Производство удобрений из угля

Обновлено: 28.09.2024

В Институте углехимии и химического материаловедения СО РАН (Кемерово) разработан комплекс технологий выделения из бурых углей гуминовых препаратов. Они могут служить в качестве стимуляторов роста и удобрений для сельскохозяйственных растений, а также быть полезными при рекультивации почв.

В разработке заинтересованы как представители сельского хозяйства, так и угольной отрасли, однако, пока выработка гуматов возможна лишь в лабораторных условиях – около 10 килограммов - что недостаточно для привлечения потенциальных заказчиков.

- Для решения этой проблемы необходимо создать универсальный опытно-промышленный стенд - говорит директор ИУХМ СО РАН член-корреспондент РАН Зинфер Ришатович Исмагилов. - Нами разработана технологическая схема, составлен список оборудования, есть коммерческие предложения от поставщиков, но пока нет средств на воплощение. Основное назначение стенда — обкатка технологий, получение опытных партий продукции: не только гуматов, можно нарабатывать горный воск, адсорбенты, кокс – с целью оптимизации процесса производства для каждого соединения. Стенд включает в себя блок экстракционной переработки углей и выделения горного воска и битумов, блок получения гуматных препаратов, пиролитическую установку для моделирования и исследования процессов получения кокса и углеродных материалов из углей, автоклавную установку для проведения экспериментов при повышенном давлении и наработки поверхностно активных веществ и др. Гуматы мы могли бы получать как в жидком, так и в гранулированном виде. Стоимость стенда – 20 млн. рублей, и в принципе, по предварительным расчетам он мог бы окупить себя за 3-3,5 года производством и продажей гуматных препаратов.

Площадь нарушенных земель в Кузбассе, требующих рекультивации, составляет 100 тыс. га, ежегодный прирост составляет 1 тыс. га. Потребность в гуматах для рекультивации может составить от 200 до 1000 тонн единовременно и от 2 до 10 тонн ежегодно. Для сельского хозяйства - от 1 500 до 7000 тонн ежегодно. Таким образом, в Кузбассе существует достаточно ёмкий рынок по гуматным препаратам.

Бурый уголь Тисульского месторождения Кемеровской области — перспективный источник гуминовых веществ. Из тонны угля можно получить от 280 до 700 кг гуматов. Производительность стендовой установки по гуматам составит 12 – 126 тонн в год. Этого хватит для ежегодной обработки 4000 – 42 000 га посевных земель. Планируемый период окупаемости стенда при таких условиях работы – 3-3,5 года.

Возможность применения гуматов в сельском хозяйстве совместно с минеральными удобрениями позволяет выращивать растения с более высокими показателями, но в то же время безвредные для человека, а способность стимулировать биологическую активность почв определяет их перспективность для использования при рекультивации. Эти факторы делают гуминовые препараты актуальным объектом исследования, который нуждается в дальнейшем детальном изучении.

Подготовила Юлия Позднякова

Изобретение относится к сельскому хозяйству, в частности к производству удобрений на основе бурого угля, и может быть использовано для повышения урожайности как доступное земледельцам любого масштаба - от дачников до крупных земледельческих хозяйств. Удобрение содержит бурый уголь с размером частиц 0,001-5 мм и добавку, в качестве которой оно содержит биогумус при соответствующем массовом соотношении компонентов 1:0,01-0,05. Способ получения буроугольного удобрения включает смешивание бурого угля с добавкой. Бурый уголь предварительно измельчают до размера частиц 0,001-5 мм, после чего смешивают с добавкой в массовом соотношении компонентов 1:0,01-0,05 до получения однородного сыпучего целевого продукта. В качестве добавки используют биогумус. Изобретение позволяет получать эффективное удобрение, которое можно производить в требуемых количествах в хозяйствах любого масштаба от садовода-огородника до крупного сельскохозяйственного предприятия. 2 н. и 5 з.п. ф-лы, 3 табл.

Изобретение относится к сельскому хозяйству и, в частности, к производству удобрений на основе бурого угля и может быть использовано для повышения урожайности как наиболее доступное земледельцами любого масштаба - от дачников до крупных земледельческих хозяйств.

Известно углеродистое удобрение и способ его получения из перемолотого в пыль угля, перемешанного с органическими отходами (соломенной и камышовой резкой, опилками, сухой травой и т.д.), которое в виде компоста вносилось в почву, где перерабатывалось червями и бактериями, от чего количество гумуса в почве возрастало и почва становилась более плодородной [1].

Бурый уголь, как углеродсодержащее удобрение, не содержит почвенной биоты, а это снижает его удобрительные свойства. Для успешного использования такого углеродистого удобрения в почве должно быть большое количество "живого вещества" - червей и бактерий. На обедненных, "химизированных" почвах, в которых мало червей и бактерий, сильно замедляется переработка этого углеродистого удобрения червями и бактериями и поэтому невозможно достичь желаемого результата в первый год его использования.

Известны так же полученные обработкой бурого угля гидрооксидами натрия, калия или аммония гуматы щелочных металлов и аммония. Их действие основано на активации гуминовых кислот бурого угля [2].

Однако повышение урожайности при их использовании остается недостаточно высоким.

Наиболее близкими к заявляемому изобретению являются углегуминовое удобрение на основе бурого угля и добавки (которое можно так же назвать буроугольным удобрением), а так же способ его получения. В качестве добавки в этом буроугольном удобрении используют отходы биотехнологических производств на основе микробного синтеза в количестве 1-10% от массы бурого угля [3].

Получают это удобрение путем перемешивания бурого угля и отходов биотехнологических производств на основе микробного синтеза, в качестве которых используют липрин-2, являющийся отходом производства кормового концентрата лизина, или барду, являющуюся отходом промышленного производства ацетил-бутилового спирта после сбраживания мелассно-мучной среды.

Такое удобрение повышает урожайность по сравнению с гуматами натрия и бурым углем. Однако оно содержит малодоступную добавку, состоящую из отходов биотехнологических производств на основе микробного синтеза, в качестве которых используют вышеуказанные липрин-2 и барду, и это ограничивает использование его в широких масштабах, на полях крупных, средних и особенно у мелких сельхозпроизводителей (у огородников, у дачников в небольших земледельческих кооперативах и т.д.), в районах, в которых нет таких биотехнологических производств на основе микробного синтеза.

Заявляемое изобретение направлено на создание удобрения, которое не только многократно повышает урожайность, но и которое можно производить в любых количествах и у сельхозпроизводителя любого ранга - от садовода-огородника до крупного сельскохозяйственного предприятия.

Заявляемое буроугольное удобрение имеет следующие существенные признаки: буроугольное удобрение содержит бурый уголь и добавку и в отличие от прототипа в качестве добавки оно содержит биогумус при массовом соотношении бурого угля к биогумусу, равном 1:0,01-0,05, при этом используют бурый уголь, измельченный до размера частиц 0,001-5 мм.

В качестве добавки предлагаемое буроугольное удобрение может содержать биогумус в виде его водной бактериальной суспензии, содержащей биогумус и воду при массовом соотношении этих компонентов 1:5-10.

Кроме того, заявляемое буроугольное удобрение в качестве бурого угля может содержать его измельченные отходы с размером частиц 0,001-5 мм.

Предлагаемый способ получения буроугольного удобрения имеет следующие существенные признаки:

в заявляемом способе получения буроугольного удобрения путем смешивания бурого угля и добавки в отличие от прототипа бурый уголь предварительно измельчают до размера частиц, равного 0,001-5 мм, после чего смешивают с добавкой в массовом соотношении этих компонентов, равном 1:0,01-0,05, до получения однородного сыпучего целевого продукта, причем в качестве добавки используют биогумус.

Возможно в заявляемом способе получения буроугольного удобрения использование биогумуса в виде его водной бактериальной суспензии, содержащей биогумус и воду при массовом соотношении этих компонентов 1:5-10.

В предлагаемом способе получения буроугольного удобрения в качестве бурого угля могут быть использованы его измельченные отходы с размером частиц 0,001-5 мм.

Использование измельченных отходов бурого угля при получении заявляемого буроугольного удобрения значительно удешевляет процесс его получения и как следствие этого уменьшает его себестоимость.

Биогумус, а так же водную суспензию биогумуса, как и в целом предлагаемое буроугольное удобрение, может получить в любых количествах не только крупный сельхозпроизводитель, но и даже огородник или дачник.

Заявляемое буроугольное удобрение, полученное предлагаемым способом, не только повышает урожайность сельскохозяйственных культур, но и позволяет производить его в любых количествах у сельхозпроизводителя любого ранга - от огородника до крупного сельскохозяйственного предприятия и, кроме того, расширяет ассортимент используемых органических удобрений.

Заявляемое изобретение иллюстрируется примерами, приведенными в прилагаемой таблице 1.

1 т бурого угля измельчают до размера частиц, равного 0,001 мм, и добавляют для активации биологического разложения его в почве на углекислый газ и другие элементы питания почвенной биоты и растений 10 кг свежего биогумуса, затем полученную смесь перемешивают до образования однородного сыпучего целевого продукта - буроугольного удобрения.

То же, что и в примере 1, но только 1 т бурого угля измельчают до размера частиц, равного 2,5 мм, и добавляют 25 кг биогумуса.

То же, что и в примере 1, но только 1 т бурого угля измельчают до размера частиц, равного 5 мм, и добавляют 50 кг биогумуса.

В примере 4 то же, что и в примере 1, но только вместо биогумуса добавляют 50 л его водной бактериальной суспензии, полученной путем перемешивания биогумуса с водой при их соответствующем массовом соотношении, равном 1:5. Причем водную суспензию биогумуса получают до измельчения бурого угля.

В примере 5 то же, что и в примере 1, но только измельчают отходы бурого угля до размера частиц, равного 0,001-5 мм, и к 1 т этих отходов добавляют 25 кг биогумуса.

В примере 6 то же, что и в примере 5, но только вместо биогумуса добавляют 50 л его водной бактериальной суспензии, полученной после измельчения отходов бурого угля путем перемешивания биогумуса с водой при массовом соотношении 1:10.

Аналогичным образом были проведены эксперименты по осуществлению предлагаемого изобретения с выходящими за рамки граничных значений соотношения бурого угля и активирующей добавки (1:0,01-0,05) и размера частиц измельченного бурого угля или измельченных отходов бурого угля (0,001-5 мм), а так же соотношения биогумуса и воды в водной суспензии биогумуса (1:5-10).

В результате этих экспериментов было установлено:

- использование активирующей добавки в количестве меньшем, чем 0,01 от массы измельченного бурого угля, существенно замедляет процесс его активации, а более, чем 0,05 является избыточным количеством по сравнению с необходимым для активации бурого угля и приводит к удорожанию буроугольного удобрения;

- при размере частиц измельченного бурого угля меньшем, чем 0,001 мм, требуются очень мощные скоростные мельницы, что удорожает процесс, а при более чем 5 мм процесс активации частиц бурого угля замедляется и ограничивает механизированное внесение такого удобрения в почву с помощью стандартного сельхозоборудования, например зерновых сеялок, отверстия которых отрегулированы на размер зерна злаков (в основном не более 5 мм);

- при массовом соотношении биогумуса и воды в водной бактериальной суспензии, при котором воды меньше 5 частей, получается густая суспензия, которую труднее переносить на измельченный бурый уголь, чем жидкую;

- при массовом соотношении биогумуса и воды в водной бактериальной суспензии, при котором воды больше чем 10 частей, увеличивается влажность измельченного бурого угля и он начинает комковаться, что затрудняет механизированный способ внесения его в почву при использовании стандартного сельхозоборудования (зерновых сеялок).

В прилагаемой таблице 1 приведены примеры получения заявляемого буроугольного удобрения.

В таблице 2 приведены данные по выявлению влияния биогумуса и предлагаемого буроугольного удобрения, содержащего измельченный бурый уголь и биогумус, на урожайность зерновых (ржи, пшеницы, кукурузы и ячменя).

В таблице 3 приведены данные по выявлению влияния биогумуса и предлагаемого буроугольного удобрения, содержащего измельченный отходы бурого угля и биогумус, на урожайность картофеля.

Как видно из таблицы 1, смесь измельченного бурого угля (или измельченных отходов бурого угля) с активирующей добавкой - биогумусом или с водной суспензией биогумуса, полученная заявляемым способом, достаточно активирована во всех приведенных в этой таблице примерах 1-6, выбранных в рамках граничных значений соответствующего массового соотношения бурого угля и активирующей добавки (1:0,01-0,05) и размера частиц измельченного бурого угля или измельченных отходов бурого угля (0,001-5 мм), а так же соответствующего массового соотношения биогумуса и воды в его водной бактериальной суспензии (1:5-10), указанных в формуле.

Из таблицы 2 видно, что заявляемое буроугольное удобрение, содержащее измельченный бурый уголь и активирующую добавку - биогумус, по влиянию на урожайность зерновых культур превосходит биогумус.

Из таблицы 3 видно, что предлагаемое буроугольное удобрение, содержащее измельченный отходы бурого угля и активирующую добавку - биогумус, по влиянию на урожайность картофеля превосходит биогумус.

Как видно из таблицы 2 данного описания и таблицы 1 описания прототипа, заявляемое буроугольное удобрение, содержащее измельченный бурый уголь и активирующую добавку - биогумус, по влиянию на урожайность ячменя превосходит гумат натрия, бурый уголь и прототип.

Таким образом, заявляемое изобретение не только повышает урожайность сельскохозяйственных культур, но и позволяет производить его в любых количествах и у сельхозпроизводителя любого ранга от огородника до крупного сельскохозяйственного предприятия и, кроме того, расширяет ассортимент используемых органических удобрений.

1. Слащинин Ю.И. “20 мешков картошки с каждой сотки”, г.Санкт-Петербург, 1995 г.

2. Лозановская И.Н. с соавт. “Почвоведение”, М., 1993 г., №4, с.117-121.

3. Российский патент RU 2111195, C 05 F 11/02, опубликован 1998 г.

Таблица 1.
Примеры получения заявляемого биоактивированного буроугольного (углегуминового) удобрения.
Биологический активатор и его доза на 1 т угляХарактеристика смеси биоактивированного измельченного бурого угляХарактеристика смеси биоактивированных измельченных отходов бурого угля
1.Биогумус 10 кгДостаточно активирована-
2.Биогумус 25 кгДостаточно активирована-
3.Биогумус 50 кгДостаточно активирована-
4.Водная суспензия биогумуса (5:1)50 лДостаточно активирована-
5.Биогумус 25 кг-Достаточно активирована
6.Водная суспензия биогумуса (10:1)50 л-Достаточно активирована

1. Буроугольное удобрение, содержащее бурый уголь и добавку, отличающееся тем, что в качестве добавки оно содержит биогумус при массовом соотношении компонентов 1:0,01-0,05, при этом используют бурый уголь, измельченный до размера частиц 0,001-5 мм.

2. Буроугольное удобрение по п.1, отличающееся тем, что оно содержит биогумус в виде его водной бактериальной суспензии.

3. Буроугольное удобрение по п.2, отличающееся тем, что водная бактериальная суспензия содержит биогумус и воду при массовом соотношении этих компонентов 1:5-10.

4. Буроугольное удобрение по любому из пп.1-3, отличающееся тем, что в качестве бурого угля оно содержит его измельченные отходы с размером частиц 0,001-5 мм.

5. Способ получения буроугольного удобрения, включающий смешивание бурого угля с добавкой, отличающийся тем, что бурый уголь предварительно измельчают до размера частиц 0,001-5 мм, после чего смешивают с добавкой в массовом соотношении компонентов 1:0,01-0,05 до получения однородного сыпучего целевого продукта, причем в качестве добавки используют биогумус.

6. Способ по п.5, отличающийся тем, что используют биогумус в виде его водной бактериальной суспензии, содержащей биогумус и воду в массовом соотношении соответственно 1:5-10.

7. Способ по п.5 или 6, отличающийся тем, что в качестве бурого угля используют его отходы.

Изобретение относится к технологии выделения гумусовых кислот (гуминовых и фульвокислот) из гуматосодержащих веществ природного происхождения, в частности из сапропеля, и может найти применение в производстве органоминеральных удобрений, биологически активных добавок, используемых для изготовления косметических изделий, лекарственных препаратов и иных фармацевтических средств.

Изобретение относится к сельскому хозяйству и может быть использовано для приготовления органоминеральных удобрений. .


Изобретение относится к сельскому хозяйству и может быть использовано при получении удобрений из твердых горючих ископаемых. .

Изобретение относится к области охраны окружающей среды с использованием препаратов для восстановления техногенно загрязненных почв, грунтов, вод. .


Изобретение относится к сельскому хозяйству и может быть использовано для получения универсальных органоминеральных удобрений. .


Изобретение относится к технологии переработки торфа и может быть использовано для получения биологически активных гуминовых препаратов. .

Изобретение относится к сельскому хозяйству, непосредственно к растениеводству, и касается биологически активных микроэлементсодержащих составов, применяемых как питательно-профилактические средства на разных этапах обработки растений.


Изобретение относится к органоминеральным известковым удобрениям и к способу их получения из продуктов промышленной утилизации и может быть использовано в сельском и лесном хозяйствах.

Изобретение относится к области получения комплексных гуминовых удобрений и может быть использовано для производства хелатных комплексов микроэлементов с гуминовыми кислотами.


Изобретение относится к сельскому хозяйству, а именно к способам получения органических удобрений и стимуляторов роста из природных гуматсодержащих веществ, например из торфа


Изобретение относится к технологии кожевенного производства, а именно к получению дубителя на основе сульфогуминовой кислоты из окисленного бурого угля

Изобретение относится к торфяной промышленности, а именно к производству питательных сред на основе торфа для выращивания сеянцев лесных культур и садовых пород деревьев и кустарников с закрытыми корневыми системами и экологически чистой овощной продукции в закрытом грунте

Изобретение относится к области сельского хозяйства и может быть использовано при получении стимуляторов роста и жидких комплексных органоминеральных удобрений из гумусосодержащих субстратов, содержащих живые почвенные микроорганизмы, а именно из вермикомпоста (биогумуса), зоокомпоста, компостов, бурого угля, торфа и сапропеля

Изобретение относится к сельскому хозяйству и может быть использовано в производстве экологически чистых комплексных микроудобрений на основе лигнина

Изобретение относится к сельскому хозяйству и может быть использовано при производстве удобрений, средств защиты растений и препаратов, снижающих отрицательные последствия техногенного воздействия на природу

Изобретение относится к области экологии почв, а именно к производству средств на основе природных компонентов, ликвидирующих техногенные загрязнения почв, и может быть использовано при проведении мероприятия по снижению степени загрязнения и токсичности лесных, сельскохозяйственных и других земель с возобновлением биоты


Изобретение относится к переработке торфа и может найти применение в отраслях нефтеобработки, теплоэнергетики сельского хозяйства и других отраслях промышленности

Изобретение относится к сельскохозяйственному производству и может быть использовано в производстве экологически чистых комплексных удобрений из гуматсодержащего сырья


Изобретение относится к переработке торфа, сельскому хозяйству и может быть использовано для получения экологически чистого удобрения, кормовой добавки для животных и птиц, лечебной грязи

Изобретение относится к сельскому хозяйству, в частности к производству удобрений на основе бурого угля, и может быть использовано для повышения урожайности как доступное земледельцам любого масштаба - от дачников до крупных земледельческих хозяйств

Удобрение гумат производят из торфа, бурого угля и других видов сырья. Полученные препараты отличаются уровнем качества и методикой применения. Это нужно учитывать, покупая органическое удобрение.

Из чего делают удобрение гумат

Давайте рассмотрим два важных вида сырья:

И торф, и уголь образуются из остатков растений. В обоих содержатся гуминовые вещества. Но есть существенная разница.

Гумат из угля

Гуминовые вещества включают в себя гуминовые и фульвовые кислоты. Гуминовые кислоты неплохо сохраняются в угле — их молекулы большие и неповоротливые. А вот намного более подвижные фульвовые кислоты постепенно вымываются из угля водой .

Как делают удобрение Гумат, и как его лучше использовать

Полученный из угля продукт с высоким содержанием фульвовых кислот стоит покупать только в том случае, если вы уверены в происхождении этих самых фульвовых кислот.

Интересный факт — чем больше гуминовых и фульвовых кислот в угле, тем большую ценность он представляет для производителей удобрений и тем меньшую — для потребителей топлива. Чем больше гуминовых веществ в топливе, тем более низким считается его качество.

Что можно сделать из торфа

Мы уже рассказывали о том, как работает производство гуминовых препаратов из торфа, поэтому в подробности вдаваться не будем. Напомним только, что качество продукции зависит от качества сырья. От технологии производства зависит эффективность извлечения и активность гуминовых веществ.

Зачем нам натрий?

Гумат натрия хорош для удобрения свеклы и томатов. Для подкормки остальных культур лучше использовать гумат калия — универсальный препарат. Почему же тогда производители выпускают так много гумата натрия и в добавок к этому утверждают, что оба варианта препарата идентичны по своим свойствам?

Общеизвестно, что избыток натрия действует на растения угнетающе . Но существует устаревшая, но дешевая технология получения гумата натрия. Нужно получить раствор торфа или угля, добавить раствор каустической соды и хорошенько прокипятить. Раствор гуматов натрия почти готов. Он получается очень дешевым. Применять его можно для обработки любых культур, но только в таких количествах, которые не приведут в переизбытку натрия.

Фермер должен это понимать и учитывать, выбирая между дешевыми и эффективными подкормками.

Технологии производства из угля

Химический способ малоэффективен. Например, метод водно-щелочной экстракции медленный и малопроизводительный, но главное — он позволяет извлечь лишь небольшую часть полезных веществ. На сегодняшний день это просто бессмысленная трата ценного сырья.

Физическое воздействие — это обычное механическое измельчение. Вроде бы ничего особенного, но так было до момента, когда начали использовать ультразвук.

Технология синтеза

Для производства органических удобрений в теории подходит самое разное сырье. И это очень важно. Например, калия торфяной жидкий гумат — хорошее удобрение. Но для его производства нужен торф. А добыча торфа очень плохо отражается на экологии.

Органические подкормки можно производить из биогенных отходов. Но делать это экономически невыгодно. Очищать сырье от тяжелых металлов и прочих нежелательных примесей дорого. Гораздо более привлекательным сырьем является пробочная продукция целлюлозно-бумажного производства. Ведь после извлечения целлюлозы из древесины, остается много ценной органики. Но в исходном виде использовать эту органику для производства удобрений нельзя. Сначала нужно преобразовать её в смесь гуминовых веществ. Сделать это позволяет технология производства Лигногумата.

Пример

Препарат содержит смесь гумата калия и натрия. К сожалению, соотношение количества этих веществ не указано, что может быть не совсем удобно для фермеров, точно рассчитывающих дозировки.

То, что состав препарат не указан точно — характерно для препаратов, производимых из натурального сырья. Связано это непостоянством состава и качества исходного сырья.

Любопытно, что жидкий гумат позиционируется, как профессиональное средство для фермеров, а порошкообразный — продается в небольших упаковках удобных для использования на даче и огороде.

В целом жидкий Гумат 7 схож с выпускаемым нашей компанией Лигногуматом калия жидким с набором микроэлементов. В настоящее время Лигногумат постепенно заменяется узкоспециализированными и более эффективными препаратами нового поколения: Нормат Л, Нормат С, Арголан.

Как применять удобрение и стимулятор роста

Методика использования гуматов примерно одинакова независимо от технологии производства. Основные особенности применения гуматов зависят от наличия в препарате дополнительных примесей. Важно различать балластные и безбалластные препараты. Первые используются в качестве удобрений, вторые — в качестве стимуляторов роста.

Эффект от обработки жидким торфяным, угольным или искусственно синтезированным препаратом будет примерно одинаковым. Но это — при условии, что используется качественная продукция. Большой проблемой отечественного рынка являются смеси сомнительного происхождения и качества, которые по сути просто отбивают у людей желание применять гуматы. А ведь они позволяют:

  • повысить усвояемость минеральных удобрений и снизить их расход;
  • улучшить характеристики почвы, связать тяжелые металлы.

К тому же они обладают уникальной способностью усиливать действие агрохимикатов. Поэтому слои гуминовых веществ часто включают в состав комплексных удобрений.

Но наибольший интерес растворы гуматов представляют в качестве антистресса и стимулятора роста. Именно поэтому современные фермеры не применяют гумат в составе универсальных удобрений, а сами смешивают растворы гумата с нужными препаратами или используют готовые специализированные смеси, например, Нормат Л и С.

Продуманное и заранее спланированное применение препаратов на основе гуминовых кислот позволяет добиться гораздо большего, чем решение сиюминутных проблем. Конечно, снять стресс после обработки поля гербицидами или пестицидами важно. Но есть и более интересные варианты, например, повышение засухоустойчивости культуры за счет увеличения доли связанной воды в растениях. Или повышение морозоустойчивости. То есть гуматы применяют так, чтобы расширить возможности конкретного сорта или гибрида без вмешательства в его гены. Разве это не потрясающе?!

Ну и конечно, обработки растворами гуматов способствуют повышению урожайности. Но при этом важно развести гумат так, чтобы не испортить раствор, учитывая уровни кислотности используемых компонентов.

Сибирские химики разработали уникальную технологию извлечения гуминовых веществ из бурого угля

В борьбе за плодородие

Повышенный интерес к гуминовым веществам и их производным — гуматам — вызван такими общемировыми тенденциями, как потепление климата и опустынивание. Особенно остро эти проблемы стоят перед странами Юго-Восточной Азии и арабского мира, которые ведут давнюю изощренную борьбу с засухой.

Для России, значительную часть сельскохозяйственных субъектов которой занимают пустынные и засолённые территории, эта проблема не менее актуальна: на данный момент опустыниванию подвержены в совокупности 50 млн гектаров земель. Наибольший масштаб этот процесс приобрел в Прикаспии, особенно в Калмыкии, где 80 % почв подвержено деградации.

Причиной снижения плодородия почв является истощение гуминового слоя, который отвечает за удержание питательных веществ и их доставку к корням растений. Обедненная гуминовыми веществами земля, по сути, бесплодна, поскольку полезные микроэлементы в ней не задерживаются, а вымываются дождями и подземными водами.

В вопросах биоремедиации — восстановления изначальных экологических показателей почвы и воды при ликвидации загрязнений — без гуминовых веществ не обойтись. Их основные функции — сорбция нужных для растений веществ, возобновление многих функций почвы, увеличение всхожести семян и урожайности.

Для извлечения гуминовых веществ и изменения их свойств новосибирские ученые применяют механохимическую технологию, которая, в отличие от классических способов экстракции, не предполагает использования растворителей, сушки и последующей работы с отходами. Проведение механохимических реакций в твердой фазе позволяет модифицировать макромолекулы гуминовых кислот, увеличивать в них содержание заданных функциональных групп.

На земле и под водой

Исследование сорбционной способности гуминовых кислот проводилось на экологическом стационаре Института неорганической химии им. А.В. Николаева СО РАН, расположенном в акватории Новосибирского водохранилища, с помощью метода мезомоделирования.

В рамках эксперимента в первый опытный мезокосм вносилось 100 граммов сорбента на основе бурого угля, модифицированного механохимическим окислением, во втором использовался бурый уголь, механохимически обработанный с гидроксидом натрия. Третий — контрольный — мезокосм оставался без сорбента. На протяжении 16 суток производился отбор представительных проб для контроля.

Чтобы определить содержание тяжелых металлов в воде, ученые пропускали пробу через мембранный фильтр, учитывая таким образом загрязнители, находящиеся в растворенной и связанной формах. Было показано, что гуминовые кислоты могут сорбировать даже высокие концентрации тяжелых металлов.

Важная особенность сорбента в том, что он эффективен при очистке не только сильно загрязненной воды с высокой концентрацией тяжелых металлов, но и воды с рассеянными загрязнениями, которые тяжело поддаются сбору и представляют опасность для живых организмов.

На участках с внесением гуминовых продуктов исследователям удалось добиться увеличения массы травы (на 25 %) и ее высоты (на 42 %). На обработанных участках была выше доля злаковых и ниже доля сорняковых трав и, кроме того, значительно улучшилось состояние почвы. К работе были привлечены сотрудники Сибирского научно-исследовательского института кормов, которые подтвердили результаты эксперимента.

Зеленая технология

Изучение технологии активации бурого угля — комплексная работа, в которой помимо сотрудников Института химии твердого тела и механохимии принимали участие их коллеги из Института неорганической химии им. А.В. Николаева и Новосибирского института органической химии им. Н.Н. Ворожцова.

Например, в Центре коллективного пользования НИОХ СО РАН была выполнена аналитическая часть работы: выявлены различия в структуре исходных образцов гуминовых сорбентов и тех, которые получены в результате механохимической обработки. Для этого использовались методы ИК-спектроскопии (пропускание инфракрасного излучения через вещество. — Прим. ред.) и ЯМР-спектроскопии (исследование химических объектов методом ядерного магнитного резонанса. — Прим. ред.).

Читайте также: