают сложные органические соединения, пушат грунт, обогащают его продуктами своей жизнедеятельности.

Рептилии, земноводные и млекопитающие играют меньшую роль в почвообразовании. Главную функцию выполняют грызуны, которые роют норы, перемешивают разные слои профиля, включая их в почвообразование. Животные обогащают грунт экскрементами. После смерти их тушки становятся источником протеинов, аминокислот и азотистых соединений. Травоядные не живут непосредственно в грунте, но они удобряют землю своими экскрементами, стимулируют рост корневой системы трав, съедая их верхнюю часть.

норка крота

корова ест траву

Все живые организмы в почве участвуют в непрерывном обороте органических и минеральных веществ. Это обеспечивает стабильное плодородие покрова – все находится в равновесии. Но оно нарушается при обработке почвы. Ведь с полей убирается зеленая масса растений , гербициды и пестициды уничтожают сорняки, почвенных насекомых, червей, некоторые микроорганизмы. Поэтому сельскохозяйственные земли нуждаются в постоянном внесении удобрений. Подробнее об этом вы можете узнать на нашей странице Деятельность человека как фактор почвообразования.

Какие условия влияют на формирование?

Почва — природная оболочка земли, верхний слой суши, покрывающей поверхность нашей планеты. Почвообразование происходило на протяжении многих миллионов лет под действием внешних природно-климатических факторов на горные породы. Земля обладает своим уникальным составом и строением. Почва является одной из важнейших составляющих биоценоза, именно в ней осуществляется поддержание экологических связей живых существ с жидкой, газообразной и твердой оболочкой Земли.

На процессы почвообразования прямо влияют внешние природные факторы, в которых он протекает, а также их сочетания.



Остановимся подробнее на каждой составной части схемы почвообразования.

  • Почвообразующие породы. Весь почвенный покров на нашей планете сформировался из горных пород, именно поэтому их химический состав играет определяющую роль в формировании свойств земли и ее качества. На направленность процесса почвообразования влияют такие свойства материнских пород, как их плотность, пористость, теплопроводность и габариты микрочастиц.
  • Климат. Воздействие климата на формирование грунтов многообразно. Ключевыми факторами становятся тепловой режим и уровень влажности, а также перераспределение воздушных масс в пространстве. От климата косвенно зависит и плодородие, поскольку определяет присутствие растительных сообществ особых типов.
  • Флора и фауна. По мере развития корневая система растений пронизывает материнскую породу и доставляет на поверхность грунта минеральные вещества. Соединяясь с продуктами жизнедеятельности животных, они формируют органические соединения и обуславливают плодородие земли.
  • Рельеф. Это косвенный фактор. Он влияет не на сам процесс почвообразования, а на перераспределение тепла и влаги в окружающей материнскую породу среде. Так, в низинах скапливается вода, а на возвышенностях и холмах она не задерживается — уровень влаги влияет на скорость разложения растительных остатков в земле. Южные склоны обычно получают больше тепла, чем северные — в теплой среде почвенные микроорганизмы более активны. На высоких участках более выражены процессы выветривания, а значит, горные породы быстрее растрескиваются и рассыпаются.
  • Возраст почвы. Почвенный покров, как любое другое природное тело, постоянно развивается, изменяет свой состав и структуру. Тот тип грунта, который мы видим сейчас — лишь один из этапов непрерывного процесса почвообразования. Даже если внешние факторы останутся неизменными, то верхний слой земли все равно будет подвергаться преобразованиям. Возраст может быть абсолютным и относительным. Под абсолютным подразумевается время с момента образования почвенного покрова до нынешней ступени развития. Однако далеко не все части суши на протяжении истории своего формирования были ею, многие образованы на месте бывших морей и океанов. Относительный возраст рассчитывают как разницу в развитии плодородного верхнего слоя в рамках одной территории.

В последнее столетие большое влияние на почвообразование влияет человек. Мелиоративные мероприятия, культивация полей, вырубка лесов, выбросы химических отходов — все это вносит свою лепту в изменение структуры и химического состава земли.




Как образуется почва?

Вопросы о том, как и в какой последовательности происходило образование почвы, занимает не одно поколение ученых-исследователей. Известно, что наша планета имеет плотное ядро, окруженное раскаленной мантией с вязкой структурой. Выше расположена внешняя кора, она состоит из горных пород. Около 4 миллиардов лет назад планета начала остывать, это сопровождалось выходом магмы на поверхность. В этом месте образовывались базальты, а под ними — граниты. На протяжении миллионов лет под действием внешних факторов происходил синтез новых веществ и изменял первичную материнскую породу.

После того как в земной атмосфере появился кислород, началось активное формирование осадочного слоя. В результате сильного нагрева горных пород в дневное время и последующего резкого охлаждения ночью происходило интенсивное выветривание. Оно привело к появлению трещин, со временем они углублялись и расширялись. В них проникала вода и замерзала, приводя к еще большему разрушению породы изнутри. Все эти физические воздействия приводят к тому, что горные породы дробились на обломки разной величины, постепенно они становились рыхлыми. Таким образом сформировались пески, гипс, известняк, а также глины.

Согласно данным исследований, в тот период на планете уже существовали простейшие одноклеточные и бактерии. Они питались атмосферным азотом и углеродом, поглощали минеральные компоненты материнской породы и довольно легко приспосабливались к изменяющимся условиям внешней среды.



В ходе жизнедеятельности они выделяли особые ферменты, способные растворять горные породы. Постепенно на их месте появлялись мхи и лишайники, которые продолжали разрушать горные породы. Отмирая, низшие растения разлагались микроорганизмами — это дало начало формированию первых плодородных горизонтов.

В этом слое содержались микро- и макроэлементы, необходимые для полноценного питания высших древесных и травянистых растений. Отмирающие части растений становились пищей для животных и бактерий. В процессе переработки они выделяли еще больше органических веществ, разрушающих горную породу. Благодаря этому в верхних слоях земли накапливался перегной. Таким образом, попадание растительных остатков в землю влекло за собой обогащение верхнего слоя биологически важными для растений элементами. Именно так происходила окончательная трансформация горных пород в землю. Этот процесс продолжается и по сей день.

В процессе биологических, физических и химических процессов формируется структура почвы — ее внутреннее строение из земляных комочков разной величины. Самые плодородные земли имеют мелкокомковатую или зернистую структуру, комочки в ней не превышают 1 см. В таких почвах образуется много пустот, они создают условия для поступления влаги и воздуха, что стимулирует усиленный рост числа полезных бактерий. Такой структурой отличаются черноземные грунты и близкие к ним почвы.



Какова роль живых организмов?

Большую роль в формировании почвы играют животные и растения. Листья, травинки, хвоя и ветки деревьев, попадая на землю, скапливались в верхнем слое. Они довольно быстро разлагаются и уже спустя 6 месяцев превращаются в удобрение высокого качества. В таком виде они расходуются растениями, а затем снова возвращаются в почву — происходит так называемый почвенный круговорот, который связывает в единое целое живую и неживую природу.

В процессе почвообразования активно участвуют и животные — полевки, кроты, суслики, а также черви и насекомые. По мере передвижения по грунту они разрыхляют землю и смешивают ее с гниющими растительными остатками. В результате улучшается химический состав почвы, она становится плодородной. Исследователи подсчитали, что, к примеру, кроты, прокапывая глубокие ходы, выкидывают на поверхность землю, богатую магнием, кальцием, железом и другими минералами.

За год в березовом лесу кроты поднимают наверх до 10 т гумусной земли на каждый гектар площади. Кроме того, в кротовинах накапливается вода, которая увлажняет землю и ускоряет процесс разложения растительных остатков.

Совокупность животных и растительных сообществ оказывает существенное влияние на почвообразование, улучшая структуру грунта, насыщая полезными веществами и тем самым повышая плодородие земли.

Читайте также: