Производство лецитина из подсолнечника технологии

Обновлено: 05.10.2024

Естественно, медики не могли пройти мимо существующего факта соединения в продуктах питания лецитина с холестерином и вредными жирами, и занялись получением лецитина в чистом виде.

Первые лецитины изготавливались из яичных желтков. Позднее были разработаны технологии получения лецитина из соевого и подсолнечного масла. В России до недавнего времени лецитин как пищевая добавка отсутствовал. Сегодня основным поставщиком лецитина на российский рынок являются фирмы Германии, США, Швейцарии. Начато производство соевого лецитина по технологии, разработанной институтом биомедицинской химии. Но, к сожалению, яичные лецитины часто вызывают аллергические реакции.

Определенные опасения вызывает даже высокоочищенный лецитин из сои. Ведь не секрет, что большинство семян сои, из которых он производится, генетически изменены, а отдаленные последствия приема в пищу генетически модифицированных растений пока не предсказуемы. Кроме того, сою не назовешь абсолютно привычным для организма россиян продуктом питания.

К несомненным достоинствам этого продукта можно отнести то, что он изготовлен из экологически чистого и привычного для организма россиян сырья: подсолнечного масла.

В процессе водной гидратации масла в цеху рафинации дисковые центробежные сепараторы производят побочный продукт – гидрофуз, имеющий влажность около 50%. Из гидрофуза Вы можете получить ценный продукт: жидкий лецитин (фосфатидный концентрат), а из него сухой порошковый лецитин, и тем самым значительно повысить рентабельность рафинации масла.

Технология

Гидрофуз из танков хранения направляется в танк кондиционирования с помощью насоса, где гидрофуз тщательно нагревается и перемешивается под контролем температуры при 80 С.

Кондиционированный гидрофуз посредством насоса направляется в аппарат сушки - роторный тонкопленочный испаритель. Исходя из качества гидрофуза, регулируется скорость подачи насоса, дабы гарантировать производительность аппарата сушки и качество готового продукта (обычно влажность готового фосфатидного концентрата ниже 1%, цвет - светло-коричневый).

После удаления влаги жидкий лецитин течет в принимающий танк.

На выходе из аппарата сушки фосфатидный концентрат имеет температуру 100 - 110 С. Если он вступит в прямой контакт с воздухом, то это вызовет окисление и потемнение фосфатидного концентрата (он подгорит). Поэтому его необходимо остудить до 70 С, профильтровать, чтобы минимизировать примеси (Hexane (toluene) insoluble matter,%), а затем упаковать в бочки (канистры). Для фильтрации лецитина мы используем самоочищающийся фильтр специальной конструкции.

С помощью нашей линии Вы сможете получать жидкий пищевой стандартизованный подсолнечный либо соевый лецитин. Цена стандартизированного лецитина на рынке значительно выше, чем просто фосфатидного концентрата. Мы также поставляем оборудование для доведения имеющегося у клиента фосфатидного концентрата до норм стандартизированного лецитина.

Основные параметры готового жидкого стандартизованного лецитина:

Содержание веществ, нерастворимых в ацетоне: более 62%.

Содержание веществ, нерастворимых в толуоле: менее 0,3%

Влага не более 1%

Цвет по Гарднеру (10% раствор) ≤12

Кислотное число не более 30 мг КОН/г

Перекисное число не более 3 meg/кг

lecithin

После получения жидкого лецитина мы можем поставить Вам линию производства сухого порошкового лецитина методом экстракции с помощью ацетона в жидкостно/жидкостном экстракторе. Цена сухого лецитина на рынке еще выше, чем цена жидкого лецитина или фосфатидного концентрата.

Изобретение относится к пищевой промышленности, а именно к способам переработки растительного сырья, и может быть использовано для производства фракционированного лецитина.

Известен способ получения пищевых растительных фосфолипидов, включающий смешивание нерафинированного растительного масла с водой или водными растворами электролитов, экспозицию полученной смеси, разделение смеси на гидратированное масло и фосфолипидную эмульсию и сушку фосфолипидной эмульсии, при этом после сушки фосфолипидной эмульсии получаемый фосфатидный концентрат растворяют в органическом растворителе (бензине, нефрасе) при соотношении фосфатидный концентрат - растворитель (1:1)-(1:5) с получением мисцеллы, полученную мисцеллу фильтруют и обрабатывают гидратирующим агентом в количестве 10-40% к массе мисцеллы при температуре 20-40°С, отделяют образовавшуюся фосфолипидную эмульсию и сушат при температуре 70-90°С под вакуумом (Патент №2377785, опубл. 10.01.2010 г. Бюл. №1).

Недостатком данного способа является низкое качество конечного продукта.

Недостатком данного способа является то, что вследствие многостадийности процесса и воздействии на фосфолипидный комплекс большого числа неблагоприятных технологических факторов, таких как жесткие температурные режимы, воздействие углеводородных растворителей, интенсивная гидродинамика, взаимодействие с кислородом воздуха и т.п., фосфолипидный комплекс претерпевает существенные изменения, в том числе связанные с взаимодействием фосфолипидных молекул с углеводами, неомыляемыми липидами, ионами поливалентных металлов, кислородом, термической модификацией, окислением. В результате образуется большое число побочных продуктов, снижающих пищевую ценность и затрудняющих осуществление процессов фракционирования. Фракционирование осуществляется с использованием селективного растворителя - этанола.

Следует отметить, что получаемые такими способами фракционированные лецитины характеризуются содержанием нейтральных липидов не менее 2%, гликолипидов не менее 5% и фосфатидилхолинов не менее 60%.

Задачей изобретения является разработка способа получения фракционированного лецитина, обеспечивающего высокие показатели его качества.

Техническим результатом изобретения является снижение содержания нейтральных липидов и гликолипидов во фракционированном лецитине.

Экструдирование ядра подсолнечника в присутствии этанола способствует переходу в мисцеллу спирторастворимых фракций фосфолипидов, преимущественно фосфатидилхолина. При температуре 60°С мисцелла представляет собой однородную жидкость, состоящую из этанола, масла и фосфолипидов. При понижении температуры растворимость масла в спирте снижается, что приводит к разделению системы на две фазы: нижняя фаза - масло с небольшим количеством этанола; верхняя - этанол с фосфолипидами, преимущественно с фосфатидилхолином.

Обработка верхней фазы электромагнитным полем с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут, перед ее разделением на две части (фосфолипидную мисцеллу и липидную мисцеллу) на мембранном фильтре с проницаемостью rр=5,5×10 -9 м, позволяет повысить селективность и эффективность процесса разделения, что выражается в полном удалении гликолипидов и снижении содержания нейтральных липидов из фосфолипидной мисцеллы.

При удалении этанола из фосфолипидной мисцеллы под вакуумом при остаточном давлении 20-30 мБар при температуре 50-60°С получается продукт, представляющий собой спирторастворимую фракцию фосфолипидов с преимущественным содержанием фосфатидилхолина, остаточным содержанием нейтральных липидов не более 0,05% и отсутствием гликолипидов. Заявляемый способ позволяет получить фракционированный лецитин из безлузговых семян подсолнечника, характеризующийся содержанием фосфолипдов не менее 95%, в том числе фосфатидилхолинов не менее 65%, нейтральных липидов не более 0,05% и отсутствием гликолипидов.

В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,6-0,8 Тл в течение 3-5 минут и отправляют на разделение, путем фильтрации через мембранный фильтр с проницаемостью rр=5,5×10 -9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Удаление из фосфолипидной мисцеллы этанола под вакуумом при остаточном давление 20-30 мБар и температуре 50-60°С. Фракционированный лецитин, полученный предлагаемым способом, характеризуется высоким качеством с содержанием фосфолипидов не менее 95%, в том числе фосфатидилхолинов 67-70%, нейтральных липидов не более 0,05% и отсутствием гликолипидов.

Примеры конкретного выполнения.

В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,6 Тл в течение 5 минут и отправляют на разделение, путем фильтрации через мембранный фильтр с проницаемостью rр=5,5×10 -9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давлении 20 мБар и температуре 60°С, при этом образуется фракционированный лецитин высокого качества.

В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,8 Тл в течение 3 минут и отправляют на разделение, путем фильтрации через мембранный фильтр с проницаемостью rр=5,5×10 -9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давление 30 мБар и температуре 50°С, при этом образуется фракционированный лецитин высокого качества.

В экструдере осуществляют процессы измельчения безлузгового ядра подсолнечника при температуре 50-70°С в течение 15-60 минут с получением экструдированного ядра подсолнечника и этанольной мисцеллы. Отделяют образовавшуюся этанольную мисцеллу и направляют в накопитель мисцеллы, где ее охлаждают до температуры 0-10°С, проводят экспозицию охлажденной мисцеллы в течение 6-12 часов, что приводит к разделению мисцеллы на две фазы. Затем верхнюю фазу декантируют, обрабатывают в электромагнитном поле с магнитной индукцией 0,7 Тл в течение 4 минут и отправляют на фильтрацию через мембранный фильтр с проницаемостью rр=5,5×10 -9 м, где происходит разделение мисцеллы на две части: липидную и фосфолипидную мисцеллы. Из фосфолипидной мисцеллы удаляют этанол под вакуумом при остаточном давление 25 мБар и температуре 55°С, при этом образуется фракционированный лецитин высокого качества.

В таблице 1 приведены характеристики фракционированного лецитина, полученного предлагаемым способом и по прототипу.


Таким образом, предложенный способ получения фракционированного лецитина позволяет получить продукт высокого качества с повышенным содержанием фосфатидилхолинов свободных от нейтральных липидов и гликолипидов.

На современных маслодобывающих предприятиях при комплексной переработке жиросодержащих семян фосфолипиды выделяют в виде фосфатидных концентратов (самостоятельного продукта), которые до сих пор не нашли широкого практического применения, но создают реальную сырьевую базу для производства пищевых лецитинов и биологически активных добавок на их основе.



В соответствии с директивой ЕС, лецитины, имеющие номер Е 322, представляют собой смесь фракций фосфолипидов, полученную из животных или растительных объектов физическими методами, а также методами, включающими использование безвредных ферментов, в которых содержание веществ, нерастворимых в ацетоне (собственно фосфолипидов), составляет не менее 56-60%. В странах Европы, США и Японии лецитины отнесены к общепринятым безопасным веществам и включены в список GRAS (Generally Regarded As Safe).

Основные функции фосфолипидов в пищевых продуктах связаны с эмульгированием, особенностями которого являются способности образовывать и поддерживать в однородном состоянии как прямые, так и обратные эмульсии, стабилизацией различных систем, пеногашением, антиразбрызгивающей способностью, способностью предотвращать прилипание изделий к различным материалам (рис. 1).


Рис. 1. Функции лецитина в пищевых продуктах

Перечисленные функции определяют фосфолипиды как традиционные пищевые добавки, преднамеренно вводимые в пищевые продукты с целью придания им заданных свойств, а также сохранения их собственных свойств, поскольку некоторые фосфолипиды оказывают антиоксидантное действие.

Кроме того, достоверно известно, что, в отличие от большинства других пищевых добавок (например, моноглицеридов, потребление которых составляет около 60% общего количества), препараты фосфолипидов отличает высокая физиологическая активность. В связи с этим их использование выходит за рамки решения только технологических задач и создает предпосылки для создания новых видов продуктов питания, оказывающих положительное влияние на здоровье человека (рис. 2).


Рис. 2. Специфические физиологические области воздействия фосфолипидов

Украина обладает неограниченным сырьевым источником получения лецитина. Это, прежде всего, фосфатидные концентраты подсолнечных масел. По данным УкрНИИМЖ, производство фосфатидных концентратов в 2005 году отечественными предприятиями составило 4097 тонн, в том числе пищевого фосфатидного концентрата - 1656 тонн.

В настоящее время все существующие технологии получения пищевого лецитина из фосфатидного концентрата включают в себя стадию обезжиривания его ацетоном. В Днепропетровском государственном аграрном университете разработана технология получения пищевого лецитина из фосфатидного концентрата подсолнечного масла путем экстрагирования его изопропиловым спиртом. Суть предложенной технологии заключается в том, что фосфатидный концентрат обрабатывают изопропиловым спиртом в весовом соотношении фосфатидного концентрата к изопропиловому спирту на начальной стадии как 1:2, а далее, для уменьшения растворимости лецитина в изопропиловом спирте - как 1:1 при температуре 50-80°С при интенсивном перемешивании.

В этих условиях углеводородная часть фосфолипидов будет частично находиться в расплавленном состоянии. Это способствует большему контакту растворителя с компонентами фосфатидного концентрата и более быстрому его обезжириванию. Наибольшее влияние на скорость обезжиривания фосфатидного концентрата оказывают два фактора - температура экстрагирования и количественное соотношение весовых частей фосфатидного концентрата к изопропиловому спирту.

Использование повышенных температур при обезжиривании фосфатидного концентрата целесообразно с учетом следующих фактов: после первой обработки фосфатидного концентрата экстрагентом образуется смолообразная масса, в которую плохо проникает растворитель, что приводит к значительному снижению скорости экстрагирования; при повышенных температурах углеводородная часть фосфолипидов частично переходит в расплавленное состояние, а остальная часть становится проницаемой для экстрагента.

Экспериментально установлено, что уже при температуре 50°С значительная часть фосфолипидов переходит в расплавленное состояние. Поэтому для увеличения скорости обезжиривания фосфатидного концентрата изопропиловым спиртом процесс экстрагирования целесообразно проводить при повышенных температурах, близких к температуре кипения изопропилового спирта.

По данным лабораторных исследований и опытно-промышленной проверки разработанной нами технологии, предложена принципиальная технологическая схема получения пищевого лецитина (рис. 3).


Рис. 3. Технологическая схема получения пищевого лецитина

В таблице 1 приведены требования к пищевому лецитину марки "А", "Б", "В" нормативной документации ТУУ 02070758.001-99 "Пищевая добавка - лецитин. Технические условия", и дана характеристика полученного лецитина.

Таблица 1. Характеристика продукции, которая выпускается

В результате испытания разработанной технологии получения пищевого лецитина на опытно-промышленной установке научно-исследовательского института химических реактивов (г. Днепропетровск), а также исследования химических показателей полученных фосфолипидов был сделан ряд выводов:
- технологию получения пищевого лецитина с использованием в качестве экстрагента для обезжиривания фосфатидного концентрата изопропилового спирта можно рекомендовать к внедрению в промышленное производство;
- полученные высококонцентрированные фосфолипиды следует отнести к пищевому лецитину на основании данных по содержанию в них тяжелых металлов, данных микробиологического и токсикологического контроля.

Константин Мельников, Марина Кобзарь
Днепропетровский государственный аграрный университет, г. Днепропетровск

Читайте также: