Способность растений выдерживать низкие положительные температуры называется

Обновлено: 05.07.2024

Устойчивостью растений к низким температурам характеризуют холодостойкостью и морозоустойчивостью. Под холодостойкостью понимают способность растений переносить низкие положительные температуры. Морозоустойчивость – способность растений выживать при низких отрицательных температурах.

Холодостойкость теплолюбивых растений можно повысить предпосевным закаливанием. Для этого наклюнувшиеся семена (например, огурцов, томатов) в течение нескольких суток выдерживают в чередующихся (через 12 ч) условиях низких положительных (около 5 °С) и более высоких (10-20 °С) температур. Таким же образом можно закалять и рассаду. В процессе закаливания изменяется гормональный баланс растения, ростовые процессы затормаживаются, возрастает количество ненасыщенных жирных кислот, включаются механизмы защиты клеток от обезвоживания и замерзания. Холодостойкость ряда растений повышается при замачивании семян в растворах микроэлементов.

Морозоустойчивость.Наиболее чувствительны к морозу корни, корневища, клубни и луковицы большинства растений. Покоящиеся почки древесных растений способны выдерживать морозы до -25, -30 °С. Существуют два типа приспособлений к. действию отрицательных температур: уход от повреждающего действия фактора (пассивная адаптация) и повышение выживаемости (активная адаптация). Уход от повреждающего действия низких температур достигается прежде всего за счет короткого онтогенеза. У однолетних растений жизненный цикл заканчивается до наступления отрицательных температур. Эти растения до наступления осенних холодов успевают дать семена.

Ткани озимых растений, деревьев и кустарников замерзают и даже полностью промерзают. Способность этих растений переносить низкие температуры объясняется достаточно высокой морозоустойчивостью, которая формируется осенью в процессе их длительной адаптации, включающей перестройку метаболизма в ответ на сокращение продолжительности светового дня, действие низких положительных и, наконец, отрицательных (до -10 °С) температур. Процесс повышения устойчивости к низким температурам называют закаливанием, или закалкой.

Основные физиологические и молекулярные механизмы адаптации к отрицательным температурам, определяющие выживание в столь экстремальных условиях. 1. Накопление сахаров и других совместимых осмолитов, прежде всего пролина, обладающих осморегуляторным и стресс-протекторным действием. 2. Изменение состава мембранных липидов и увеличение текучести мембран. 3. Ограничение роста внеклеточного льда и синтез антифризных белков. 4. Синтез стрессорных белков холодового ответа.

Зимостойкость.Комплексная устойчивость растений ко всем неблагоприятным факторам зимы носит название зимостойкости.В это время года на растения действуют не только морозы, но и оттепели, снижающие степень закалки растений, мощный снеговой покров, затопление почвы талой водой, ледяная корка, которая образуется обычно весной, но может встречаться и осенью, и даже зимой после сильной оттепели, зимнее иссушение побегов древесных пород и т.д. В связи с этим зимой или ранней весной могут наблюдаться такие неблагоприятные явления, как выпревание, вымокание, выпирание, зимняя засуха и др.

Выпревание встречается у озимых культур в местах с мощным снеговым покровом. Под глубоким снегом температура на поверхности почвы держится около 0 °С. Здесь, как под шубой, при отсутствии фотосинтеза растения сравнительно интенсивно дышат и теряют значительное количество углеводов и другого субстратного материала. Эти потери к весне достигают существенных величин, и растения настолько ослабевают, что могут погибнуть. Гибель могут завершить вредители и болезни, поражающие ослабленные растения.

Ледяная корка. Если после оттепели наступает мороз, талая вода замерзает, образуя над растениями сплошную ледяную корку, которая является причиной гибели растений, так как лед практически непроницаем для кислорода. Однако если часть листьев остается над ледяной коркой, то растение не погибает, так как эти листья снабжают его кислородом. Чем больше листьев вмерзает в ледяную корку, тем больше повреждение. Если все листья вмерзают в лед, то губительна даже температура -3 °С.

ЗООЛОГИЯ.

31 Жгутиконосцы. Общий план строения жгутиконосцев. Жгутиконосцы Жгутиконосцыс растительным и животным типами обмена. Основные паразиты человека и животных.

Жгутиконосцы представляют собой очень обширную и разнообразную группу простейших организмов, широко распространенную в природе. Характерная черта их — наличие жгутиков — органоидов движения. Жгутики представляют собой тончайшие волосовидные выросты цитоплазмы, длина которых иногда значительно превосходит длину тела. Активное и быстрое движение жгутиков обусловливает поступательное движение простейшего. Число их может быть различным. Чаще всего имеется лишь один жгутик, нередко их бывает два, иногда 8.

Имеются некоторые виды жгутиконосцев, число жгутиков у которых может достигать нескольких десятков и даже сотен.

В отличие от саркодовых, большинство жгутиконосцев обладает более или менее постоянной формой тела. Это обусловливается тем, что наружный слой эктоплазмы образует плотную эластичную пелликулу. Однако у некоторых жгутиконосцев пелликула очень тонка, и они способны в довольно широких пределах менять форму тела, а немногие виды сохраняют даже способность образовывать ложные ножки (псевдоподии).

Рис. Жгутиконосец Euglena viridis: 1 — жгутик; 2 — глазное пятнышко (стигма); 3 — сократительная вакуоля; 4 — хроматофоры; 5 — ядро.

Как и все простейшие, жгутиконосцы имеют одно или несколько ядер. Среди жгутиконосцев мы встречаем поразительное разнообразие типов обмена веществ. По этому важному признаку жгутиконосцы занимают как бы промежуточное положение между растительным и животным миром: у них можно наблюдать все переходы от типично растительного к животному типу питания.

Среди жгутиконосцев имеются организмы как с аутотрофным, так и с гетеротрофным типом питания, а также виды, которые сочетают в себе черты обоих этих типов обмена.

Таким образом, некоторые (аутотрофные) жгутиконосцы представляют собой объект ботаники, тогда как другие (гетеротрофные) — объект изучения зоологии. Мы рассмотрим в дальнейшем изложении и тех и других, так как среди жгутиконосцев иногда даже относительно близкие виды могут обладать разными типами обмена веществ: одни — растительным, другие — животным.

Жгутиконосцы как по строению, так и по образу жизни чрезвычайно разнообразны.

Число видов их велико, оно достигает 6—8 тыс. Многие из них являются обитателями моря. Значительная часть морских видов жгутиконосцев входит в состав планктона, где они развиваются иногда в огромных количествах. Пресные воды тоже богаты жгутиконосцами. Видовой состав их в пресноводных водоемах в большой степени зависит от степени загрязненности вод органическими веществами.

Многие жгутиконосцы паразитируют в организмах различных животных.Хозяева паразитических форм жгутиковых разнообразны. Среди них встречаются беспозвоночные животные (чаще членистоногие, в том числе насекомые); особенно часто жгутиконосцы паразитируют в разных классах позвоночных (в том числе домашних животных и птицах).
Средой обитания паразитических форм жгутиконосцев могут быть различные органы: кишечный канал, кровяное русло, кожа, половые пути. Человек также является хозяином некоторых видов жгутиконосцев; среди них имеются весьма патогенные виды (трипанозомы, лейшмании, лямблии и др.), вызывающие тяжелые заболевания.

В отличие от фораминифер и радиолярий, в ископаемом виде жгутиконосцы почти неизвестны. Это объясняется отсутствием у подавляющего большинства их минерального скелета. Существует только одна небольшая группа планктонных жгутиконосцев (сем. Silicoflagellidae), обладающих очень нежным кремневым скелетом. Представители этой группы жгутиконосцев найдены в ископаемом состоянии в морских отложениях.

По характеру питания и обмена веществ класс жгутиконосцев, естественно, делят на два подкласса: растительных жгутиконосцев, или фитомастигин (Phytomastigina), и животных жгутиконосцев, или зоомастигин (Zoomastigina).

Устойчивость растений к низким температурам подразделяют на холодостойкость - устойчивость теплолюбивых растений к низким положительным температурам, и морозоустойчивость – способность растений переносить отрицательные температуры.

Холодостойкость. При помещении теплолюбивого растения в условия низкой положительной температуры отмечается:

- постепенная потеря тургора клетками надземной части;

- у ряда видов наблюдается усиление распада белков и накопление в тканях растворимых форм азота;

- нарушается функциональная активность мембран из-за перехода насыщенных жирных кислот, входящих в их состав, из жидко-кристаллического состояния в состояние геля.

Холодостойкость теплолюбивых растений можно усилить предпосевным закаливанием проклюнувшихся семян и рассады путем выдерживания их в чередующихся условиях положительных низких температур и более высоких. Холодостойкость повышается также при замачивании семян в 0,25% растворах микроэлементов или нитрата аммония.

Быстрое понижение температуры в экспериментальных условиях сопровождается образованием льда внутри клеток и, как правило, их гибелью. Постепенное снижение температуры, что обычно в естественных условиях, приводит к образованию льда в межклетниках. При этом образующиеся кристаллы льда вытесняют из межклетников воздух, и замерзшая ткань выглядит прозрачной.

Основные причины гибели клеток при низких температурах:

- обезвоживание клеток из-за оттягивания воды кристаллами льда, образующимися в межклетниках;

- механическое сжатие льдом, повреждающее клеточные структуры;

- выход ионов и сахаров из клеток, из-за нарушения их активного транспорта (повреждаются переносчики).

Приспособления растений к перенесению низких температур.

Морозоустойчивые растения способны предотвращать или уменьшать действие отрицательных низких температур. Такие растения обладают приспособлениями, уменьшающими обезвоживание клетки:

- высокая проницаемость мембран в этих условиях. Это необходимо для транспорта воды из клетки и предотвращения образования внутриклеточного льда. Проницаемость мембран в условиях низких температур сохраняется дольше, если в их составе повышается содержание ненасыщенных жирных кислот;

- усиление синтеза криопретекторов – веществ, защищающих ткани от воздействия низких температур. К ним относятся полимеры, способные связывать значительные количества воды – гидрофильные белки, моно и олигосахариды. Вода, связываемая в виде гидратных оболочек этими молекулами, не замерзает и не транспортируется, оставаясь в клетке. Другой тип полимеров-криопротекторов – молекулы гемицеллюлоз, выделяемые в клеточную стенку. Они обволакивают кристаллы льда и тормозят их рост.

- накопление запасных веществ, которые могут использоваться при возобновлении роста.

Морозоустойчивость растений можно повысить с помощью закалки. Закаливание подготавливает весь комплекс защитных механизмов. Морозоустойчивость повышают также микроэлементы. Так, цинк повышает содержание связанной воды и усиливает накопление сахаров, молибден способствует увеличению содержания общего и белкового азота. Сходный эффект оказывают кобальт, медь, ванадий и др.


Вы здесь: ЧАСТЬ 2. ОСНОВЫ РАСТЕНИЕВОДСТВА Глава 3. УСТОЙЧИВОСТЬ ОЗИМЫХ КУЛЬТУР К НЕБЛАГОПРИЯТНЫМ ФАКТОРАМ СРЕДЫ

Глава 3. УСТОЙЧИВОСТЬ ОЗИМЫХ КУЛЬТУР

К НЕБЛАГОПРИЯТНЫМ ФАКТОРАМ СРЕДЫ

Озимые хлеба имеют большое значение в производстве зерна. В основных районах возделывания они дают большие урожаи, чем яровые зерновые. Развитие озимых хлебов протекает в два периода. Первый проходит осенью до заморозков, второй – начинается весной и заканчивается плодоношением и отмиранием растений. В осенний период растения активно наращивают вегетативную массу, а при понижении температуры и уменьшении продолжительности дня рост приостанавливается и наступает период покоя в течение зимы.

§1. Зимостойкость и морозостойкость озимых

В зимний и ранневесенний периоды озимые хлеба часто подвергаются различным неблагоприятным внешним воздействиям, которые приводят к изреживанию или полной гибели посевов. Устойчивость растений к неблагоприятным условиям перезимовки зависит от их зимостойкости и морозостойкости, а также от закалки.

Зимостойкость – способность озимых культур переносить неблагоприятные условия в период перезимовки (выпревание, вымокание и др.). Морозостойкость – способность озимых культур выдерживать длительное воздействие отрицательных температур в зимний период. Способность растений выдерживать низкие положительные температуры называется холодостойкостью. Наиболее морозостойка озимая рожь (выдерживает морозы до -20 °С), озимая пшеница (до -16 – -18 °С).

Зимостойкость и морозостойкость растений являются сложными физиологическими свойства. Они непостоянны, формируются на определенных этапах развития, особенно в процессе закалки растений. И.И.Туманов установил, что закалка протекает осенью в две фазы: первая проходит в условиях интенсивного освещения и температуры 8 – 10 °С в дневные часы и около 0 °С ночью (в это время в растениях накапливаются пластические вещества, преимущественно сахара). Перед уходом в зиму у озимых культур накапливается около 20 – 25 % сахаров. Озимые, прошедшие первую фазу, способны выдерживать температуру до -12 °С.

Вторая фаза закалки протекает при более низких температурах (0 – 5 °С). Повышение зимостойкости обусловлено главным образом процессом обезвоживания клеток, оттоком воды из цитоплазмы в межклеточные пространства и превращением в клетках нерастворимых в воде органических веществ в растворимые. В результате этих процессов значительно повышается концентрация клеточного сока. Вторую фазу закалки быстрее проходит озимая рожь, затем – озимая пшеница и озимый ячмень. После закалки резко повышается зимостойкость растений и они способны переносить морозы до -18 – -20 °С в зоне узла кущения, а также меньше реагируют на другие неблагоприятные климатические факторы. Продолжительность фазы закаливания зависит от метеорологических условий, вида растений: лучше идет при ясной погоде с теплыми днями и прохладными ночами, положительно влияют также подкормки фосфорно-калийными удобрениями. Для прохождения полной закалки при благоприятных условиях необходимы 21 – 24 дня.

§2. Гибель посевов и контроль за ходом перезимовки

Изреживание и гибель посевов могут быть вызваны многими причинами: ● осенней засухой, ● слабой закалкой поздних всходов, ● сильными морозами и малоснежными зимами, ● резкими колебаниями температур, ● мощным снеговым покровом, ● застоем воды на поверхности почвы. Часто гибель наступает от совместного действия нескольких факторов.

Главные причины изреживання и гибели посевов озимых культур – вымерзание, выпревание, вымокание, выпирание, ледяные корки.

Вымерзание – одна из наиболее частых причин повреждения и гибели озимых. Основной фактор – действие низких температур. В межклеточных пространствах ткани растений образуются кристаллы льда, которые оттягивают воду из клеток, что приводит к обезвоживанию протоплазмы. Обезвоженная протоплазма повреждается, теряет непроницаемость, и наблюдается гибель клеток. У растений, поврежденных морозами, листья желтеют, узел кущения буреет, корни теряют тургор. В бесснежье иногда озимые вымерзают от резких колебании температур днем и ночью. Иногда после схода снега при небольшом потеплении (выше 5 °С) в январские и февральские оттепели озимые возобновляют вегетацию, что ведет к быстрой потере закалки растений, при возврате холодов может наблюдаться гибель озимой пшеницы.

Для предохранения озимых от вымерзания значение имеют: тщательная и своевременная подготовка почвы к посеву, применение фосфорно-калийных удобрений, использование морозостойких сортов, более глубокая заделка семян, снегозадержание. Снег обладает малой теплопроводностью и хорошо защищает озимые от чрезмерно низких температур и дает возможность накопить влагу на посевах озимых.

Выпревание озимых культур наблюдается вследствие их мощного развития при продолжительной теплой осени и выпадения снега на талую почву. Находясь под толстым снежным покровом длительное время, растения гибнут из-за истощения, так как накопленные питательные вещества расходуются на дыхание, а пополнения углеводов под снегом в условиях почти полной темноты не происходит. При выходе из-под снега озимые оказываются побуревшими и дряблыми, так как ткани мертвеют, листья нередко покрываются налетом снежной плесени. Выпревание озимых культур отмечается в основном в районах Нечерноземной зоны, на тяжелых суглинистых почвах с плохой водопроницаемостью. Озимая рожь в большей степени подвергается выпреванию, чем озимая пшеница. Для предотвращения гибели озимых по этой причине нельзя допускать завышения нормы высева и преждевременного посева, проводить прикатывание озимых после выпадения снега на талую почву.

Вымокание наблюдается в районах избыточного увлажнения Нечерноземной зоны, а также в пониженных местах рельефа, где долго задерживается вода, вследствие чего в растениях усиливаются анаэробные процессы, происходят отравление и их гибель. Вымокание может происходить осенью, но чаще наблюдается весеннее. Чем выше температура, при которой происходит вымокание, тем интенсивнее идет процесс гибели. В начале весенней вегетации озимые могут переносить затопление при невысоких температурах в течение 2 недель и дольше, с повышением температуры устойчивость к вымоканию снижается и уже через 8 – 10 дней озимые желтеют и погибают (озимая рожь страдает больше, чем озимая пшеница). Для предупреждения вымокания необходимо тщательное предпосевное выравнивание почвы, применяют отвод скапливающейся воды, гребневые посевы.

Выпирание – вытеснение на поверхность почвы узлов кущения, которое сопровождается разрывом корней – происходит из-за образования подповерхностных ледяных линз зимой или весной при переменном замерзании и оттаивании почвы. При таянии линз почва оседает, и узел кущения обнажается. Выпирание наблюдается в районах с резкими колебаниями температур в ранневесенний период. Основными мерами борьбы с выпиранием является: ● своевременные основная и предпосевная обработки почвы, ● более глубокое высевание семян, ● прикатывание почвы до и после посева, ● использование сортов с глубоким залеганием узла кущения, ● обработка семян ретардантами.

Ледяные корки также нередко являются причиной повреждения или гибели озимых. Они появляются, когда снег при оттепелях полностью тает, а образовавшаяся вода при похолодании замерзает, образуя ледяную корку, смерзшуюся с верхним слоем почвы и вмерзшими в него растениями. Растения подвергаются механическим повреждениям, прекращается доступ воздуха к ним, нарушается газообмен, все это приводит к изреживанию или гибели. Наиболее эффективные средства защиты растений от ледяных корок – щелевание, снегозадержание.

Выдувание часто наблюдается в сухую осень или весной, преимущественно на бесструктурных почвах, в открытых безлесных местах. Пыльные бури вызывают гибель посевов вследствие выдувания поверхностных слоев почвы, узлы кущения оказываются на поверхности, в результате растения засыхают или гибнут во время зимовки от действия низких температур. В пониженных местах и у лесополос озимые могут быть засыпаны почвой, на отдельных участках слой нанесенной почвы может достигать 10 см и более. Погребенные растения не могут выбиться на поверхность и гибнут. Для предотвращения гибели озимых от выдувания проводят лесомелиоративные мероприятия, высевают кулисы, размещают культуры полосами (озимая пшеница и многолетние травы), высевают озимые по стерне.

Ослабленные в результате выпревания, вымокания и других неблагоприятных условий растения озимых поражают снежная плесень и склеротиния – болезни, вызываемые грибами-паразитами. Для борьбы с этими болезнями необходимо проводить предпосевное протравливание семян, внедрять устойчивые сорта.

§3. Контроль за ходом перезимовки

Необходимо следить за состоянием озимых культур зимой, особенно в переходный период от зимы к весне. Для наблюдения за ходом перезимовки зерновых хлебов в течение зимы берут пробы на отращивание. Площадку, с которой берут монолит, очищают от снега и вырубают монолит размером 25 х 25 см (на глубину 15 – 20 см) с таким расчетом, чтобы внять два рядка растений без повреждения. Монолит помещают в ящик, укрывают мешковиной и перевозят в теплое помещение (12 – 14 °С) на 2 – 3 дня для постепенного оттаивания. Затем переносят его в еще более теплое (18 – 20 °С) и светлое помещение на 12 – 14 дней для отращивания, почву поддерживают во влажном состоянии. После этого растения осторожно извлекают из почвы, корни отмывают и подсчитывают отросшие и погибшие растения. Определяют густоту растений на 1 м 2 или процент перезимовавших растений, который вычисляют по отношению к общему числу растений в монолите.

Для быстрого определения состояния озимых используют ускоренный метод определения жизнеспособности растений по интенсивности отрастания узла кущения (донской метод). Суть метода состоит в том, что у взятых растений срезают стебли на расстоянии 1,0 – 1,5 см от узла кущения, а корни обрезают полностью. Такие растения помещают в сосуд на увлажненную фильтровальную бумагу, вату или марлю, накрывают крышкой и оставляют на 12 – 24 ч при температуре 24 – 26 °С. Хорошо сохранившиеся растения дают прирост стебля до 10 мм, ослабленные – 3 – 5 мм. Затем подсчитывают живые, ослабленные и отмершие растения и определяют густоту растений на 1 м 2 . К сильноизреженным относят посевы, где на 1 м 2 насчитывается не более 100 – 120 здоровых растений, к среднеизреженным – 130 – 200 растений, к слабоизреженным посевам относят те, где выпадение растений не превышает 15 – 20 %. Такое определение состояния озимых проводят до наступления весны, чтобы заблаговременно выявить площади изреженных или погибших посевов озимых. На месте полностью погибших и сильноизреженных посевов весной высевают другие культуры, а в среднеизреженных посевах подсевают яровые зерновые культуры (ячмень, пшеницу).

Окончательную оценку состояния озимых проводят ранней весной, когда посевы уже тронулись в рост и живые растения легко отличить от погибших.

Устойчивость растений к низким температурам подразделяют на холодостойкость или устойчивость теплолюбивых растений и растений умеренной зоны к низким положительным температурам и морозоустойчивость или способность растений переносить температуру ниже 0С. У теплолюбивых растений при низких положительных температурах происходит потеря тургора клетками надземной части, так как нарушается доставка воды. Наблюдается усиление распада белков и накопление в тканях растворимых форм азота. Изменяется функциональная активность мембран из-за перехода липидов из жидкокристаллического состояния в состояние геля. В клетках высших растений возможен переход насыщенных жирных кислот в ненасы­щенную форму с помощью специальных фермен­тов (десатураз). Эти ферменты катализируют образование двойных связей. Синтез ферментов зависит от температуры. В ответ на ее понижение гены десатураз активируются. При пониженных темпе­ратурах десатуразы превращают насыщенные жирные кислоты в ненасыщенные. Появление двойной связи в жирной кислоте уве­личивает текучесть мембран. Десатурация жирных кислот является важным защитным механизмом растений от повреждающего дейст­вия низких положительных температур.

Основными причинами гибели клеток растений при отрицательных температурах являются: 1) их обезвоживание и 2) повреждение клеточных структур из-за механического сжатия льдом. Обезвоживание возникает из-за оттягивания воды из клеток образующимися в межклетниках кристаллами льда. При длительном действии мороза кристаллы льда вырастают до значительных размеров и, помимо сжатия клеток, могут повреждать плазмалемму.

У морозоустойчивых растений повышено содержание ненасыщенных жирных кислот в клеточных мембранах. Поэтому фазовый переход липидов мембран из жидкокристаллического состояния в гель происходит при отрицательных температурах. В состоянии геля резко снижается проницаемость мембран. Кроме того, у морозоустойчивых растений активируется синтез криопротекторов – гидрофильных белков,аминокислот, моно- и олигосахаров. Вода, входящая в состав гидратных оболочек этих веществ, не замерзает и не выходит из клеток. Другой тип полимеров-криопротекторов - это гемицеллюлозы, выделяемые в клеточную стенку. Они обволакивают кристаллы льда и тормозят их рост.

Подробно:

Понятие низкотемпературного стресса включает в себя всю совокупность ответных реакций растений на действие холода или мороза, причем реакций, соответствующих генотипу растений и проявляющихся на разных уровняхорганизациирастительногоорганизмаотмолекулярногодоорганизменного.

Холодоустойчивость –способность теплолюбивых растений переносить действие низких положительных температур. Холодостойкими называются растения, которые не повреждаются и неснижают своей продуктивности при температуре от 0 до +10°С.

Под устойчивостью к низким температурам подразумевают холодостойкость и морозоустойчивость, т. е. способность растений выживать в условиях низких положительных температур и при заморозках. В листьях растений, повреждающихся при охлаждении, нарушаются процессы фотосинтеза, транспорта ассимилятов, дыхания, синтеза белков. Диапазон повреждающих температур сильно варьирует в зависимости от вида растения. Особенно устойчивы к низким температурам древесные виды в состоянии покоя. Семена, другие обезвоженные ткани растений и споры грибов способны переживать температуры около абсолютного нуля. Тургесцентные вегетирующие клетки также могут выдерживать замораживание, если их охлаждать очень быстро, поскольку формирующиеся в таких условиях кристаллы льда очень малы и не вызывают механических повреждений.

Холодостойкость.

Большинство видов тропических и субтропических растений не выдерживают не только заморозков, но даже низких положительных температур. Такие растения, как кукуруза, фасоль, рис, томаты, огурцы и хлопок, останавливаются в росте при температуре 10—15 C и повреждаются, если температура падает ниже 10 C. Однако повреждающий эффект низких температур будет гораздо меньше, если теплолюбивые растения находятся в условиях высокогорья.

Холодостойкость теплолюбивых растений можно также повысить предпосевным закаливанием. Для этого наклюнувшиеся семена (например, огурцов, томатов) в течение нескольких суток выдерживают в чередующихся (через 12 ч) условиях низких положительных (около 5 C) и более высоких (10—20 C) температур. Таким же образом можно закалять и рассаду. Обычное время для закаливания, например, картофеля составляет 15 дней обработки низкими положительными температурами. После такой закалки растения картофеля хорошо переносят даже слабые заморозки. В процессе закаливания изменяется гормональный баланс растения, происходит торможение ростовых процессов, возрастает количество ненасыщенных жирных кислот, включаются механизмы защиты клеток от обезвоживания и замерзания.

Главной причиной повреждающего действия низких положительных температур является нарушение функционирования клеточных мембран из-за их "затвердевания", связанного с фазовыми переходами жирных кислот (при низких температурах липидные бислои ведут себя, как твердые тела). При температуре выше фазового перехода структура бислоя сохраняется, однако при этом жирные кислоты "плавятся", в результате чего подвижность мембранных молекул выше, чем при низких температурах.

Затвердевание или "плавление" мембранных липидов определяется жирными кислотами, которые входят в состав мембранных фосфолипидов. Для насыщенных жирных кислот с длинной цепью характерны более высокие температуры фазовых переходов. Однако фазовые переходы в мембране индуцируются не только изме-нениями температуры. Они могут быть вызваны сдвигами рН и мембранногопо-тенциала, двухвалентными катионами и гормонами.

У холодостойких растений содержание ненасыщенных жирных кислот (линоленовой и линолевой) выше, чем у растений, чувствительных к холоду. Увеличение количества ненасыщенных жирных кислот приводит к снижению температуры фазового перехода мембранных липидов.

У растений, чувствительных к холоду, в составе мембранных липидов велико содержание насыщенных жирных кислот (пальмитиновой, стеариновой). Мембраны такого типа стремятся к затвердеванию до квазикристаллического состояния уже при низких положительных температурах. При этом они становятся менее текучими, что нарушает функционирование многих белков — каналов, переносчиков, рецепторов, ферментов.

Морозоустойчивость+Зимостойкость.

Устойчивость к низким отрицательным температурам – это один из показателей зимостойкости, т.е. способности растений переносить неблагоприятные условия перезимовки (вымерзание, выпревание, ледяную

корку, выпирание и др.).В этом случае к названным выше повреждающим факторам добавляется образование льда и вызванный им сильный дефицит воды.

Гибель растений при низких отрицательных температурах связана с образованием льда в клетках и межклетниках

Заморозки вызывают повреждение клеток кристаллами льда, образующимися при температуре ниже 0 °C. Повреждающий эффект усугубляется также обезвоживанием тканей, которое при этом происходит. На первых этапах замерзания сильных повреждений растительных клеток не наблюдается, т. к. вначале кристаллы льда формируются в межклетниках и сосудах ксилемы. Если же заморозки длятся долго, вода переходит из цитоплазмы в апопласт, клетки обезвоживаются, кристаллы льда растут и повреждают их.

Для предотвращения замерзания в растительных клетках и тканях функционирует система антифризов, представленная различными белками, углеводами и гликопротеинами. Криопротекторы, синтезирующиеся в растительных клетках при по-нижении температуры, могут предотвратить или резко замедлить рост кристаллов льда. Гидрофильные белки, моно- и олигосахариды, обладающие криопротекторным эффектом, способны связывать значительные количества воды. Связанная таким образом вода уже не замерзает и не транспортируется. Криопротекторы начинают синтезироваться прежде всего в эпидермисе и клетках, окружающих меж-клеточные полости, где происходит наиболее интенсивное образование кристаллов льда при замерзании тканей. Криопротекторы способны стабилизировать другие белки и клеточные мембраны при дегидратации клеток, инициированной низкими температурами.

Важная роль в адаптации растений к низким температурам принадлежит фитогормону АБК. Устойчивость многих растений к заморозкам может быть повышена не только закаливанием, но также обработкой их АБК. При воздействии низких положительных температур и (или) при уменьшении светового периода концентрация этого гормона в растительных тканях резко возрастает. Мутанты арабидопсиса, нечувствительные к АБК (abi1) или с нарушенным синтезом АБК (aba-1), не могут приспособиться к заморозкам и не закаливаются.

Активность многих генов и белков, которые экспрессируютсяпринизкой температуре или водном дефиците, может быть индуцирована обработкой АБК. К таким белкам, как уже упоминалось в разд. 13.1, относится семейство RAB/LEA/DHN. Эти белки синтезируются при созревании семян, водном дефиците и обработке растений АБК. Считается, что именно эта группа белков обеспечивает защиту клетки при обезвоживании и заморозках, стабилизируя другие белки и клеточные мембраны. LEA-белки очень гидрофильны, способны прочно удерживать воду и сохраняют свою структуру при резких колебаниях температуры.

У морозостойких растений при действии низких температур усиливается гидролиз крахмала и накопление в цитоплазме растворимых сахаров. У озимых форм пшеницы и многих других видов растений функцию криопротектора выполняет сахароза, накапливающаяся в больших концентрациях. В качестве антифризов могут также выступать и другие растворимые сахара — рафиноза, фруктозиды, сорбит или маннит, которые накапливаются в клеточных стенках растений и предотвращают образование кристаллов льда.

Наиболее чувствительны к морозу корни, корневища, клубни и луковицы большинства растений, которые повреждаются при температуре ниже –10. –15 С. Покоящиеся почки древесных растений способны выдерживать морозы до –25. –30 С. У многолетних растений, устойчивых к заморозкам, в период подготовки к зиме в клубнях, луковицах и корневищах накапливаются запасные вещества, которые начинают использоваться с началом вегетационного периода.

Читайте также: