Полисахарид который запасают растения

Обновлено: 16.07.2024

Создано в интеллектуальной издательской системе Ridero

Биохимия – это наука о структуре молекул, входящих в состав живых организмов, а также о процессах их превращений внутри организма или клетки.

Биохимия является продолжением органической химии. Собственно многие молекулы (спирты, гетероциклы и другие) являются объектами исследований специалистами в области органической химии.

Одной из важных целей биохимии является изучение структуры, физико-химических свойств и функций молекул, которые входят в состав живых объектов. Многие молекулы являются объектами исследования и биохимиков и органических химиков. Кроме того, изучение молекул, входящих в состав живых организмов показало, что этих молекул огромное множество, прежде всего белков. И их свойства и функции также очень многообразны. Это с одной стороны увеличивает объем изучаемой информации, а с другой приводит к тому, что для освоения новых данных остается меньше времени. Именно поэтому биохимики, можно сказать, вынужденно ограничились изучением тех групп соединений, которые выявлены только в живых объектах, оставив остальные группы соединений органическим химикам.

Углеводы широко представлены в растениях и животных, где они выполняют как структурные, так и метаболические функции. В растениях в процессе фотосинтеза из углекислого газа и воды синтезируется глюкоза, которая далее запасается в виде крахмала или превращается в целлюлозу – структурную основу растений. Животные способны синтезировать ряд углеводов из жиров и белков, но большая часть углеводов поступает с пищей растительного происхождения.

Углеводы – это альдегидные или кетонные производные полиатомных (содержащих более одной ОН-группы) спиртов или соединения, при гидролизе которых образуются эти производные.

Их можно классифицировать следующим образом:

Моносахариды – углеводы, которые не могут быть гидролизованы до более простых форм. Их можно подразделить на триозы, тетрозы, пентозы, гексозы, гептозы и октозы в зависимости от числа содержащихся в их молекуле атомов углерода; их можно разделить также на альдозы и кетозы в зависимости от присутствия альдегидной или кетонной группы.

Дисахариды при гидролизе дают две молекулы моносахарида (одинаковых или различных).

Олигосахариды при гидролизе дают 3—6 моносахаридов или, что чаще, полисахариды, в состав которых входит несколько десятков моносахаридных остатков.

Полисахариды дают при гидролизе более 6 молекул моносахаридов. Они могут быть линейными или разветвленными. Если полисахарид состоит из одинаковых мономеров, то их их называют гомополисахаридами, если из разных, то гетерополисахаридами. Также следует отметить, что большая часть полисахаридов содержит более тысячи мономерных остатков. Примерами служат крахмал и декстрины.

Моносахариды – углеводы, которые не могут быть гидролизованы до более простых форм. Их можно подразделить на триозы, тетрозы, пентозы, гексозы, гептозы и октозы в зависимости от числа содержащихся в их молекуле атомов углерода; их можно разделить также на альдозы и кетозы в зависимости от присутствия альдегидной или кетонной группы. Отсчет атомов углерода начинают либо от входящего в состав альдегидной группы (первый атом), либо от ближайшего к кетонной группе.

Соединения, имеющие одну и ту же структурную формулу, но различающиеся по пространственной конфигурации, называются изомерами. Образование таких изомеров оказывается возможным при вхождении в состав молекулы асимметрических атомов углерода (к которым присоединены четыре различных атома или группы). Число возможных изомеров данного соединения зависит от числа асимметрических атомов углерода (n) и равно 2 n . Глюкоза с четырьмя асимметрическими атомами углерода имеет, следовательно, 16 изомеров. Ниже указаны наиболее важные типы изомеров глюкозы.

Стереоизомерия или D и L изоформы:

В многих органических молекулах есть атом углерода с которым связаны четыре различные группировки, и такую молекулу можно представить как молекулу метана, в виде тетраэдра, в верхушках которого располагаются группировки. Такой атом называется хиральным, в случае моносахаридов принадлежность к D или L форме определяется расположением гидроксильной (ОН) группировки, относительно хирального атома углерода. Если ОН-группа слева, то это L-форма, если справа, то D-форма. Но полностью этому правилу соответствует только глицероальдегид, имеющий только один хиральный атом (Рисунок 1 А). Во всех других углеводах хиральных атомов несколько, и каждый из них может быть признан для определения принадлежности к одной из форм стереоизомеров. Было принято решение признать атомом, определяющим стереоизомерию, последний хиральный атом молекулы (предпоследний атом углерода в молекуле). Но изменение положения гидроксильной группы только у данного атома углерода не приведет к образованию полностью зеркального отображения, что является основным условием для существования двух форм стереоизомеров. Поэтому появилось понятие ряда углеводов, то есть все углеводы могут быть выведены или синтезированы из минимального углевода (триозы), и, следовательно, эта триоза является предшественником или родительским соединением, так как единственная триоза, обладающая оптическими свойствами – глицероальдегид, то именно эта молекула является родительским соединением для всех остальных. Принадлежность к одному их стреоизомеров родительского соединения, определяет принадлежность к D или L-форме всех остальных моносахаридов, синтезируемых из данного родительского соединения (Рисунок 2). В ходе синтеза углеводов с числом атомов больше чем три (глицероальдегид), присоединение каждого следующего атома углерода

Структурная биохимия - image0_55d8cc3a99413cac26e02b26_jpg.jpg

Рисунок 1. Структурные формулы стереоизомеров углеводов, * – отмечены асимметрические (хиральные) атомы. А – глицероальдегид * – отмечен асимметрический атом, определяющий принадлежность к D или L форме, Б – стереоизомеры глюкозы, крупной * отмечены асимметрические атомы углерода, определяющие принадлежность к стереоизомерам

происходит по альдегидной группе, и, следовательно, хиральный атом родительского соединения оказывается все дальше от первого атома углерода, то есть остается последним асимметричным или просто предпоследним атомом углерода (рисунок 2). Присутствие асимметрических атомов углерода является причиной оптической активности соединения. Если пучок плоскополяризованного света проходит через раствор оптического изомера, плоскость поляризации света поворачивается либо вправо (правовращающий изомер, +), либо влево (левовращающий изомер, – ). Соединение обозначают D ( – ), D (+), L ( – ) или L (+); это обозначение показывает наличие структурного родства с D- или L- глицеральдегидом, но не обязательно тот же знак оптического вращения. Например, природной формой фруктозы является D ( – ) – изомер. Если D- и L-изомеры присутствуют в равных количествах, их смесь не проявляет оптической активности – активности изомеров компенсируют одна другую. Такие смеси называют рацемическими (или DL-смесями). Соединения, получаемые синтетическим путем, оказываются рацемическими, поскольку в этом случае вероятности образования каждого из изомеров одинаковы.

Крахмал. Моносахаридные остатки соединены в крахмале ?-гликозидными связями (Рисунок 23). Соединение такой структуры, образованное только остатками глюкозы, является гомополимером, его называют глюкозаном или глюканом. Это наиболее важный вид пищевых углеводов; он содержится в злаках, картофеле, бобовых и в других растениях. Двумя главными компонентами крахмала являются амилоза (15—20%), имеющая неразветвленную спиральную структуру, и амилопектин (80—85%), образованный разветвленными цепями, каждая ветвь состоит из 24—30 остатков глюкозы, соединенных (1—4) – связями [в точках ветвления остатки соединены (1—6) – связями]. Благодаря геометрическим особенностям ? (1—4) – связей линейные участки полимерных цепей в молекулах гликогена и крахмала стремятся принять скрученную, спиральную конформацию, что способствует образованию плотных гранул, которые и обнаруживаются в большинстве растительных клеток. ? (1—4) -связи гликогена и крахмала легко гидролизуются ?-амилазой желудочно-кишечного тракта позвоночных, а образующаяся при этом D-глюкоза попадает в кровь и далее используется в энергетическом обмене. Крахмал как и гликоген является редуцирующим полисахаридом.

Фруктаны. Это линейные, редуцирующие гомополимеры ? фруктозы, соединенной ? (2—6) гликозидной связью (Рисунок 23). Фруктаны встречаются у различных видов растений: ирисисин в корневищах ириса, аспарогозин в корнях спаржи, секалин – в ржи. Различия фруктанов, выделенных из различных объектов, связаны с вариабельностью молекулярной массы и количества мономеров, входящих в состав полисахарида.


Рисунок 23. Структурные и запасающие полисахариды растений. А-крахмал; Б-схема организации молекулы крахмала; В-инулин; Г-фруктаны; Д-целлюлоза; Е-ксилоза; Ж– пектины

Инулин – линейный нередуцирующий полисахарид, содержащийся в клубнях и корнях георгинов, артишоков и одуванчиков. При его гидролизе образуется фруктоза, следовательно он представляет собой фруктозан. Гетерополимер одной молекулы глюкозы соединенной с ? фруктозой ? (1—1) гликозидной связью, остальные мономеры ? фруктозы, соединяются ? (1—2) гликозидной связью (Рисунок 23). Этот полисахарид в отличие от картофельного крахмала легко растворяется в теплой воде; его используют в физиологических исследованиях для определения скорости клубочковой фильтрации в почках. Также этот полимер, состоящий в основном из фруктозы, привлекает диетологов и врачей как заменитель крахмала для больных сахарным диабетом. У этих больных нарушено поглощение глюкозы клетками, тогда как фруктоза поглощается клетками больных, поэтому может быть использована как замена глюкозе. Эта же причина вызвала большой интерес к растениям запасающим фруктаны. И инулин и другие полимеры фруктозы могут использованы в диете больных сахарным диабетом, как заменители крахмала.

Грибы – это представители царства Грибов, которые имеют свою, особую, структуру. Она довольно сложная, и не ограничивается только такими понятиями, как шляпка, ножка, мякоть и гименофор. У каждого плодового тела есть специфический элемент, который называется запасным веществом.

Что такое запасное питательное вещество

Грибы многочисленны и разнообразны, имеют свою классификацию, а поэтому биологи объединили их в единое царство, которое так и называется – Грибы.

Грибы

Назначение и виды запасных углеводов

Не только грибы имеют свойство запасать резервные вещества, необходимые для их жизнедеятельности. И растения, и животные, и даже бактерии обладают такими же особенностями. Но у каждого из этих представителей другой запасной питательный элемент.

Запасное вещество клеток животных

Запасным углеводом клетки является гликоген. Кстати, именно этим животные схожи с представителями грибного царства.


Животная клетка

Гликоген в животном организме запасается клетками печени и скелетных мышц. Это вещество в своем составе содержит остатки глюкозы, однако, в отличие от нее, оно не имеет характерного сладкого вкуса. Данный полисахарид подвергается процессу гидролиза в кислой среде. Происходит это в несколько этапов.

Скопление резервных элементов в гепатоцитах, миоцитах и лейкоцитах животного обеспечивает протекание двух взаимно противоположных процессов. Первым из них является диссимиляция, во время которой происходит высвобождение глюкозной молекулы.

Второй процесс – ассимиляция, которая подразумевает переведение избытка глюкозы в главный запасной углевод – гликоген. Именно он является источником энергии, которая используется для полноценной жизнедеятельности клеток.

Резервное вещество растительной клетки

Фотосинтез способствует образованию органических веществ в клетках зеленых растений. Часть этих элементов откладывается про запас. Основные резервные клеточные элементы – это углеводы, жиры и протеины. Их скопление происходит в разных отделах растения:

В отличие от животной клетки, растительная запасает совсем иной вид углевода – крахмал. Кстати, он откладывается во всех растениях, исключая цианобактерии. Накапливается крахмал в А-хлоропластах, Б-ядре, В-лейкопластах и Г-хромопластах.

В виде крахмала растения накапливают питательные вещества, которые, прежде всего, необходимы для будущих поколений.

Крахмал в растительной клетке отлично подходит для хранения глюкозы, поскольку ее остатки находятся в нерастворимой форме. А при необходимости происходит расщепление резервного элемента обратно до глюкозы. Такой процесс называется гидролизом.

Таким образом, углеводы в клетке растения находятся в нескольких видах:

  • моносахариды (глюкоза);
  • олигосахариды (крахмал);
  • полисахариды (целлюлоза).


Глюкоза дает энергию для роста, крахмал помогает запасать глюкозу и содержит ее в своих клетках. А для чего нужна целлюлоза как одно из резервных растительных веществ? Ее предназначение заключается в том, что она служит строительным материалом для растительных тканей и выполняет опорную функцию – придает растениям необходимую прочность. По распространенности органических веществ целлюлоза занимает первое место на всем земном шаре.

Запасные вещества бактерий

Запасные (резервные) элементы являются питательными веществами для бактерий и сохраняются в их цитоплазме. Они образуются в процессе метаболизма, а начинают накапливаться в том случае, если вырабатываются клетками в чрезмерном количестве. Используются такие резервы в том случае, когда бактерия попадает в агрессивные и пагубные для себя условия окружающей среды.

К основным питательным элементам бактерий относят:

Все эти вещества необходимы для поддержания оптимального клеточного энергетического запаса. Происходит этот процесс под воздействием вырабатывающихся ферментов.

Элементы, которые запасаются на клеточном уровне, зависят от того, в какой среде находится бактерия. Так, одни клетки способны накапливать исключительно полисахариды, в то время как другие структуры способны концентрировать в себе большое количество элементов.

В большинстве случаев главными запасаемым веществом выступает гликоген. Его чаще всего запасают:

  • сальмонеллы;
  • бациллы;
  • кишечная палочка.

Но споровые бактерии, например, клостридии, содержат гранулезу. В ее основе содержится крахмал. Если в окружающей среде, где обитает клетка, отмечается высокое содержание углерода или фосфора, то она активно скапливает волютин. Он содержит полифосфаты, являющиеся источником энергии.

Сера, как резервный элемент, встречается далеко не у всех бактерий. Ее можно обнаружить преимущественно у тех экземпляров, обменные процессы которых тесно связаны с молекулярной серой. Это аэробные тионовые и фототрофные серобактерии.

Первой группе бактерий сера необходима для окисления кислорода. Благодаря такому процессу бактериальная клетка получает необходимое количество энергии. А вот для обеспечения фоторофных серобактерий сера используется в качестве источника электронов. С их помощью происходит восстановление углекислоты.

Какое запасное вещество характерно для клеток грибов

Из числа углеводов, которые относятся к запасным элементам грибов, чаще встречаются гликоген, маннит и микоза.

Концентрация гликогена в грибах может колебаться в рамках 1,5-40%. Все зависит от возраста и разновидности плодового тела: у молодых экземпляров уровень вещества на порядок выше, чем у старших грибов с созревшими спорами.

Строение клетки грибов

Трегалоза (или микоза) – это дисахарид. Он запасается грибами, как правило, в небольших количествах. Исследователи связывают его функции с накоплением маннита и шестиатомного спирта. В особо высоких концентрациях этот элемент встречается у представителей рода Болетовых.

Маннит в большей степени находится у зрелого мицелия и грибов. Образуется он, по-видимому, в процессе метаболизма трегалозы. Иногда в грибном мицелии можно обнаружить жиры. Они скапливаются в виде капель и используются при активном росте плода, а также в период споруляции.


Отличительные особенности гликогена и крахмала

Разница между гликогеном и крахмалом заключается, прежде всего, в особенностях химического строения каждого из веществ:

И, наконец, гликоген является резервным элементом для представителей животного мира, и играет немаловажную роль в энергетическом обмене в организме животного. Этими свойствами крахмал не обладает. Его можно обнаружить только в растениях, которым свойственен фотосинтез.

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Была установлена многообразная биологическая активность полисахаридов растительного происхождения: антибиотическая, противовирусная, противоопухолевая, антидотная. Полисахариды растительного происхождения выполняют большую роль в уменьшении липемии и атероматоза сосудов благодаря способности давать комплексы с белками и липо-протеидами плазмы крови. [1]

К полисахаридам относятся, в частности:

    — полисахарид, продукт гидролиза крахмала; — основной полисахарид, откладываемый как энергетический запас у растительных организмов; — полисахарид, откладываемый как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений; — основной структурный полисахарид клеточных стенок растений; — запасные полисахариды некоторых растений семейства бобовых, такие как гуар и камедь рожкового дерева;
  • глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит; — применяется при производстве пергаментной бумаги.

Функциональные свойства

Структурные полисахариды придают клеточным стенкам клеток прочность.
Водорастворимые полисахариды не дают клеткам высохнуть.
Резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Примечания

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Полисахарид" в других словарях:

полисахарид — сущ., кол во синонимов: 36 • агар (3) • амилоза (1) • амилоид (1) • … Словарь синонимов

полисахарид — polisacharidas statusas T sritis chemija apibrėžtis Junginys, kurio molekulė susideda iš daugelio monosacharidų liekanų. atitikmenys: angl. glycan; polysaccharide rus. полисахарид … Chemijos terminų aiškinamasis žodynas

ПОЛИСАХАРИД — (polysaccharide) углевод, в состав которого входит большое количество соединенных в длинную линейную или разветвленную цепь моносахаридов. Полисахариды выполняют в организме две важные функции: 1) они являются местом хранения различных форм… … Толковый словарь по медицине

полисахарид — поли/сахар/ид/ … Морфемно-орфографический словарь

Полисахарид (Polysaccharide) — углевод, в состав которого входит большое количество соединенных в длинную линейную или разветвленную цепь моносахаридов. Полисахариды выполняют в организме две важные функции: 1) они являются местом хранения различных форм энергии (например,… … Медицинские термины

ЦЕЛЛЮЛОЗА (полисахарид) — ЦЕЛЛЮЛОЗА (франц. cellulose, от лат. cellula, букв. комнатка, здесь клетка) (клетчатка), полисахарид, образованный остатками глюкозы; главная составная часть клеточных стенок растений, обусловливающая механическую прочность и эластичность… … Энциклопедический словарь

Какие вещества относятся к полисахаридам, физические, химические свойства, примеры, что такое

Что такое полисахариды, можно легко понять с точки зрения структуры.

Структура полисахарида

Гликаны – обширная группа органических веществ, вырабатываемых растениями и животными. С точки зрения структуры они бывают линейные и разветвленные. Делятся на две больших подгруппы:

полиозы (синонимы – полисахариды/гликаны);

Все эти субстанции – природные полимеры, цепочки которых построены из моносахаридов.

Если в основе моновеществ глюкоза, то полимер называется глюканом (целлюлоза). Если мономером является глюкозамин (в основе хитина насекомых), то природный полимер называется гликаном.

Существует терминологическая особенность: слово гликан еще используется для наименования веществ, где собственно гликан входит в состав молекул белка (биологические жидкости, ткани) – протеогликаны.

Некоторые из них синтезируются в организме человека (локализуются в коже), выполняют функцию сдерживания процессов увядания кожи с возрастом. Они активные участники клеточного метаболизма. Поэтому широко применяются в косметической промышленности.

Таблица №1. Функции полисахаридов в организме

Какую роль выполняют

Крахмал и гликоген

Накапливают углеводы, дают организму глюкозу (источник энергии)

Важный компонент, создающий длительный энергетический запас, локализуется в жировых тканях. Формируется в мышечных клетках и в печени (частично в головном мозге и желудке)

Гепарин и синтетические аналоги

Эти белки выполняют роль кофакторов ферментативных соединений в организме. Снижают свертываемость крови

В растительной ткани целлюлоза – основа стеблевых образований, а в костных тканях животных содержатся хондроитинсульфаты

Кислые гетерополисахариды (гиалуроновая кислота)

Удерживают к клетке воду и положительно заряженные ионы, препятствуют накоплению молекул жидкости в межклеточном пространстве

Кислые гетерополисахариды (гиалуроновая кислота)

Кислые гетерополисахариды, (в том числе мукополисахариды)

Химические свойства полисахаридов

Они являются полигликозидами, иначе – полиацеталями.

Моносахариды связываются в молекулу с помощью гликозидных связей с рядом стоящими структурными элементами цепочки.

В кислотной среде при высокотемпературном режиме идет гидролиз. При полном процессе образуются исходные моносахариды (возможно, их производные). При не полном – олигосахариды, в том числе, дисахариды.

Восстановительные свойства очень слабые, устойчивы к воздействию щелочей.

Вторая показательная реакция – способность к получению сложных эфиров.

Все свойства применяют в промышленности. Например, в производстве различных порохов из тринитрата целлюлозы.

Это широко распространенная группа веществ природного происхождения. Вырабатываются они растениями и в тканях животных и человека. Это говорит об активном их участии в обменных процессах.

Физические свойства полисахаридов

Большинство веществ этого класса белые, порошкообразные, с огромным молекулярным весом от двух и более миллионов.

Упоминаемые уже крахмал и целлюлоза представляют собой разветвленные молекулы. Они набухают, но не растворяются в холодной воде. В отличие от них амилоза (линейные молекулы) легко растворима в нейтральной водной среде.

Классификация полисахаридов по числу и строению моносахаридных остатков

В структуру полиозов входит от двух до двадцати моносахаридов в двух разных формах (пиранозной или фуранозной).

Таблица №2. Структурные единицы полиозов

Различаются гомогликаны (еще называют гомополисахариды), они имеют в цепочке идентичные углеводные составляющие. И, соответственно, когда звенья углеводов разные, вещество получает название гетерополисахарида.

гомополисахариды (или гомополимеры)

гетерополисахариды (или гетерополимеры)

Высокий уровень структурной организации макромолекул, есть вторичная структура с характерным пространственным расположением макромолекулярной цепи. Отсюда еще одна классификация: с разветвленной молекулой и линейной макромолекулярной цепью.

Отличие и применение наиболее популярных видов

Разберемся, какие вещества относятся к полисахаридам.

Крахмал

Крахмал

Его состав: около двадцати процентов амилозы и восьмидесяти процентов амилопектина.

Является продуктом жизнедеятельности растительных организмов. Локализуется в зернах злаков, корнях/клубнях или семенах.

Это порошкообразное белое вещество, на ощупь мягкое, при растирании между пальцами характерное поскрипывание. Под микроскопом видна зернообразная структура, выпадает в осадок в холодной воде, при нагревании воды и равномерном помешивании зерна набухают, затем образуют киселеобразную массу.

Особенность вещества – способность хорошо гидролизоваться при подогревании в растворе H2SO4. Что приводит к образованию α-D-глюкозы.

Растительные источники: картошка (до двадцати процентов), зерна пшеницы.

Молекулы амилозы спиралеобразные, в одном витке шесть фрагментов моносахарида. Амилопектин имеет ответвления в структуре молекулы.

Чтобы химически определить крахмал, в аналитике используют его реакцию с йодом. Появляется сине-фиолетовый цвет раствора или аналогичного цвета пятно на поверхности порошка.

Картофельный крахмал – пищевой продукт. Его используют в кулинарии, на кондитерских фабриках, в производстве колбас. Это промышленный источник глюкозы, сырье для бумкомбинатов, текстильного производства, медпрепаратов.

Гликоген

При анализе из клеток тканей его извлекают горячим NaOH, осаждают спиртовым раствором. Затем гидролизуют в растворе разбавленной кислотой (серной). Методом титрования определяют процентное содержание в растворе глюкозы.

Клетчатка (растительная целлюлоза)

Целлюлоза

В молекуле природного полимера содержится D-глюкопираноза, соединенная посредством гликозидных связей. Молекулы линейные, вес одной до двух млн у.е.

Высокопрочность обеспечивается наличием водородных связей в цепочках, которые объединяются в пучок. Так формируется волокнистость. Вещество инертно, не растворимо в нейтральных средах, не поддается воздействию ферментов пищеварительного тракта. Для большинства животных необходимо в качестве балластного кормового компонента. Жвачные (коровы), кони используют целлюлозу как питательный компонент.

Растворима в смеси растворов гидроксида меди и нашатыря; в хлористом цинке и некоторых концентрированных кислотах.

Способна к гидролизу и реакции образования сложных эфиров (пироксилина – бездымного пороха). При обработке азотной кислотой получается сырье для получения целлулоида, некоторых видов пороха и топлива для ракет (твердого).

В основном древесную целлюлозу используют в производстве бумаги.

Гепарин

По внешнему виду это аморфное порошкообразное вещество белого цвета. В его составе D‑глюкозамин и D-глюкуроновая к-та, соединенные в цепочку за счет α-гликозидной связи. Молекула гепарина имеет вес около 20 тыс. у.е.

Это содержащий серу кислый гликозаминогликан. В научных целях был выделен из печени. Антикоагулянт.

Синтезируется гепарин в тканях животных и организме человека в базофилах в т.н. тучных клетках.

Хорошо растворим в воде, не разрушается при нагревании. Необходим в организме, чтобы регулировать свертываемость крови и влиять на содержание в крови холестерина (снижает), а также уменьшает давление. В основном локализуется в печени (на 1- кг веса 1000 мг).

В лечебной практике используется:

как профилактическое средство (и терапевтическое) при склонности к тромбоэмболии;

в хирургии – препарат, применяемый, чтобы при оперативных вмешательствах на органах сердечно-сосудистой системы предотвращать образование сгустков крови в аппаратуре для гемодиализа и искусственного кровообращения;

в клинических лабораториях при взятии анализов крови;

применяется как натриевая соль в медицине (гематология) при процедуре переливания крови.

Пектины

Пектин

Клейкие вещества, использование которых практикуется в кулинарии как кондитерская добавка. Иначе их называют желирующие.

Содержатся во фруктах, растительном сырье.

Чаще всего используют порошок пектина, реже – жидкую форму. Имеет промышленное обозначение E440.

Получают из растительного (чаще свекольного или фруктового) жмыха. Отличная консервирующая добавка, увеличивает срок хранения консервов.

Есть пектин с низким уровнем этерификации (менее 50 процентов) и высоким

(более 50 процентов).

Человек получает пектиновые соединения с продуктами растительного происхождения. Больше пектина в овощах и фруктах вырабатывается в засушливый жаркий период. Он выполняет функцию очищения всех систем организма, сохраняя бактериальный баланс, омолаживает, приводит к норме метаболизм, улучшает гемодинамику.

Это вяжущее вещество, обволакивает слизистую пищеварительного тракта, улучшает деятельность полезной микрофлоры.

Считается, что применение пектиновых препаратов способствует оздоровлению человека. Норма потребления – около пятнадцати граммов в сутки. Обладает эффектом сжигания жира в организме. Замечено, что при поглощении около 25 гр этого полисахарида, извлеченного из цельных яблок, человек теряет приблизительно 0,3 кг жира в сутки.

В поварской практике его используют как загуститель. Это качественная природная желирующая добавка.

Пектиновое вещество, в том числе, косметологический компонент – гелеобразующая основа для кремообразных препаратов. Разглаживает морщины, хорошая тонизирующая добавка повышает впитываемость ингредиентов в кожу, обладает отбеливающим эффектом, защита от ультрафиолета.

Хитин

Это вещество – основа скелета насекомых и ракообразных, его содержат клетки обыкновенных пивных дрожжей и разные виды грибов. Особый карбонатный комплекс дарит твердость панцирю жуков и раков. При этом хитин откладывается на карбонатной основе.

Блокирует развитие опухолевых клеток.

Способен защитить ткани от радиации.

Усиливает действие лекарственных веществ, направленных на снижение свертываемости и разжижение крови.

Иммунитет под его воздействием повышается.

Профилактика инфарктов, инсультов.

Стимулирует рост бифидобактерий и процесс регенерации тканей.

Применение полисахаридов в медицине, химической отрасли, пищевой промышленности

В середине ХХ века полисахариды стали широко производить для пищевой промышленности и производства лекарств. Однако сейчас их активно применяют и в других промышленных сферах:

на химических заводах;

на текстильных фабриках при производстве ткани;

при нефтедобыче и переработке нефти и газа;

Здравоохранение и фармация

Эти природные соединения имеют важные свойства:

повышение стойкости организма к инфекционным заболеваниям;

выраженная противоопухолевая активность.

С их помощью заживление ран происходит быстрее, как и восстановление тканей. Кроме того, уменьшается вредное побочное действие лекарств.

Часто в мед. практике их применяют как диагностические препараты (некоторые условно-патогенные дрожжи) при выявлении кандидозов и сальмонеллезов.

Декстраны, производимые некоторыми видами бактерий, являются плазмо-заменителями. Сульфат декстрана заменяет гепарин как антикоагулянт.

Особо перспективны разрабатываемые на настоящий момент препараты, содержащие хитин. В том числе как наполнители и основы при производстве различных форм препаратов.

В последнее время производятся ферментативные препараты пролонгированного действия с содержанием декстранов, имеющие пониженную аллергичность.

Гликаны – активный компонент в высококачественных зубных пастах.

Гликаны в зубных пастах

Пищевая промышленность

Полученные из бактерий полисахариды направляют на производство защитных пленок. Они предотвращают высыхание продуктов, попадание на них грязи, стабилизируют мороженую массу, соки, салатные заправки, сиропы.

Ксантин широко применяется в производстве кисломолочных продуктов. Широко применяется в производстве кисломолочных продуктов. Для повышения качества хлебобулочных изделий на производстве добавляют экзополисахариды, что увеличивает объем хлеба, понижает зачерствение.

Промышленность и инновационные направления

Выше уже упоминалось, что полисахариды применяются на предприятиях, где ведется синтез ядерного топлива.

Гликаны, содержащиеся в клетках некоторых видов бактерий, имеют вязкость высокого уровня. Это свойство используют в технологиях производства клеящих соединений. Например, гетерополисахарид Corynebacterium equi var. mucilaginosus, имеет очень высокую степень вязкости. Поэтому составом на его основе можно заменить дорогостоящие склеивающие средства, не теряя в качестве.

Заменители агара лежат в основе синтеза составов для фотопленок.

На заводах переработки нефти и газа, а также при их добыче распространено применение стабилизаторов и жидкостей для промывки механизмов в процессе бурения скважин. Важной составной частью этих смесей являются гликаны.

Научные исследования по изучениям свойств полисахаридов и их производных приоритетны: они расширяют горизонты инновационного развития в активно развивающейся микробиологической отрасли промышленности.

Гидролиз полисахаридов

Это процесс получения производных гликанов:

Направление реакций идет по гидроксильным группам в растворах кислот под воздействием ферментных соединений.

Промышленные сферы применения процесса:

получение этилового спирта;

производство молочной кислоты;

заводской синтез масляной и лимонной кислот;

производство многоатомных спиртов (бутанол);

производство ацетона для лакокрасочной промышленности;

производство глюкозы из крахмала.

Осахаривание крахмала или целлюлозы – это процесс полного гидролиза.

Неполный гидролиз – это процесс получения олигосахаридов (в частности, состоящих из двух моносахаридов).

Читайте также: