Как вода влияет на почву

Обновлено: 05.10.2024

Глава 7. ВОДНЫЕ СВОЙСТВА И ВОДНЫЙ РЕЖИМ ПОЧВ

§1. Значение воды в почве

Почва как многофазная система способна поглощать и удерживать воду. В ней всегда находится определенное количество влаги. Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении.

Почвенная вода является жизненной основой растений, почвенной фауны и микрофлоры, получающих воду главным образом из почвы. От содержания воды в почве зависят интенсивность протекающих в ней биологических, химических и физико-химических процессов, передвижение веществ и формирование почвенного профиля, водно-воздушный, питательный и тепловой режимы, ее физико-механические свойства, то есть, важнейшие показатели почвенного плодородия. Следовательно, почвенная вода оказывает прямое и косвенное влияние на развитие и урожайность растений.

Растения расходуют воду в огромном количестве. Для создания 1 г сухого органического вещества потребляется от 200 до 1000 г воды. Количество воды, затрачиваемое на создание единицы сухого вещества за вегетационный период, называется транcnupaцuoнным коэффициентом. Однако растениями усваивается только часть почвенной влаги, которая удерживается силами, меньшими, чем сосущая сила корней, – продуктивная влага. В процессе фотосинтеза вода вместе с углекислым газом – первичный источник образования органического вещества растений. В воде растворяются питательные вещества, которые с почвенным раствором поступают в растения. Растения нормально развиваются только при постоянном и достаточном количестве влаги в почве. Недостаток, как и избыток, влаги в почве ограничивает продуктивность растений. В этом случае неэффективными становятся различные приемы, направленные на повышение урожаев сельскохозяйственных культур (внесение удобрений, известкование и др.).

Водообеспеченность растений определяется не только количеством поступающей воды в почву, но и ее водными свойствами, способностью почвы впитывать, фильтровать, удерживать, сохранять воду и отдавать ее растению по мере потребления. В одинаковых климатических условиях при равной влажности почвы могут содержать разное количество доступной воды, что зависит от механического состава почв, структурного состояния, содержания гумуса и других показателей, предопределяющих их водные свойства. Поэтому создание благоприятного водного режима в почве – одно из важнейших условий получения высоких и устойчивых урожаев сельскохозяйственных культур в условиях интенсивного земледелия.

§2. Формы воды в почве

Для определения обеспеченности растений доступной водой необходимо знать формы и взаимосвязи воды в почве.

Вода в почве может находиться во всех трех состояниях: в парообразном, твердом и жидком. Парообразная вода содержится в почвенном воздухе и поступает из атмосферы, а также образуется в почве при испарении жидкой воды и льда, свободно передвигается в почве из более влажных мест в менее увлажненные (при условии одной и той же температуры во всех горизонтах почвы), а из горизонтов с большей температурой - в участки с меньшей температурой. Практическое значение парообразной почвенной влаги в земледелии ничтожно, однако в почвах засушливых районов за счет водяного пара в зимнее время в метровом слое аккумулируется до 10 –14 мм влаги. Твердая вода непосредственно не используются растениями, хотя и может служить резервом доступной влаги (жидкой и газообразной).

Жидкая и парообразная вода в почве подвергается воздействию различных природных сил: гравитационных, молекулярного притяжения твердой фазы почвы и силы притяжения между молекулами воды. В зависимости от преобладания одной из этих сил почвенная вода имеет различную подвижность и доступность для растений.

Выделяют следующие основные формы почвенной воды, различающиеся между собой прочностью связи с твердой фазой почвы и степенью подвижности: кристаллизационную, гигроскопическую, пленочную, капиллярную, гравитационную.

Кристаллизационная вода – это химически связанная вода, входящая в состав минералов либо в виде гидроксильных групп (Fе(ОН)з, А1(ОН)з, Са(ОН)2), либо в виде целых молекул (например, гипса (CaS04 * 2 Н20), мирабилита (Na24 * 10 Н2О) и др.); выделяется при нагревании почвы до температуры 400 – 600 °С. Химически связанная влага не принимает непосредственного участия в физических процессах, протекающих в почве, и растениям недоступна.

Гигроскопическая влага. Часть воды, находящейся в воздухе в виде пара, поглощается поверхностью почвенных частиц, образуя гигроскопическую влагу – одну из форм так называемой сорбционной воды, т.е. удерживаемой силами сорбции. Содержание этой влаги зависит от: относительной влажности и температуры воздуха (чем влажнее воздух и ниже температура, тем ее больше в почве), содержания органического вещества (чем богаче почва гумусовыми веществами, тем ее больше) и механического состава (при прочих равных условиях почва суглинистая или глинистая всегда будет содержать больше гигроскопической влаги, чем почва песчаная или супесчаная). Наибольшее количество гигроскопической воды, поглощенное почвой и выраженное в процентах от массы сухой почвы, называется максимальной гигроскопичностью (МГ). Такое количество влаги почва может поглотить из воздуха, имеющего относительную влажность, близкую к 100 %. Максимальная гигроскопическая влажность – величина, постоянная для каждой почвы, так как она определяется при постоянных температуре и относительной влажности воздуха. Может колебаться для песчаных почв от 0,1 до 1,5 в глинистых, гумусированных – до 10 – 15, в органогенных – до 20 – 40 % от веса сухой почвы. Молекулы гигроскопической воды удерживаются на поверхности почвенных частиц с большой силой, поэтому удалить их можно лишь продолжительным нагреванием почвы при 105 °С. Следовательно, для растений гигроскопическая влага недоступна.

МГ используют для выяснения мертвого запаса влаги (МЗВ) в почве – количество влаги в почве, при котором растения начинают устойчиво завядать, так как эта вода не может быть использована растениями. Он равен 1,5 • МГ, т.е. в состав мертвого запаса влаги входит еще пленочная вода.

Пленочная вода покрывает почвенные частицы следующим за гигроскопической влагой слоем, также удерживается силами межмолекулярного притяжения, но слабее, поэтому является частично доступной (для взрослых растений). Кристаллизационная, гигроскопическая и пленочная формы воды относятся к прочносвязанной воде и составляют МЗВ.

Влага, которая содержится в почве сверх мертвого запаса, называется продуктивной. Благодаря этой влаге формируется урожай сельскохозяйственных растений.

Свободная вода не связана силами притяжения с почвенными частицами, доступна растениям, передвигается в почве под действием капиллярных и гравитационных сил. В связи с этим выделяют капиллярную и гравитационную воду.

Капиллярная вода заполняет тонкие (капиллярные) поры почвы и передвигается в них под влиянием капиллярных (менисковых) сил. Высота подъема воды тем выше, чем тоньше капилляр. В зависимости от характера увлажнения различают капиллярно- подвешенную и капиллярно-подпертую воду. При увлажнении почвы сверху (атмосферные осадки, оросительные воды) формируется капиллярно-подвешенная вода, не связанная с грунтовыми водами и находящаяся в верхней части профиля почв. Капиллярно-подпертая формируется при увлажнении снизу и поднимается от зеркала грунтовых вод. Почвенный слой, в котором она распространяется, называется капиллярной каймой, и мощность его зависит от водоподъемной способности почвы. Капиллярная вода легкодоступна для растений и является основным источником их водного питания. Разновидностью капиллярной воды является стыковая влага, находящаяся в почвах с атмосферным увлажнением, которая представляет собой влагу, удерживаемую между частицами почвы и не проходящую вниз.

Если почву, в которой все капиллярные поры уже заполнены водой, продолжать увлажнять, то влагой будут заполняться некапиллярные промежутки. Эта влага, свободно передвигающаяся в почве и подчиненная в своем движении силе тяжести, называется гравитационной. Гравитационная влага может передвигаться в почве только из верхних слоев вниз. Просачиваясь вниз, она либо является источником питания грунтовых вод, либо распределяется по толще почвы и переходит в другие формы воды. Гравитационная влага легкодоступна растениям, но избыточна (т.к. мало воздуха и нарушается газообмен) и поэтому непродуктивна. Полное насыщение почвы водой возможно после таяния снега или длительных дождей, однако это явление кратковременное.

Грунтовые воды играют важную роль в водном питании растений. Подходя близко к поверхности почвы, в северных районах они вызывают заболачивание, а в южных – засоление почвы. Критическая глубина залегания грунтовых вод, при которой происходит засоление почв на юге, колеблется в пределах 1,5 – 2,5 м.

§3. Водные свойства почвы и основные почвенно-гидрологические константы

Водный режим почвы зависит не только от количества атмосферных осадков, но и в значительной мере от водных свойств самой почвы. К главнейшим водным свойствам относятся водопроницаемость, водоподъемная способность (или капиллярность), влагоемкость.

Водопроницаемость – это способность почвы впитывать и пропускать через себя воду. Водопроницаемость измеряется объемом воды, протекающей через единицу площади поверхности почвы в единицу времени, выражается в мм водного столба в единицу времени.Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, не насыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация – силой тяжести.

Водопроницаемость зависит от механического состава, структуры (у структурных почв выше, чем у бесструктурных), содержания гумусовых веществ (в целом от общего объема пор в почве и их размера), а также от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций – увеличивает. В легких по механическому составу почвах поры крупные и водопроницаемость всегда высокая. В почвах тяжелого механического состава с глыбисто-пылеватой структурой и плотных бесструктурных почвах водопроницаемость низкая. После оструктуривания такие почвы в несколько раз улучшают фильтрационную способность (суглинистые и глинистые почвы, обладающие водопрочной комковато-зернистой структурой, также отличаются высокой водопроницаемостью).

Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых – до 5 см. От этого свойства зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекаетпо поверхности, что приводит к непродуктивному расходованию влаги, могут происходить вымокание культур, застаивание воды на поверхности и развиваться эрозия почвы. При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается большая потеря на полив.

Водоподъемная способность – свойство почвы поднимать содержащуюся в ней влагу за счет капиллярных сил (вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение). Высота капиллярного поднятия воды зависит от диаметра капилляров: чем они тоньше, тем выше поднятие, и наоборот. Поэтому водоподъемная способность растет от песчаных почв к суглинистым и глинистым. Максимальная высота подъема воды над уровнем грунтовых вод для песчаных почв 0,5 – 0,8 м, для суглинистых – 2,5 – 3,5 м, в глинистых почвах – 3,0 – 6,0 м.Скорость подъема зависит от размера пори вязкости воды, обусловливаемой ее температурой. По крупным порам вода поднимается быстрее, чем в почвах с тонкими капиллярами.С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли также оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью.

Благодаря капиллярным явлениям и водоподъемной способности почв грунтовые воды участвуют в дополнительном снабжении растений водой, особенно в засушливые годы, развитии восстановительных процессов и засолении почвенного профиля.

Влагоемкость – способность почвы впитывать и удерживать определенное количество воды. Выражается в % к весу сухой почвы. Эта способность зависит от гранулометрического состава, содержания гумуса, состава поглощенных катионов. Высокая влагоемкость характерна для глинистых почв, богатых коллоидами, с высоким содержанием гумуса. Высокой влагоемкостью обладают почвы, содержащие известь, хлориды, слабовлагоемкие песчаные почвы.

Различают следующие виды влагоемкости: максимальную гигроскопическую, капиллярную, полевую и полную.

Максимальная гигроскопическая влагоемкость (МГВ) – это наибольшее недоступное растениям количество влаги (мертвый запас влаги), которое прочно удерживается молекулярными силами почвы (адсорбцией). Величина этой влагоемкости зависит от суммарной поверхности частиц, а также содержания гумуса: чем больше в почве илистых частиц и гумуса, тем она выше.

Капиллярная влагоемкость – максимальное количество воды (капиллярно-подпертой влаги), которое удерживается в почве над уровнем грунтовых вод при заполнении капиллярных пор. Кроме свойств почвы, величина капиллярной влагоемкости зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается и на границе капиллярной каймы равна наименьшей влагоемкости.

Наименьшая влагоемкость (НВ), или предельная полевая влагоемкость (ППВ) – это наибольшее количество воды, которое остается в почве после ее полного увлажнения и свободного стекания избыточной воды. Величина наименьшей влагоемкости зависит от гранулометрического и минералогического состава, плотности и пористости почвы. Она соответствует величине капиллярно-подвешенной воды. Наименьшая влагоемкость – важнейшая характеристика водных свойств почвы, дающая представление о наибольшем количестве воды, которое почва способна накопить и длительное время удерживать. Она составляет (в % от веса абсолютно сухой почвы): для песчаных – 4 – 9, супесчаных – 10 – 17, легко- и среднесуглинистых – 18 – 30, тяжелосуглинистых и глинистых – 23 – 40. Наибольшие значения ППВ характерны для гумусированных почв тяжелого механического состава, обладающих хорошо выраженной макро- и микроструктурой.

Полной влагоемкостью (ПВ) называется наибольшее количество воды, которое может вместить почва при полном заполнении всех ее пор водой при отсутствии оттока (численно равна пористости почвы).

Оптимальной влажностью для большинства культурных растений условно принято считать влажность, приблизительно равную 50 % полной влагоемкости данной почвы. Для большинства зерновых культур оптимальная влажность составляет 30 – 50 %, для зернобобовых – 50 – 60 %, технических растений и корнеплодов – 60 – 70 %, сеяных луговых трав (злаков и бобовых) – 80 – 90 % ПВ почвы. Поэтому оптимальная влажность почвы для разных растений и почв должна несколько отклоняться от условно принятой.

Полевая влажность (WП) характеризует содержание влаги в почве на данный момент, выражается в % к массе сухой почвы.

Из общего количества влаги, содержащейся в почве при ее полном насыщении, выделяют такие пограничные значения влажности, при которых меняются поведение воды и ее доступность растениям. Границы значений влажности, характеризующие пределы появления различных категорий почвенной влаги, называются почвенно-гидрологическими константами. Наиболее широко используются следующие: максимальная гигроскопическая влагоемкость, влажность разрыва капилляров (ВРК), влажность завядания (ВЗ), наименьшая влагоемкость (НВ) и полная влагоемкость (ПВ).

При влажности НВ вся система капиллярных пор заполнена водой, поэтому создаются оптимальные условия влагообеспеченности растений. По мере испарения и потребления воды растениями теряется сплошность заполнения водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, при которой происходит разрыв сплошного заполнения капилляров водой, называется влажностью разрыва капилляров (ВРК). Это важная гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65 – 70 % НВ.

Влажность завядания растений – это почвенная влажность, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, т.е. это нижний предел доступной растениям влаги (численно равна 1,5 * МГ). Влажность завядания зависит от вида растений и свойств почвы. Чем тяжелее механический состав почвы, чем больше в ней органического вещества, тем выше ВЗ. В среднем она составляет: в песках – 1 – 3 %, в супесях – 3 – 6 %, в суглинках – 6 – 15 %, в торфяных почвах – 50 – 60 %.

Для растений доступна только та часть почвенной влаги, которая может быть усвоена в процессе жизнедеятельности. Она называется продуктивной влагой, так как используется для образования урожая и вычисляется как разница между ППВ и ВЗ. Зная количество продуктивной влаги, можно рассчитать урожай растений (1 % продуктивной влаги дает 1 ц зерна) и дефицит влаги.

Продуктивный запас влаги (ПЗВ) в определенном слое (или почвенном профиле) вычисляют, зная общий запас воды (ОЗВ) в этом слое и запас труднодоступной воды (ЗТВ). Запас воды определяют для каждого почвенного горизонта по формуле:


где В – запас воды, м 3 /га для слоя Н, WП – полевая влажность, dV – объемная плотность почвы, г/см 3 , Н – мощность горизонта, см. Запас труднодоступной воды рассчитывают по той же формуле, но вместо WП берут ВЗ. Для пересчетов запасов воды, выраженных в м 3 /га, в мм их умножают на 0,1 (запас воды в 1 мм водного столба на площади 1 га равен 10 т воды). Разность между этими показателями дает продуктивный запас влаги: ПЗВ = ОЗВ – ЗТВ. Оценка запасов продуктивной влаги представлена в таблице 11.

Грунтовые воды существенно влияют на процессы почвообразования. Хотя многие ученые не выделяют этот фактор в отдельный, считая его частью климата либо рельефа. Но как тогда можно объяснить, что в пределах одной климатической зоны или на участках с похожим рельефом формируются почвы разных типов , подтипов, видов и разновидностей? Это во многом зависит именно от уровня и состава грунтовых вод.

В этой статье мы подробно расскажем, как вода влияет на процесс образования почвы. Вы узнаете, каким образом грунтовые воды связаны с климатом и рельефом. Но прежде всего давайте разберемся, что подразумевается под грунтовыми водами и какие они бывают.

Что такое грунтовые воды

Грунтовыми водами называют первый водоносный горизонт от поверхности земли. Он располагается на водоупорной, или водонепроницаемой породе. Например, это может быть плотный глинистый грунт. Питается первый горизонт влагой из осадков, талыми водами и частично из бассейнов соседствующих рек или озер.

Грунтовые воды как фактор почвообразования

грунтовые воды

Грунтовые воды отличаются по глубине и способу залегания, составу. Эти характеристики существенно влияют на почвообразование.

По способу залегания грунтовые воды бывают следующими:

  • Верховодка
    то временный горизонт, образующийся в пределах почвенного профиля (плодородного слоя грунта). Он возникает в областях с большим количеством осадков или после интенсивного таяния снега. Существует верховодка от нескольких недель до 2-3 месяцев, затем испаряется или переходит в более глубокие горизонты.
  • Открытые грунтовые воды
    Горизонт располагается на водонепроницаемой породе, сверху он прикрыт рыхлым грунтом. Вода по капиллярам поднимается в верхние слои почвы , может достигать корней растений и даже поверхности. Горизонт подпитывается осадками, его уровень постоянно меняется.
  • Закрытые грунтовые воды
    Иногда их также называют межпластовыми. Такой горизонт сверху и снизу окружен водонепроницаемой породой. Он питается либо на отдаленных территориях, либо влагой из рек и озер. В почвообразовании закрытые грунтовые воды практически не участвуют.

Виды грунтовых вод в зависимости от способа залегания

Вода способна медленно передвигаться по склону или в сторону ближайшего водоема. В рыхлых породах (песке, гравии) скорость движения достигает 2-5 м/сутки. В супеси или суглинке скорость не превышает 1 м/сутки. В глинистых грунтах вода почти неподвижна, она смещается приблизительно на 1 м в год. Это способствует осаждению растворимых солей и повышению минерализации.

По количеству минеральных веществ грунтовые воды разделяют на:

  • Пресные – до 1 г/л
  • Солоноватые – 1-10 г/л
  • Соленые – 10-50 г/л
  • Рассолы – больше 50 г/л

Степень минерализации зависит от климата и глубины залегания грунтовых вод. Чем больше выпадает осадков и выше находится водоносный горизонт, тем преснее вода.

Зависимость грунтовых вод от климата и рельефа

Климат и рельеф являются, пожалуй, основными факторами почвообразования. Подробно о них вы можете прочитать в соответствующих статьях. Но почему же грунтовые воды часто относят к этим двум явлениям?

На первый взгляд, ответ лежит на поверхности:

Дело в том, что климат дает осадки, которые подпитывают грунтовые воды. Рельеф же влияет на то, где расположены горизонты , как передвигается влага. Об этом мы уже рассказали выше. Но ведь только этими условиями влияние климата и рельефа на грунтовые воды не ограничивается.

Стоит также отметить, что от климатической зоны зависит минерализация грунтовых вод:

Что касается рельефа, зависимость здесь следующая:

Во-первых, на возвышенностях грунтовые воды залегают глубоко. В условиях тайги здесь могут формироваться дерновые и дерново-подзолистые почвы. В долинах уровень воды выше, что способствует образованию подзолистого слоя даже в черноземах.

Во-вторых, на состав минералов в грунтовых водах влияет и горная порода, в толще которой они накапливаются. В них могут растворяться соли кальция, магния, алюминия и железа. Затем из этих соединений образуются вторичные глинистые минералы.

Чем глубже находится водоносный горизонт, тем больше солей в нем растворяется. При отсутствии подпитки из осадков насыщенность раствора возрастает. Именно поэтому в сухих областях образуются соленые грунтовые воды.

Влияние грунтовых вод на почвообразование

Уровень залегания грунтовых вод влияет на водный режим почвы. При высоком расположении горизонта влага из осадков полностью проходит профиль и достигает водоносного слоя. Это называется промывным водным режимом. В таких условиях образуются торфяники , подзолистые почвы с кислой реакцией, высоким содержанием железа и кремнезема.

Грунтовые воды влияют на водный режим почвы

Если грунтовые воды способствуют образованию верховодки после таяния снега или обильных дождей, в почве начинают преобладать анаэробные процессы разложения органики. В результате образуется глей – кислый и малопродуктивный слой зеленоватого цвета, богатый солями алюминия, магния, марганца и железа.

В лесостепной зоне грунтовые воды находятся довольно глубоко, и влага из осадков доходит до них лишь в определенные месяцы года. Это способствует ощелачиванию, накоплению солей кальция и магния. В таких условиях формируются самые плодородные почвы – черноземы.

В сухих (аридных) областях, где грунтовые воды находятся близко к поверхности, формируется так называемый выпотной режим. Жидкость по капиллярам поднимается на поверхность и начинает интенсивно испаряться. Воды слабо подпитываются осадками, в них накапливаются соли натрия. В результате почвы превращаются в солончаки и практически полностью теряют плодородие.

Степь

Затопленная местность

В зависимости от уровня водоносного горизонта и участия грунтовых вод в почвообразовании, почвы разделяют на:

  • Автоморфные
    Глубина залегания грунтовых вод больше 6 м. Они практически не принимают участия в почвообразовании. Режим почвы непромывной, реакция нейтральная или слабощелочная, плодородие среднее или высокое.
  • Полугидроморфные
    Глубина залегания грунтовых вод – 3-6 м. По капиллярам они могут подниматься до корней растений. Воды привносят в почву растворенные соли , влияют на тип растительности, мощность корневой системы. Формируются такие почвы в условиях полупромывного водного режима или в поймах рек, которые периодически затапливаются. Плодородие почв с этим режимом высокое, реакция колеблется от слабокислой до слабощелочной.
  • Гидроморфные
    Грунтовые воды залегают на глубине до 3 м. Они могут формировать болота, вызывают оглеевание и оподзоливание почв. Плодородная земля в такой местности имеет кислую реакцию, низкое или среднее плодородие.

Грунтовые воды – это фактор почвообразования, который выделяется не всеми учеными. Это объясняется тем, что они тесно связаны с рельефом и климатом. Тем не менее, именно грунтовые воды больше всего влияют на формирование азональных почв на некоторых территориях (в горах, долинах, поймах рек). От этого фактора также напрямую зависит плодородие почвенных покровов.

Получить бесплатную консультацию

влияние подземных вод на строительство

Как подземные воды влияют на качество почвы?

Избыточная влага меняет структуру почвы и провоцирует ее изменение. При этом каждый тип грунта имеет свой сценарий деформации:

Связные дисперсные грунты

Грунты, состоящие из отдельных частиц разного размера, имеют тенденцию менять свои характеристики при повышенной влажности. Поэтому суглинки, глины и супеси, намокая, становятся пластичными и подвижными. В отдельных случаях почва превращается в вязкую жидкость, которая не удерживает здания на поверхности, а засасывает их как трясина.

Несвязные дисперсные грунты

Получить бесплатную консультацию

как подземные воды влияют на грунт

Просадочные и набухающие грунты

Контакт с водой просадочных грунтов разрушает их структуру, что приводит к схлопыванию полостей и резкой просадке почвы вплоть до полутора метров. Набухающие грунты впитывают влагу и неравномерно увеличиваются в объеме.

влияние подземных вод на строительство

Уровень грунтовых вод

Уровень грунтовых вод ― отметка, на которой находятся грунтовые воды относительно поверхности земли, определяется методом бурения скважин или с помощью выкапывания небольшого котлована – шурфа.

измерение уровня грунтовых вод

Уровень грунтовых вод меняется в соответствии с рельефом участка и зависит от расстояния от водоемов. В течение года УГВ постоянно изменяется и достигает своего максимума в период весеннего таяния снегов. Вода может держаться на максимальной отметке до 10 дней. Осенние дожди также повышают уровень грунтовых вод. Зимой и сухим летом наблюдается самый низкий УГВ.

как меняется уровень грунтовых вод в зависимости от сезона

Заниматься изменением уровня грунтовых вод без предварительных инженерно-геологических изысканий небезопасно. Можно нарушить поверхностный сток атмосферных вод и спровоцировать заболачивание соседних участков. Отсыпание больших по площади участков щебнем и песком вызывает скопление влаги в основаниях грунта, плавуны и проседания почвы.

Агрессивные грунтовые воды

Мало того, что грунтовые воды значительно усложняют закладку фундамента и увеличивают стоимость работ, они еще и разрушают саму железобетонную конструкцию, негативно воздействуя на нее изо дня в день.

Получить бесплатную консультацию

Соли и кислоты, входящие в состав большинства грунтовых вод, разрушают бетонные основания зданий. Причем, для нанесения существенного вреда конструкции требуется менее десяти лет.

Воды называются агрессивными из-за входящих в их состав веществ, что является скорее нормой, чем исключением.

агрессивные грунтовые воды

В зависимости от концентрации химических веществ, воздействующих на конструкции, воды разделяются на:

  • неагрессивные;
  • слабоагрессивные;
  • среднеагрессивные;
  • сильноагрессивные.

Выяснить, к какому типу относятся воды на вашем строительном участке, помогут сотрудники лаборатории при проведении инженерно-геологических изысканий. Даже небольшое содержание щелочей или сульфатов может разрушить бетонный фундамент из-за постоянного притока новых частиц в жидкости.

Грамотное производство работ нулевого цикла позволяет защитить фундамент от воздействия грунтовых вод и продлить его жизнь. Для этого реализуют комплекс мер, включающих:

    ;
  • устройство дренажной системы;
  • использование сульфатостойких цементов;
  • применение сверхплотных бетонов с водонепроницаемостью W6, W8, W10 и более;
  • гидроизоляцию поверхностей железобетонных конструкций.

как нивелировать влияние грунтовых вод во время строительства

Водопонижение иглофильтрами

Снижение уровня грунтовых вод иглофильтровыми установками ― один из самых быстрых и эффективных методов водопонижения.

Устройство дренажной системы: рытье траншей и прокладка труб требует времени. Плюс процесс водопонижения увеличивается по срокам из-за того, что вода отходит из почвы самостоятельно. Это может занять несколько дней и даже недель. Для регулярного осушения почвы такая система вполне подходит, но если необходимо оперативно осушить строительную площадку, это целесообразно делать с помощью иглофильтровых установок.

насосные установки для осушения грунтовых вод

Эжекторные иглофильтры

Иглофильтровые установки осушают большие строительные площадки в более короткие сроки. Для этих целей используются эжекторные иглофильтры, понижающие уровень грунтовых вод вплоть до 15 – 20 метров.

Получить бесплатную консультацию

Насос с циркуляционным баком размещается на поверхности земли выше уровня котлована. От него идет распределительный коллектор, через который вода спускается в эжекторы – водоструйные насосы, расположенные внутри второго снизу яруса иглофильтра.

Пройдя эжекторную насадку, водяной столб по внутренней цельной трубе поднимается вверх и создает в эжекторе вакуум. Это запускает механизм откачки грунтовой воды в циркуляционный бак. Затем вода из бака выкачивается обычными насосами.

Легкие иглофильтровые установки

Мобильные иглофильтровые установки — электрические весом до 700 кг и дизельные до 800 кг понижают уровень грунтовых вод до 5 метров. Легкий иглофильтр — это труба диаметром 40 мм при длине до 6,5 метров. На основании проекта водопонижения специалисты комплектуют иглофильтровую установку, состоящую из иглофильтров, насосных установок и станций водопонижения.

На количество комплектующих влияет площадь осушаемого участка и уровень грунтовых вод. Применение иглофильтровых установок дает возможность быстро осушить большую строительную площадку, котлован или траншеи и начать работы, не нарушая сроки. Регулярное водопонижение после возведения фундамента и окончания строительства традиционно осуществляется дренажными системами, но в чрезвычайных случаях может потребоваться откачка грунтовых вод иглофильтрами.

откачка грунтовых вод иглофильтрами

Получить бесплатную консультацию

Если у вас остались вопросы, или вы хотели бы получить больше информации о влиянии подземных вод на строительство — позвоните по номеру телефона, указанному на сайте или заполните форму обратной связи. Наши специалисты проконсультируют относительно водопонижения иглофильтровыми установками и помогут вам с выбором.

Грунтовые воды и их влияние на грунты основания

Как уже отмечалось в других статьях, касающихся морозного пучения грунтов, близость уровня грунтовых вод к фронту промерзания имеет решающее влияние на процессы пучения. Но грунтовые воды опасны не только этим – в теплое время года замачивание так же вызывает резкое снижение показателей физико-механических свойств грунтов по сравнению с сухим или умеренно влажным состоянием. Да и для самих конструкций грунтовая вода не лучший сосед, разберемся почему.

2. Влияние грунтовых вод на свойства грунтов основания

Все связные дисперсные грунты (суглинки, глины, супеси) ухудшают свои физико-механические характеристики при увеличении влажности. При малой влажности глинистые грунты находятся в твёрдом состоянии. С ростом влажности глинистых грунтов они переходят в пластичное состояние, удельное сцепление с и угол внутреннего трения φ закономерно снижаются за счет ослабления структурных связей и смазывающего действия воды на контактах частиц. При дальнейшем увеличении влажности она обычно достигает влажности на границе текучести и грунт разжижается, приобретая свойства вязкой жидкости.

[Глинистые грунты при увеличении влажности сильно снижают свои прочностные качества вплоть до перехода в жидкое состояние]


Фото: Под воздействием влаги грунт потерял несущую способность

На несвязные дисперсные грунты (пески, щебенисты грунты) влажность влияет меньше, т.к. удельное сцепление в них практически отсутствует, а трение между частицами во многом обусловлено формой и характером их поверхности. Однако наличие воды в таких грунтах все же снижает внутреннее трение φ — до 20%.

[Пески и крупнообломочные грунты меньше подвержены влиянию влажности, однако и на них грунтовые воды действуют отрицательно, снижая внутреннее трение до 20%]

В твердой компоненте грунтов могут содержаться и растворимые в воде минералы: гипс, кальцит, каменная соль и др., а также органические вещества, которые под воздействием грунтовых вод растворяются ослабляя структурные связи или образуют пустоты.

Кроме того, существуют специфические грунты, которым контакт с водой противопоказан – это просадочные и набухающие грунты.

Просадочные грунты имеют крупные поры (макропоры) и низкую влажность и в сухом состоянии мало чем отличаются от обычных глинистых грунтов. Но после замачивания они быстро размокают, теряя структурные связи и под нагрузкой резко сжимаются за счет схлопывания пор — просаживаются. Иногда суммарная просадка основания при этом может быть очень велика до метра и более.

Набухающие грунты — глинистые грунты с большим содержанием гидрофильных глинистых минералов и малой влажность в природном состоянии. Поступающая в набухающие грунты влага поглащается поверхностью глинистых частиц, образуя гидратные оболочки. При первоначальном относительно близком расположении частиц, под действием гидратных оболочек они раздвигаются, вызывая увеличение объема грунта и подъем поверхности (почти как при пучении).

3. Агрессивность грунтовых вод

Большинство грунтовых вод являются агрессивной средой для стальных конструкций, то есть погруженные в них конструкции будут разрушены за сравнительно короткий срок: от 1 до 10 лет или даже быстрее.

Так же при определенном химическом составе грунтовые воды оказывают разрушающее воздействие и на бетонные и железобетонные конструкции. Грунтовые воды, способные разрушать цементные бетоны и растворы, называются агрессивными. Агрессивность их зависит от химического состава растворенных в них солей и кислот. Эти вещества попадают в воду из подземных естественных залежей или из отбросов производств. Поэтому агрессивные воды встречаются повсеместно.



Фото: Разрушение железобетонных конструкций под воздействием агрессивной среды

Агрессивность грунтовых вод по отношению к бетону оценивается по содержанию: бикарбонатной щелочности, водородного показателя pH, содержанию свободной углекислоты CO2, содержанию магнезиальных солей (в пересчете на ионы Mg), содержание едких щелочей (в пересчете на ионы K и Na) содержание сульфатов (в пересчете на ионы SO4), содержание едких щелочей (хлоридов, сульфатов, нитратов). Все эти показателю определяются в лаборатории при проведении инженерно-геологических изысканий.

Вода, даже с малым количеством вредных веществ, может оказаться опасной для бетона, так как вследствие непрерывного движения воды в грунте на бетон действуют все новые и новые частицы вредных примесей. Поэтому всегда при инженерно-геологических изысканиях следует производить химический анализ воды.

Во всякой воде имеется, хотя бы в ничтожном количестве, углекислота (СО2). Она может быть связанной (неактивной, неспособной вступать в какие-либо новые соединения) и свободной (активной). Связанная углекислота для бетона безвредна. Свободная (называемая агрессивной) углекислота вступает в реакцию с известью бетона и образует растворимые в воде соли.

В сильно загрязненной воде, при наличии в ней и свободной углекислоты (СО2), и сульфатов (S04), и хлоридов (Сl), и окиси магния (MgO), путем взаимодействия с бетоном образуются растворимые соли, и потому агрессивность воды зависит от совокупности всех этих примесей.

По степени воздействия на конструкции, воды подразделяются на: неагрессивные, слабоагрессивные, среднеагрессивные и сильноагрессивные (СП 28.13330.2012 Защита строительных конструкций от коррозии).

Агрессивность грунтовых вод зависит не только от концентрации вредных веществ, но и от коэффициента фильтрации грунта (от скорости прохождения воды сквозь грунт).

[Агрессивное воздействие грунтовых вод зависит от способности вмещающего грунта пропускать воду (фильтровать) – чем быстрее грунт пропускает воду, тем агрессивнее она будет воздействовать на конструкции]

Для повышения устойчивости бетонов к агрессивному воздействию жидкой среды применяют; сульфатостойкие цементы; более плотные бетоны с марками по водонепроницаемости W6, W8, W10 и более; гидроизоляцию поверхностей конструкций; водопонижение (дренаж) (см. разделы 5,3, 9.3 и таблицы приложений СП 28.13330.2012).

4. Водоносные горизонты и верховодка

Часто под землёй существует несколько водоносных горизонтов: 2, 3 и более.


Вода задерживается при просачивании с поверхности над водоупорными (главным образом – тяжелыми глинистыми) грунтами и скапливается в водопроницаемых (крупнодисперсных, песчаных) слоях, которые в этом случае называются водоносными. Если водоносный слой находится под водоупорным, то вода в нижнем водоносном слое часто находится под давлением вышележащих слоев. Если в верхнем слое отрыть котлован, то вода поступит в него снизу под давлением и поднимется выше уровня, на котором она первоначально появилась.

Такие воды называются напорными, а уровень, до которого они поднимаются, – установившимся уровнем грунтовых вод. Этот уровень должен выявляться при инженерно-геологических изысканиях и учитываться при проектировании.

Верховодкой называют ограниченный по площади локальный участок водонасыщенных грунтов, расположенный над линзой водоупора (глины, промерзшие грунты). Как правило верховодка имеет небольшую площадь и толщу, залегает близко к поверхности, выше уровня грунтовых вод. Уровень воды в верховодке сильно реагирует на поступление атмосферных вод.


5. Уровень грунтовых вод

[Уровень грунтовых вод (УГВ) – глубина относительно поверхности земли или высотная отметка зеркала свободной поверхности воды в скважине или шурфе. Принимают показатель установившегося уровня, не меняющийся на протяжении как минимум 30 минут]

Уровень грунтовых вод не является горизонтальной поверхностью и обычно меняется вместе с рельефом, повторяя его в сглаженной форме – при подъеме рельефа УГВ тоже поднимается, но в меньшей степени.

При наличии на участке открытых водоемов УГВ вблизи водоема совпадает с отметкой дневной поверхности открытой воды и меняется вместе с ней, а при отдалении от водоема отличается в большую или меньшую сторону.

В течение года УГВ так же не стоит на месте и постоянно меняется. Наивысший уровень грунтовых вод в широтах с значительным скоплением снега зимой обусловлен инфильтрацией талых вод в весенний период. Второй, менее выраженный высокий уровень, приурочен к осеннему периоду дождей. Самый низкий уровень наблюдается летом и в конце зимы.

После зимнего минимума происходит резкий подъем УГВ при таянии снега. Продолжительность весеннего максимума часто не превышает 10 дней

Изменение рельефа при строительстве и планировке грунтов могут нарушать естественные процессы перераспределения и движения грунтовых вод, а, следовательно, изменять уровень грунтовых вод. Основными техногенными нарушениями являются:

  • Нарушение поверхностного стока атмосферных вод – текли себе ручейки много лет по одному месту, а тут при строительстве все перекопали, участок подняли и в итоге соседний участок стал утопать в воде. Такое явление встречается достаточно часто.
  • Экранирование поверхности грунта на большой площади. После этого произойдет накопление влаги под закрытым участком и повышение влажности грунтов основания.

Грунтовые воды находятся в постоянном движении, хоть это движение и медленное, и не заметное человеческому глазу, но оно непрерывно происходит как по вертикали, так и по горизонтали в сторону областей разгрузки (водоемы, низины, реки и т.д.).


6. Максимальный прогнозный (расчетный) УГВ

В качестве расчетных горизонтов грунтовых вод следует принимать их наивысшие уровни весной и осенью, а при наличии данных и в конце зимы

Расчеты громоздкие и здесь я их приводить не буду. Отмечу только что при выполнении инженерно-геологических изысканий в отчетах как правило указывают о возможности изменения УГВ на величину +/- 1,0 м от полученного при изысканиях положения. Реже колебания принимают +/- 0,5 или +/- 1,5 м.

[Таким образом за расчетный уровень грунтовых вод, как правило, следует принимать уровень на 1,0 метра выше чем тот что был получен замером при изысканиях.]

7. Капиллярное поднятие грунтовых вод

[Водонасыщенными являются не только грунты ниже уровня грунтовых вод, но и некоторая толща грунтов выше него – это слой капиллярного поднятия грунтовых вод]

За толщину слоя капиллярного поднятия воды принимается расстояние от уровня подземной воды со свободной поверхностью (в скважине) до отметки, где влажность глинистого грунта не превышает влажности на границе раскатывания.

[Влажность на границе раскатывания WР — соответствует влажности, при которой грунт теряет пластичность и переходит в твердое состояние. Граница раскатывания качественно соответствует такому состоянию, при котором жгут, раскатанный из грунта до диаметра 3 мм начинает крошиться на кусочки до 1 см длиной.]

Капиллярное поднятие воды в грунтах происходит под действием поверхностной энергии минеральных частиц грунта и, следовательно, зависит от их удельной поверхности. Например, в песках круглых и средней крупности удельная поверхность частиц сравнительно небольшая, поэтому в этих песках почти не наблюдается капиллярного поднятия воды и вследствие этого отсутствуют деформации морозного пучения (они относятся к непучинистым грунтам).

Пески мелкие и пылеватые состоят из более мелких частиц по сравнению с песком крупным, и вследствие взаимодействия удельной поверхности минеральных частиц с водой капиллярное поднятие в природных условиях наблюдается на высоту от 0,3 до 0,5 м. В супесях высота капиллярного поднятия достигает от 0,5 до 1 м, в суглинах — до 1,5 м, в глинах — до 3 м.

Скорость передвижения воды по капиллярам значительно меньше, чем скорость подъема УГВ и обычно капиллярная кайма отстает от изменений УГВ.

Не все грунтовые воды имеют естественное происхождение. При прорыве водопровода локально водонасыщенные грунты при промерзании неравномерно вспучиваются, что вызывает серьезные повреждения зданий и сооружений.

8. Искусственное снижение уровня грунтовых вод (дренаж, водопонижение)

Дренажи бывают разных видов: горизонтальная система дренажных труб, вертикальный дренаж скважинами или иглофильтрами, открытый дренаж каналами и лотками и даже создание искусственных водоемов. Отток воды бывает естественным и принудительным – с помощью насосов.

Вообще в большинстве случаев дренаж выполнить реально. Это большая тема, требующая отдельного разговора, поэтому перенесем ее в отдельную статью.

9. Заключение

Глинистые грунты при увеличении влажности снижают свои прочностные качества вплоть до перехода в жидкое состояние. Пески и крупнообломочные грунты меньше подвержены влиянию влажности, однако и на них грунтовые воды действуют отрицательно.

В течение года УГВ не стоит на месте и постоянно меняется. Наивысший уровень грунтовых вод чаще всего наблюдается в весенний и реже в осенний периоды. Самый низкий уровень наблюдается летом и в конце зимы.

За расчетный уровень грунтовых вод, как правило, следует принимать уровень на 1,0 метра выше чем тот что был получен замером при изысканиях. Но водонасыщенными являются не только грунты ниже уровня грунтовых вод, но и некоторая толща грунтов выше него – это слой капиллярного поднятия грунтовых вод которая может иметь мощность до 3,5 м в зависимости от типа грунта.

Большинство грунтовых вод являются агрессивной средой для стальных конструкций, и довольно часто грунтовые воды оказывают разрушающее воздействие на бетонные и железобетонные конструкции.

Вывод — высоко расположенные грунтовые воды негативно влияют на характеристики большинства грунтов основания и часто оказывают агрессивное воздействие на сами конструкции фундаментов, да и выполнение строительных работ они сильно затрудняют, поэтому желанным гостем их никак не назовешь. При проектировании и строительстве этому обстоятельству следует уделять должное внимание, возможно Вам следует предусмотреть дренаж еще на стадии проектирования фундамента.

Читайте также: