Орошение как путь повышения продуктивности растений

Обновлено: 05.10.2024

ОРОШЕ́НИЕ (ир­ри­га­ция), ком­плекс ме­ро­прия­тий по под­дер­жа­нию вод­но­го ре­жи­ма почв, оп­ти­маль­но­го для рас­те­ний, ис­пы­ты­ваю­щих в ес­те­ст­вен­ных ус­ло­ви­ях не­дос­та­ток во вла­ге; один из осн. ви­дов ме­лио­ра­ции. Вклю­ча­ет ком­плекс тех­нич., аг­ро­тех­нич., ор­га­ни­за­ци­он­но-хо­зяй­ст­вен­ных ме­ро­прия­тий, в ос­но­ве ко­то­рых ле­жат гид­ро­тех­нич. приё­мы нор­ми­ро­ва­ния по­да­чи во­ды в поч­ву и пре­вра­ще­ния её в поч­вен­ную вла­гу. О. не­об­хо­ди­мо не толь­ко в арид­ных ус­ло­ви­ях, но и в ле­со­степ­ной и лес­ной (пре­им. в под­зо­не юж. тай­ги) зо­нах для пе­рио­дич. по­ли­ва овощ­ных куль­тур и мно­го­лет­них трав (О. па­ст­бищ). Под­дер­жа­ние за­па­сов вла­ги в ве­ге­тац. пе­ри­од рас­те­ний на оп­ти­маль­ном уров­не влия­ет на ка­че­ст­во про­дук­ции рас­те­ние­вод­ст­ва, а так­же по­зво­ля­ет уве­ли­чить уро­жай­ность куль­тур на 15–30% (в за­ви­си­мо­сти от поч­вен­но-кли­ма­тич. ус­ло­вий ре­гио­на), в за­суш­ли­вых ус­ло­ви­ях су­хо­степ­ной зо­ны – в 3–4 раза. О. улуч­ша­ет мик­ро­кли­мат в при­зем­ном слое воз­ду­ха, а так­же об­щую гид­ро­ме­лио­ра­тив­ную об­ста­нов­ку, смяг­ча­ет жё­ст­кие эко­ло­гич. ус­ло­вия с.-х. уго­дий тер­ри­то­рий с арид­ным кли­ма­том. Пра­виль­ное при­ме­не­ние О. спо­соб­ст­ву­ет уси­ле­нию аэроб­ных про­цес­сов в поч­ве, при­во­дя­щих к ус­ко­ре­нию про­цес­са нит­ри­фи­ка­ции.

Еще в 1864 г. Ю. Сакс установил, что поступление воды через корневые системы зависит от температуры. С понижением температуры скорость поступления воды резко сокращается. Это может оказать заметное влияние на жизнь растительного организма, особенно в осенний период, когда испарение идет еще достаточно интенсивно, а поступление воды задерживается из-за пониженной температуры почвы. В результате растения завядают и даже могут погибнуть от обезвоживания. Причин, по которым понижение температуры вызывает уменьшение поступления воды, по-видимому, несколько: 1) повышается вязкость воды и, как следствие, снижается ее подвижность; 2) уменьшается проницаемость протоплазмы для воды; 3) тормозится рост корней; 4) уменьшается скорость всех метаболических процессов. Последнее обстоятельство, по - видимому, должно сказаться косвенно, через уменьшение поступления солей и, как следствие, торможение работы нижнего концевого двигателя (корневого давления). Торможение поступления воды в корневую систему при действии пониженной температуры можно легко продемонстрировать в простом опыте. Так, если положить кусок льда на поверхность почвы в вазоне с растением, то в условиях интенсивной транспирации растение через два часа обнаружит признаки завядания. Если затем удалить лед, то растение снова приобретет тургор.

Снижение аэрации почвы также тормозит поступление воды. Это можно наблюдать, когда после сильного дождя все промежутки почвы заполнены водой и вместе с тем на солнце при сильном испарении растения завядают. Это связано с тем, что все условия, снижающие метаболизм, такие, как недостаток кислорода, избыток СО2, дыхательные яды, снижают поступление ионов и, как следствие, уменьшают поступление воды. Вместе с тем исследования показали, что особенно резкое подавление поступления воды происходит при увеличении содержания СО2. Возможно, это связано с тем, что помимо уменьшения дыхания СО2 повышает вязкость воды, снижает проницаемость цитоплазмы.

Большое значение имеет содержание воды в почве, а также концентрация почвенного раствора. Естественно, вода поступает в корень только тогда, когда водный потенциал корня ниже, т. е. более отрицателен, водного потенциала почвы. В том случае, если почвенный раствор имеет более отрицательный осмотический потенциал, вода не только не будет поступать в корень, но будет выделяться из него. Особенное значение это имеет для засоленных почв. Именно поэтому растения, растущие на этих почвах (галофиты), имеют резко отрицательный осмотический потенциал. Всякое уменьшение влажности почвы снижает поступление воды. Чем меньше воды в почве, тем с большей силой она удерживается и тем меньше ее водный потенциал. Для того чтобы в растение поступила вода, должен существовать градиент водного потенциала в системе почва — растение — атмосфера. Надо также учитывать, что уменьшение содержания воды в корне затрудняет ее дальнейшее продвижение к сосудам ксилемы. Это объясняется тем, что при уменьшении содержания воды сопротивление ее передвижению по клеткам корня растет. Подсыхающие клеточные оболочки оказывают значительное сопротивление передвижению воды. Сопротивление корневой системы передвижению воды при ее недостатке настолько велико, что, по мнению Н. А. Максимова, это может снижать транспирацию, т. е. служит средством для ее регуляции.

С физиологической точки зрения удобно выделить следующие формы почвенной влаги, различающиеся по степени доступности их для растения. Гравитационная водазаполняет крупные промежутки между частицами почвы, она хорошо доступна растениям. Водный потенциал этой формы воды зависит от осмотической концентрации и составляет —0,1 бар. Однако, как правило, она легко стекает в нижние горизонты под влиянием силы тяжести, вследствие чего бывает в почве лишь после дождей. Капиллярная водазаполняет капиллярные поры в почве. Эта вода также хорошо доступна для растений, она удерживается в капиллярах силами поверхностного натяжения и поэтому не только вниз не стекает, но и поднимается вверх от грунтовых вод (Ψв не более —1 бар). Пленочная водаокружает коллоидные частицы почвы. Вода из периферических слоев гидратационных оболочек может поглощаться клетками корня. Вместе с тем, чем ближе к коллоидным частицам располагаются молекулы воды, тем с большей силой они удерживаются и, как следствие, менее доступны для растения. Гигроскопическая водаадсорбируется сухой почвой при помещении ее в атмосферу с 95% относительной влажности воздуха. Этот тонкий слой молекул воды удерживается с такой силой, что их ΨB= —1000 бар. Эта форма воды полностью недоступна для растения.




Количество воды в процентах, при котором растение впадает в устойчивое завядание, называют коэффициентом завяданияили влажностью завядания.Влажность, при которой наступает завядание на данной почве, зависит от ряда причин. Считается, что растения завядают в тот момент, когда вода в почве перестает передвигаться. Однако было показано, что если завядание начинается при одной и той же влажности, то промежуток времени от завядания до гибели (интервал завядания) у растений может быть резко различным. Так, для растений бобов интервал завядания составляет несколько суток, тогда как для проса — несколько недель.

Это, естественно, сказывается на устойчивости растений к засухе. Вместе с тем влажность, при которой наступает завядание, в большой степени зависит от скорости транспирации, а также в некоторой степени от осмотического потенциала клеток растения. Так, при одной и той же влажности почвы завядание начинается позднее у растений с меньшим (более отрицательным) осмотическим потенциалом.

Наиболее радикальным способом борьбы с засухой является орошение. Однако для правильного применения этого приема, установления сроков и норм полива необходимы методы, позволяющие определять нуждаемость растений в воде. Это особенно важно потому, что как избыточное, так и недостаточное орошение не только не дает положительного эффекта, но может привести к отрицательным результатам. При избыточном орошении растение не успевает использовать даваемую ему воду. Избыток воды уплотняет, а иногда даже заболачивает почву и тем самым резко ухудшает снабжение корней кислородом. Недостаток кислорода приводит к накоплению в почве закисных соединений, ядовитых для растений. Одновременно уменьшается и интенсивность дыхания клеток корня. В результате падения интенсивности дыхания поступление питательных веществ в клетки корня тормозится. При избыточном увлажнении часто наблюдается также засоление почвы. Вода, проникая в глубокие слои почвы, богатые солями, растворяет их, раствор солей поднимается вверх по капиллярам. Как следствие концентрация солей в пахотном горизонте растет. Большинство культурных растений очень чувствительно к концентрации солей. В результате из-за неправильного пользования поливной водой и засоления приходится забрасывать обширные пространства плодородных земель с дорогостоящими оросительными сооружениями. Недостаточные поливы также могут привести к нежелательным последствиям. При длительных межполивных периодах растения периодически попадают в условия засухи. Растения, получившие полив, развивают большую листовую поверхность и теряют значительное количество воды в процессе транспирации, вся их структура уклоняется в сторону большей влаголюбивое™. Такие растения требуют больше влаги и три перерывах в водоснабжении страдают сильнее по сравнению с растениями, совсем не получившими полива.

Из сказанного понятно, что сроки и нормы полива (схема орошения) должны быть таковы, чтобы растения не испытывали недостатка в воде и в то же время чтобы они успевали израсходовать почти всю данную им за полив воду. Для правильного расчета общей поливной нормы предложены разные методы. Однако, прежде всего, нужно исходить из необходимости восполнить дефицит в воде, т. е. разницу между общим водопотреблением и естественными ресурсами влаги в данном районе. Водопотребление — это суммарный расход воды (транспирация + испарение почвой) за вегетационный период.

Схема орошения может быть заранее фиксирована только в тех районах, где осадков практически нет. В зоне неустойчивого увлажнения схема орошения должна изменяться в зависимости от метеорологических условий, а также от темпов роста растений. Наилучшие результаты дает определение сроков полива по физиологическому состоянию самого растительного организма (Н. С. Петинов). Для определения нуждаемости растений в воде могут быть использованы различные показатели: 1) содержание воды в листьях; 2) степень открытости устьиц; 3) интенсивность транспирации; 4) величина водного потенциала.

Особенно следует рекомендовать определение степени открытости устьиц методом инфильтрации. Этот метод основан на проникновении органических жидкостей (спирта, ксилола, бензола) и легко осуществим в полевых условиях. Для получения максимальной продуктивности растений устьица должны оставаться открытыми в течение всего дня. Хорошие результаты дает также определение потребности растений в воде по концентрации клеточного сока, которую можно определить с помощью рефрактометра.

Надо учитывать, что орошение оказывает глубокое влияние не только на водный режим почвы, но и на приземный климат. С помощью орошения можно изменить микроклимат в сторону, благоприятную для растений. С этой точки зрения большое значение имеет введение освежительных поливов малыми нормами (дождевание). Эти поливы повышают влажность и снижают температуру приземного воздуха, что положительно влияет на растение. Применение орошения требует особенно тщательной регулировки питания растений.

43.1. Особенности водообмена у растений разных экологических групп (ксерофитов, мезофитов, гигрофитов, галофитов), особенности адаптационных реакций на влияние внешних факторов у растений разных экологических групп.

По отношению к температурному фактору и водному режиму все растения подразделяются на следующие экологические типы:

1. Ксерофиты (приспособлены к атмосферной засухе) и делятся на подтипы:

суккуленты (стойки к перегреву, содержат большое количество воды и медленно ее расходуют - кактусы, алоэ, очиток),

эвксерофиты (хорошо переносят засуху за счет морфологических и физиологических приспособлений - верблюжья колючка, полынь),

гемиксерофиты (полуксерофиты) (переносят обезвоживание и перегрев за счет глубокой корневой системы - шалфей),

стипаксерофиты (выносят перегрев, но почвенную засуху переносят плохо - ковыль и другие степные злаки),

пойкилоксерофиты (уходят от неблагоприятных условий - степные тюльпаны, лишайники),

2. Гигрофиты - водные растения - не переносят засухи и высоких температур,

3. Мезофиты - произрастают в условиях достаточного водоснабжения - подавляющее большинство культурных растений.

*§ 49—2. Поле зерновых как пример агроэкосистемы. Пути повышения продуктивности агроэкосистем

Поле зерновых как пример агроэкосистемы

Естественные биогеоценозы представляют собой системы, способные к саморегуляции. В них все вещества, потребляемые растениями, в конечном итоге возвращаются в почву.

Структуру и функционирование агроэкосистемы рассмотрим на примере пшеничного поля. Оно, как и природные экосистемы, характеризуется определенным видовым составом организмов и определенными связями и взаимоотношениями между организмами и средой обитания. Однако видовой состав растений и животных в нем обеднен, ведь малокомпонентность — один из признаков агроэкосистемы. Так, на пшеничном поле продуценты представлены пшеницей — доминирующей монокультурой и несколькими видами относительно малочисленных сорняков (чаще всего это пырей, василек, осот, овсюг).


На естественном лугу биологическое разнообразие продуцентов значительно выше, но биологическая продуктивность уступает засеянному пшеницей полю во много раз.

Консументы на пшеничном поле обычно представлены мелкими грызунами, которые кормятся за счет пшеницы, хищными животными, поедающими грызунов, растительноядными насекомыми-вредителями, хищными и паразитическими насекомыми, уничтожающими вредителей пшеницы.


Редуцентами являются беспозвоночные животные, грибы, протисты, бактерии, свободно живущие в почве или в контакте с корневой системой культурных и сорных растений.

Вышеуказанные функциональные группы организмов формируют трофическую структуру пшеничного поля, состоящую из пастбищных и детритных цепей. Однако, в отличие от естественной экосистемы, здесь пастбищные цепи короткие (2—3 звена), и обязательным звеном пищевой сети является человек, который обеспечивает высокую продуктивность пшеничного поля и влияет на биотические взаимоотношения между его компонентами.

Основными типами взаимоотношений в агроэкосистеме пшеничного поля являются: растительноядность, хищничество, паразитизм, внутривидовая и межвидовая конкуренция. Это отрицательные взаимоотношения, которые преобладают в молодых неустойчивых экосистемах, не способных к саморегуляции.

В целом следует еще раз отметить, что человек управляет агроэкосистемами, внося в них значительное количество дополнительной энергии (обработка почвы, полив, удобрения, пестициды) и влияя на их трофические уровни и среду обитания.

Читайте также: