Заход rnp на посадку что такое

Обновлено: 05.10.2024

C ростом интенсивности движения и загрузки воздушного пространства, нависла потребность ужесточить требования к точности выдерживания линии заданного положения при полете ВС. Так зародилась концепция RNP (требуемая навигационная характеристика). Основополагающая цель RNP – обеспечить ОВД в любом районе ВП. Устанавливается RNP государством в зависимости от сложности маршрутов и интенсивности воздущного движения.

Концепция требуемых навигационных характеристик (RNP) является подходом к установлению требований к точности и надежности аэронавигации в том или ином регионе. Эти требования устанавливаются в виде средней квадратической погрешности определения места ВС, а также в виде той доли общего времени полета, в течение которой боковое уклонение ВС находилось в требуемых пределах. RNP, установленные в том или ином районе (области воздушного пространства), характеризуются своим типом RNP, который и определяет требуемую точность аэронавигации в этом районе.

RNP определяют характеристики навигации в определенном воздушном пространстве и влияют как на организацию самого воздушного пространства, так и на воздушное судно. Типы RNP, методы и оборудование RNAV в разных регионах мира внедряются единообразно и согласовано. Типы RNP для определенных районов, объемов воздушного пространства в определенном диапазоне высот, для маршрутов или процедур в районе аэродрома устанавливаются либо соответствующим государством, либо региональным аэронавигационным соглашением. Конкретный тип RNP вводится в зависимости от ряда факторов: инфраструктуры средств связи, наличия наземных радиомаяков и радиолокационного наблюдения, насыщенности воздушного пространства, характера местности, расположения препятствий, особых зон и другие [3].

Фиксированный маршрут RNP - постоянный опубликованный маршрут RNP с возможными ограничениями по времени использования и высотам пролета. Маршрут начинается и заканчивается пунктами донесения. Вдоль маршрута устанавливаются точки пути.

Резервный маршрут RNP - опубликованный маршрут ограниченного по времени применения (часы, дни, сезоны).

Район RNP - некоторый район, объем воздушного пространства или любое воздушное пространство установленных размеров, где применяется RNP. В таких районах может планироваться и выполняться полет по произвольным линиям пути в течение установленных периодов времени и/или в пределах указанных диапазонов эшелонов полета [4].

Для увеличения пропускной способности воздушного пространства органы ОВД могут давать указание о выполнении полета со смещением относительно фиксированного маршрута и таким образом использовать RNAV как инструмент ОВД [8].

В свою очередь летный экипаж должен уведомлять орган ОВД об аварийной ситуации (отказ оборудования, неблагоприятные метеоусловия), которая влияет на возможность обеспечения точности навигации, а также сообщить о своих намерениях, согласовать план действий и получить измененное диспетчерское разрешение.

Типы RNP

Типы RNP подразделяются на маршрутные, аэроузловые и аэродромные.

ИКАО определила в качестве основных (стандартных) типы RNP, которые представлены в (табл. 1) [2].


Тип RNP1 предусматривается для обеспечения наиболее эффективных полетов по маршрутам ОВД и в аэроузловой зоне при использовании наиболее точной информации о месте ВС, а также для применения методов зональной навигации, позволяющих получить наибольшую гибкость при организации и изменении маршрутов осуществлении в режиме реального времени необходимых корректировок в соответствии с потребностями структуры воздушного пространства. Этот тип RNP предусматривает наиболее эффективное обеспечение полетов, использование правил полетов и организации воздушного пространства при переходе от полета в районе аэродрома к полету по маршруту ОВД и в обратном порядке, т.е. при выполнении SID и STAR.

Тип RNP4 предназначается для маршрутов ОВД, основанных на ограниченном расстоянии между навигационными средствами. Этот тип RNP обычно используется в воздушном пространстве, расположенном над континентом. Устанавливая им точность аэронавигации соответствует требуемой точности на обычных маршрутах, задаваемых VOR, которая использовалась и до введения концепции RNP.

Тип PNP10 предусматривается для сокращения минимумов бокового и продольного эшелонирования. Он повышает эксплуатационную эффективность в океаническом воздушном пространстве и районах, где возможности использования наземных навигационных средств ограничены.

Тип RNP12.6 обеспечивает ограниченную оптимизацию маршрутов в районах с пониженным уровнем обеспечения навигационными средствами. Численное значение величины удерживания соответствует удвоенной средней квадратической погрешности определения места ВС, являющейся одним из параметров MNPS в Северной Атлантике.

Тип RNP20 характеризует минимальные возможности по точности определения МВС, которые считаются приемлемыми для обеспечения полетов по маршрутам ОВД любым ВС в любом контролируемом воздушном пространстве в любое время. Он как бы соответствует такой плохой точности, что еще меньшую требуемую точность нет смысла устанавливать. Широко используются и нестандартные типы, то есть не перечисленные выше.

В районах выполнения полетов воздушными судами, точность навигации которых превышает требования RNP4 и в которых для контроля воздушного движения используются средства независимого радиолокационного наблюдения, может использоваться ширина коридора ±5 км (±2.7 м. миль), т.е. значение типа RNP 2.7.

Следует отметить, что в СССР данное значение ширины коридора ± 5 км в Московской воздушной зоне и некоторых других аэродромных зонах было установлено еще до введения концепции RNP. В США для полетов по трассам также применяется нестандартный тип RNP 2.

Для захода на посадку требуется более высокая точность, именно поэтому имеют место быть более точные типы RNP, они представлены в таблице 2 [2].


Зональная навигация вводится в том или ином регионе одновременно с установлением определенного типа RNP. Если этот тип является нестандартным либо функциональные требования к RNAV чем-то отличаются от приведенных , то такая зональная навигация может получить собственное название, например, B-RNAV, B-RNAV+, B-RNAV++, P-RNAV и т.п [2].

1.5. Характеристика требований RNP RNAV

RNP задаются требованиями четырех основных параметров [3,4]:

1) точность RNAV;

2) обеспечение целостности навигации при использовании оборудования

3) готовность оборудования RNAV для навигации;

4) непрерывность навигации при использовании оборудования RNAV.

Кроме точности любой тип RNP включает критерии целостности, готовности и непрерывности обслуживания. Эти критерии имеют математические описания и выражаются численным значением. Численные значения критериев разные для маршрутов и районов аэродромов (ТМА), а что касается заходов на посадку, то учитывается еще и тип захода на посадку.

Кроме точности любой тип RNP включает критерии целостности, готовности и непрерывности обслуживания. Эти критерии имеют математические описания и выражаются численным значением. Численные значения критериев разные для маршрутов и районов аэродромов (ТМА), а что касается заходов на посадку, то учитывается еще и тип захода на посадку.

При сертификации систем применяются чисто математические способы оценки всех составляющих RNP, которые не учитывают возможные ограничения на использование навигационных систем - датчиков. Поэтому на эксплуатанта возлагается обязанность самостоятельно оценивать целостность, готовность и непрерывность обслуживания перед выполнением полета, учитывая текущую информацию о состоянии навигационных систем (NOTAM по радиосредствам, специальные извещения о состоянии GPS) и применяемых специальных средств прогнозирования.

Например, для оценки готовности системы GPS, как датчика оборудования RNAV, установлена процедура RAIM-прогнозирования, позволяющая определить возможность использования системы GPS в заданном месте в заданное время. Примеры такой оценки привожу далее.

Самым “готовым" и "непрерывным" датчиком RNAV является инерциальный датчик, который готов и непрерывно работает всегда, если его включить и корректно выставить. Но у этого типа датчиков существуют проблемы с другими составляющими RNP - точность работы и целостность, особенно при длительных полетах.

Проблем с точностью у датчика GPS нет, но есть проблемы с готовностью и непрерывностью обслуживания. По этой причине для полетов по приборам с использованием GPS обязательно надо иметь как минимум RAIM (лучше FDE), а для заходов на посадку в сложных метеоусловиях - системы функционального дополнения WAAS/LAAS, которые кроме повышения точности, доводят характеристики готовности и непрерывности обслуживания до установленных соответствующим RNP значений [2].

Особенности P - RNAV

Основные особенности B-RNAV и P-RNAV заключаются в том, что, кроме показателя точности в 5 и 1 м. милю, из всего набора характеристик RNP оговариваются как обязательные только некоторые из них. Основные цифры целостности, готовности и непрерывности, обязательных для RNP-RNAV, достигать не требуется, поскольку безопасность применения зональной навигации B-RNAV и P-RNAV обеспечивается развитой инфраструктурой ОВД и возможностью экипажа использовать обычные навигационные средства при отказе системы RNAV [6].

Особенностью RNP-RNAV является то, что необходимо соблюдать все требования установленного типа RNP не только по точности, но и по целостности, готовности и непрерывности обслуживания.

В районах и на маршрутах RNP органы ОВД обязаны следить за точностью навигации и, при необходимости, корректировать траекторию полета ВС. Поэтому невозможно вводить строгие RNP в районах, где не обеспечено адекватное наблюдение за воздушной обстановкой и качественная связь с воздушным судном. Развитие систем связи, наблюдения, средств стратегического и оперативного планирования полетов должно опережать темпы введения строгих RNP.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Требуемые навигационные характеристики RNP - тип навигационных данных, основанный на характеристиках (PBN), который позволяет воздушному судну лететь по определенному маршруту между двумя трехмерными точками в воздушном пространстве.

Точность навигации

Системы зональной навигации (RNAV) и RNP в основном схожи. Основное различие между ними заключается в необходимости мониторинга и оповещения о производительности на борту. Навигационная спецификация, которая включает в себя требования для мониторинга и оповещения о производительности на борту, называется спецификацией RNP. Те спецификации, которые не имеют таких требований называется спецификацией RNAV. Поэтому, если радиолокационный контроль не предусмотрен УВД, пилот должен самостоятельно проконтролировать безопасность навигации по местности и вместо RNAV должен использоваться RNP.

RNP также относится к уровню производительности, необходимому для конкретной процедуры или конкретного блока воздушного пространства. Значение RNP, равное 10, означает, что навигационная система должна иметь возможность рассчитывать свое положение с точностью до квадрата с поперечным размером 10 морских миль. Значение RNP, равное 0,3, означает, что навигационная система воздушного судна должна иметь возможность рассчитывать свое положение с точностью до квадрата с поперечным размером 3/10 морской мили. Различия в этих системах обычно являются следствием избыточности бортовой навигационной системы.

Некоторое океаническое воздушное пространство имеет значение RNP, равное 4 или 10. Уровень RNP, на который способен летательный аппарат, определяет необходимое разницу между воздушными судами в отношении расстояния. Повышенная точность бортовых систем RNP представляет собой значительное преимущество для традиционных нерадиолокационных сред, поскольку число воздушных судов, которые могут вписаться в объем воздушного пространства на любой заданной высоте, представляет собой квадрат числа требуемого эшелонирования; то есть, чем ниже значение RNP, тем ниже требуемые стандарты эшелонирования по расстоянию и, в целом, больше воздушных судов может вписаться в объем воздушного пространства без потери требуемого эшелонирования. Это не только главное преимущество для операций воздушного движения, но и предоставляет большую возможность экономии средств для авиакомпаний, летающих над океанами, благодаря менее строгой маршрутизации.

История

RNP были введены в PANS-OPS (документ ICAO Doc 8168), который стал применяться в 1998 году.

В 1996 году авиакомпания Alaska Airlines стала первой авиакомпанией в мире, применившей RNP с заходом на посадку вниз по каналу Гастино в Джуно, Аляска. Капитан авиакомпании Аляски Стив Фултон и капитан Хэл Андерсон разработали более 30 подходов RNP для операций авиакомпании на Аляске. В 2005 году Alaska Airlines стала первой авиакомпанией, которая использовала RNP в Национальном аэропорту Рейгана, чтобы избежать заторов. В апреле 2009 года Alaska Airlines стала первой авиакомпанией, получившей одобрение от FAA для проверки RNP.

С 2009 года регулирующие органы в Перу, Чили и Эквадоре внедрили более 25 процедур захода на посадку по RNP AR, разработанных совместно с LAN Airlines. Преимущества включали сокращение выбросов парниковых газов и улучшенный доступ к аэропортам, расположенным в гористой местности. Использование подходов RNP AR в Куско, недалеко от Мачу-Пикчу, сократило отмены из-за плохой погоды на 60 процентов на рейсах, выполняемых по локальной сети.

В октябре 2011 года Boeing, Lion Air и Индонезийский генеральный директорат гражданской авиации выполнили проверочные полеты для проверки индивидуальных процедур RNP AR в двух аэропортах с вызовами на местности, в Амбоне и Манадо, Индонезия. Они выступили в качестве пионеров использования точной навигационной технологии RNP в Юго-Восточной Азии.

Описание и предназначение

Текущие конкретные требования системы RNP включают в себя:

Способность следовать желаемому наземному маршруту с надежностью, повторяемостью и предсказуемостью, включая кривые пути;

В местах, где для вертикального наведения включены вертикальные профили, используются вертикальные углы или ограничения высоты для определения желаемой вертикальной траектории.

Возможности мониторинга производительности и оповещения могут предоставляться в различных формах в зависимости от установки системы, архитектуры и конфигураций, включая:

отображение и индикацию как требуемой, так и расчетной производительности навигационной системы;

мониторинг работы системы и оповещение экипажа о несоблюдении требований RNP;

дисплеи отклонения между полосами, масштабированные до RNP, в сочетании с отдельным мониторингом и оповещением о целостности навигации.

Система RNP использует свои навигационные датчики, архитектуры и режимы работы для удовлетворения требований спецификации навигации RNP. Требования RNP могут ограничивать режимы эксплуатации воздушного судна, например, для низкой RNP, где техническая ошибка полета (FTE) является существенным фактором, и ручной полет может быть запрещен. Установка двойной системы/датчика также может потребоваться в зависимости от предполагаемой операции или необходимости.

Мониторинг производительности и требования к оповещению

Требования к мониторингу производительности и предупреждению для RNP 4, Basic-RNP 1 и RNP APCH имеют общую терминологию и применение. Каждая из этих спецификаций включает требования к следующим характеристикам:

Точность: Требование к точности определяет 95% суммарную погрешность системы (TSE) для тех величин, где задано требование к точности. Требование к точности соответствует навигационным спецификациям RNAV и всегда равно значению точности. Уникальным аспектом навигационных спецификаций RNP является то, что точность является одной из характеристик производительности, которая отслеживается на 100%;

Мониторинг характеристик: воздушное судно или комбинация воздушного судна и пилота должны отслеживать TSE и предоставлять предупреждение, если требование точности не выполняется или если вероятность того, что TSE в два раза превышает значение точности, превышает 10 -5. В той степени, в которой эксплуатационные процедуры используются для удовлетворения этого требования, характеристики оборудования и установки оцениваются на предмет их эффективности и эквивалентности;

Неисправности самолета: Неисправность бортового оборудования учитывается в правилах летной годности. Неисправности классифицируются по степени влияния уровня самолета, и система проектируется таким образом, чтобы снизить вероятность сбоя или смягчить его последствия. Требования к характеристикам неисправностей воздушных судов не являются уникальными для навигационных спецификаций RNP;

Сбои сигналов в пространстве: Характеристики сигнала в пространстве навигационных сигналов являются обязанностью Национального агентства разведки.

Применение мониторинга производительности

Хотя TSE (оборудование для безопасности на транспорте) может значительно меняться со временем по ряду причин, навигационные спецификации RNP обеспечивают гарантию того, что распределение TSE остается подходящим для конкретной операции.

Важно, чтобы мониторинг производительности не рассматривался как мониторинг ошибок. Предупреждение о мониторинге производительности будет выдано, когда система не сможет с достаточной целостностью гарантировать, что позиция соответствует требованию точности. Когда выдается такое предупреждение, вероятной причиной является потеря способности проверять данные о местоположении (потенциальная причина - недостаток спутников). Для такой ситуации наиболее вероятным положением самолета в это время является точно такое же положение, которое указано на дисплее пилота. Для тех воздушных судов, которые учитывают FTE (техническая ошибка полета) на основе фиксированного распределения ошибок, система не выдает предупреждение, даже когда TSE во много раз превышает значение требуемой точности.

По этой причине важны оперативные процедуры для мониторинга FTE.

Области деятельности

Океаническое и удаленное континентальное воздушное пространство

Океаническое и удаленное континентальное воздушное пространство в настоящее время обслуживается двумя навигационными приложениями, RNAV 10 и RNP 4. Оба в основном используют GNSS для поддержки навигационного элемента воздушного пространства. В случае RNAV 10 никакой формы наблюдения ОВД не требуется. В случае RNP 4 используется контракт ADS (ADS-C);

Континентальное воздушное пространство на маршруте в настоящее время поддерживается приложениями RNAV. RNAV 5 используется в регионах Ближнего Востока и Европы , но с 2008 года он обозначается как B-RNAV. В Соединенных Штатах RNAV 2 поддерживает континентальное воздушное пространство на маршруте. В настоящее время континентальные приложения RNAV поддерживают спецификации воздушного пространства, которые включают в себя радиолокационное наблюдение и прямую голосовую связь между диспетчером и пилотом.

Терминальное воздушное пространство: прилет и вылет

Существующие концепции воздушного пространства терминала, которые включают в себя прилет и вылет, они поддерживаются приложениями RNAV. В настоящее время они используются в Европейском регионе и США. Европейское приложение RNAV воздушного пространства терминала известно как P-RNAV (Precision RNAV). Хотя спецификация RNAV 1 разделяет общую точность навигации с P-RNAV, эта региональная спецификация навигации не удовлетворяет всем требованиям спецификации RNAV 1.

Начиная с 2008 года, приложение воздушного пространства терминала Соединенных Штатов, ранее известное как US RNAV Type B, было приведено в соответствие с концепцией PBN и теперь называется RNAV 1. Базовый RNP 1 был разработан главным образом для применения в нерадиолокационном воздушном пространстве терминала с низкой плотностью. Ожидается, что в будущем будет разработано больше приложений RNP как для полетов на маршруте, так и для воздушного пространства терминала.

Утряс для себя некоторые понятия, решил поделиться с читателями.


Традиционная навигация
Традиционная навигация(conventional navigation) - это полёт от одного навигационного средства к другому. Полёт "на" или "от" приводной радиостанции (NDB) или VOR/DME.

kns face.jpg

Зональная навигация
Если навигационная система позволяет лететь в зоне действия VOR/DME не только "на" и "от" радиостанции VOR, а между любыми произвольными точками, то это уже навигационная система RNAV и Зональная Навигация. Это Зональная Навигация основанная на VOR/DME.

Зональная навигация (ARea Navigaron) - метод навигации, позволяющий воздушным судам выполнять полет по любой желаемой траектории в пределах зоны действия наземных(VOR, DME) или спутниковых(GPS или других GNSS) навигационных средств, или в пределах, определяемых возможностями автономных средств(инерциальная система IRS или INS), или их комбинации.

Средства VOR, DME, GNSS и IRS это сенсоры(датчики) RNAV системы. "Гарминки", например GNS430 или G1000, которые стоят на маленьких самолётах это RNAV системы, основанные на GPS. На транспортных самолётах зональную навигацию обеспечивает FMS, помимо GPS использует и VOR/DME и IRS(если оборудованы ей). Несмотря на комплексное использование сенсоров, наиболее важную роль играет GNSS(GPS) из-за глобальной зоны покрытия и очень высокой точности. Зональная навигация без GNSS возможна, но нменно GNSS сделала зональную навигацию такой какова она есть сейчас.

RNAV, RNP, PBN, WTF?
С появлением RNAV систем, государства их стали сертифицировать и составлять спецификации, основываясь на точности. Затем стали рассматривать вопрос более комплексно и появилась концепция RNP - Required Navigation Performance (Требования к навигационным характеристикам), описанная в ICAO Doc 9613 'Manual on Required Navigation Performance (RNP)'.
Этот документ был заменён на 'Performance Based Navigation Manual' - 'Руководство по навигации, основанной на характеристиках'. А концепция RNP была заменена на PBN. Таким образом, PBN - это концепция, а RNP и RNAV это описанные в ней спецификации:


Принципиальное отличие RNP от RNAV в том, что RNP включает обязательное требование к контролю на борту за выдерживанием и выдаче предупреждений о несоблюдении характеристик.
В океаническом пространстве существует навигационная спецификация MNPS - Minimum Navigation Performance Specifications(требования к минимальным навигационным характеристикам). Она сама по себе и продолжит существовать, пока в океаническом пространстве не внедрят PBN.


  • точность (Accuracy) - ошибка системы должна быть в пределах значения указанного в названии спецификации(например, 4 мили для RNP-4, 1 миля для RNP-1) в течение по крайней мере 95 % общего полетного времени
  • целостность (Integrity) - степень уверенности, возлагающаяся на данные, предоставляемые RNAV системой
  • эксплуатационную готовность (Availability) - возможность системы выполнять свою функцию в момент начала её использования. Главным образом, это относиться к приёму сигнала GNSS
  • непрерывность (Continuity) - возможность навигационной системы выполнять свою функцию непрерывно

Нетрадиционная навигация
Если самолёт летит по трассе или схеме зональной навигации, то это RNAV. Если самолёт летит по обычной трассе, или схеме, основанной на традиционной навигации, то это . на самом деле, всё равно RNAV. Полётом обычно управляет FMS, а FMS это средство зональной навигации, для которой даже традиционная схема "через привод" это полёт по геоточкам безотносительно того, что показывает сама стрелочка привода.
Doc 8168 допускает выполнение традиционных схем с использованием RNAV систем, но при условии, что экипаж контролирует выполнение схемы по традиционному навигационному средству, на котором основана данная схема. На практике, бывает как в записи: привода выключены, а борты заходят "по приводам", и не жалуются.

Если полёт по трассе это полёт от одной точки, заданной координатами к другой, то полет по маршруту прибытия или схеме выхода или может содержать некоторые условные процедуры. Простой пример: набор по прямой 600 метров, далее левой разворот на точку.


Такую траекторию нет смысла определять геоточками, потому что в зависимости от характеристик ВС и погодных условий высота 600 метров может быть достигнута в разных местах.
Или: взлететь, захватить радиал, выполнить разворот и лететь на привод с определенными путевым углом.


Это тоже проблематично закодировать геоточками. Для этого база FMS, хранящаяся в формате ARINC 424 поддерживает 23 вида "траекторий и указателей их окончания" (path and terminators). Например: Направление до абсолютной высоты (VA), Направление до пересечения (VI). Поставщик электронной информации для FMS перерабатывает текстовую и графическую аэронавигационную информацию в электронную и присылает в виде обновления. В FMS такие траектории выглядят так:



  • меньшее расстояние между маршрутами
  • более короткие маршруты
  • меньшие интервалы между ВС

Статус PBN в РФ
Ждать ошеломляющих успехов от государства, яростно противящегося новшествам и даже RVSM внедрившего позже всех в мире, не приходится. Де-юре, количество трасс зональной навигации очень мало, но фактически, по большинству трасс без GPS-ки не пролететь, потому что многие привода выведены их эксплуатации. Маршруты прибытия основанные на зональной навигации также используются в очень ограниченном количестве аэропортов. Кстати, буквально на днях к ним добавился Петербург. Так что, не сказать, что работа кипит, но вроде, и не стоит не месте.

Немного о заходах и VNAV
Навигационная система знает место относительно ВПП, высотомер показывает высоту, схема опубликована, можно выполнять RNAV заход. Это неточный заход. Его можно выполнять без дополнительного оборудования.

Если улучшить точность GNSS, развернув Систему Дифференциальной Коррекции(GNSS augmentation), то основываясь на спутниковой навигации, можно выполнять точные заходы c наведением не хуже ILS. У нас это называется "заход СНС" и достигается посредством самолётного оборудования в сочетании с наземными Локальными контрольно-корректирующими станциями ЛККС(Ground-Based Augmentation System GBAS). В РФ есть небольшое количество таких заходов. В США таких заходов уже более тысячи.
Приведу цитату представителя американских авиационных властей FAA: "Спутниковая навигация это второе по важности изобретение для авиации после реактивного двигателя"

Разумеется, работа по развитию концепции RNP RNAV ведется не только RTCA, но и ИКАО. Одна группа экспертов ИКАО по пролету препятствий (ОСР) раз­рабатывает критерии для процедур RNP RNAV, а другая группа по вопросам эшело­нирования (RGCSP) — критерии по эшелонированию полетов RNP RNAV [4]. По ре­зультатам работы этих групп разработаны критерии построения схем захода на по­садку для RNP0.3 и интервалы эшелонирования на маршрутах с RNP4.

Для обеспечения точных заходов и посадок с использованием RNAV точность навигации в вертикальном плане тоже должна быть включена в RNP. В результате спектр типов R. NP для захода на посадку стал занимать диапазон от RNP1 до RNP 0.003/Z, где число Z выражает требование к точности вертикального наведения, вы­раженное в футах.

Планируемые типы RNP для захода на посадку представлены в табл. 1.3.

Сертификацию по RNP1 имеют навигационные системы (FMS), которые зару­бежная промышленность начала производить с 1990 г.

Воздушные суда выпуска 1998 г. и позднее могут претендовать на сертифика­цию по RNP0.03/125 и даже ниже. Однако пока отсутствуют процедуры такой серти­фикации.

Первые публикации процедур RNP RNAV в Европе ожидаются не ранее 2005 г., а обязательной такая навигация станет с 2010 г.

RNP задаются требованиями четырех основных параметров:

1) точность RNAV;

2) обеспечение целостности навигации при использовании оборудования RNAV;

3) готовность оборудования RNAV для навигации;

4) непрерывность навигации при использовании оборудования RNAV.

Планируемые типы RNP для захода на посадку

Требуемая точность(95% вероятность), м. миля/фут

Для заходов на посадку, посадок, торможения, руления по CAT III: ILS, MLS и GNSS/GBAS

Для заходов на посадку по CAT II с ВПР до 30 м: ILS. MLS и GNSS/GBAS

Для заходов на посадку по CAT I с ВПР до 60 м: ILS, MLS и GNSS/GBAS или SBAS

Для заходов на посадку RNAV/VNAV с поддержкой SBAS

Для заходов на посадку RNAV/VNAV с поддержкой SBAS или Baro-VNAV

Начальный и промежуточный участки захода, вылеты

Начальный и промежуточный участки захода, вылеты. Применяет в тех случаях, когда RNP0.3 не может быть обеспечен из-за недостаточной инфраструктуры, a RNP1 не достаточно из-за высоких препятствий

STAR, начальный и промежуточный участки захода на по­садку, вылеты

Кроме точности любой тип RNP включает критерии целостности, готовности и непрерывности обслуживания. Эти критерии имеют математические описания и вы­ражаются численным значением. Численные значения критериев разные для мар­шрутов и районов аэродромов (ТМА), а что касается заходов на посадку, то учиты­вается еще и тип захода на посадку.

При сертификации систем применяются чисто математические способы оценки

всех составляющих RNP, которые не учитывают возможные ограничения на исполь­зование навигационных систем — датчиков. Поэтому на эксплуатанта возлагается

обязанность самостоятельно оценивать целостность, готовность и непрерывность обслуживания перед выполнением полета, учитывая текущую информацию о со­стоянии навигационных систем (NOTAM по радиосредствам, специальные извеще­

ния о состоянии GPS) и применяемых специальных средств прогнозирования. На­пример, для оценки готовности системы GPS, как датчика оборудования RNAV, ус­

тановлена процедура RAIM-прогнозирования, позволяющая определить возмож-

ность использования системы GPS в заданном месте в заданное время. Примеры такой оценки приведены далее.

Самым “готовым" и "непрерывным" датчиком RNAV является инерциальный датчик, который готов и непрерывно работает всегда, если его включить и корректно выставить. Но у этого типа датчиков существуют проблемы с другими составляющи­ми RNP — точность работы и целостность, особенно при длительных полетах.

Проблем с точностью у датчика GPS нет, но есть проблемы с готовностью и не­прерывностью обслуживания. По этой причине для полетов по приборам с исполь­зованием GPS обязательно надо иметь как минимум RAIM (лучше FDE), а для захо­дов на посадку в сложных метеоусловиях — системы функционального дополнения WAAS/LAAS, которые кроме повышения точности, доводят характеристики готовно­сти и непрерывности обслуживания до установленных соответствующим RNP зна­чений.

Основные особенности B-RNAV и P-RNAV заключаются в том, что, кроме пока­зателя точности в 5 и 1 м. Милю, из всего набора характеристик RNP оговариваются как обязательные только некоторые из них. Основных цифры целостности, готовно­сти и непрерывности, обязательных для RNP-RNAV, достигать не требуется, по­скольку безопасность применения зональной навигации B-RNAV и P-RNAV обеспе­чивается развитой инфраструктурой ОВД и возможностью экипажа использовать обычные навигационные средства при отказе системы RNAV. Что касается безопас­ности заходов на посадку в режиме RNAV, например по GPS, то, как дополнитель­ная мера безопасности, применяется требование иметь запасной аэродром с обыч­ными средствами захода — ILS, VOR, DME.

Особенностью RNP-RNAV является то, что необходимо соблюдать все требо­вания установленного типа RNP не только по точности, но и по целостности, готов­ности и непрерывности обслуживания.

Основная цель введения RNP — обеспечение ОВД в каком либо районе воздуш­ного пространства. RNP устанавливаются государствами в зависимости от интен­сивности воздушного движения, сложности маршрутов полетов и с учетом всей ин­фраструктуры CNS.

В районах и на маршрутах RNP органы ОВД обязаны следить за точностью на­вигации и, при необходимости, корректировать траекторию полета ВС. Поэтому не­возможно вводить строгие RNP в районах, где не обеспечено адекватное наблюде­ние за воздушной обстановкой и качественная связь с воздушным судном.

Развитие систем связи, наблюдения, средств стратегического и оперативного планирования полетов должно опережать темпы введения строгих RNP, что просле­живается в Европе. В этой связи эксплуатанты должны направлять усилия не только на повышение точности навигации, но и на модернизацию всего комплекса оборудо­вания ВС для того, чтобы вписаться в опережающее развитие систем связи и на­блюдения. Эксплуатант не получит разрешение на полеты в районах будущих RNP, не имея требуемых в этих районах систем связи и наблюдения.

Для производства полетов в условиях RNP в п. 6.1.18 документа [1] говорится, что используемое навигационное оборудование выбирается эксплуатантом. Основ­ное условие заключается в том, чтобы это оборудование обеспечивало уровень точ­ности выдерживания навигационных характеристик, установленный для каждого конкретного типа RNP. При этом необходимо учитывать следующие аспекты:

1) эксплуатанты должны получить соответствующее разрешение от своих госу­дарств;

2) до получения разрешения эксплуатант должен представить государственно­му органу ГА подтверждение того, что данный тип оборудования соответствует уста­новленным требованиям;

3) эксплуатант вносит в эксплуатационную документацию (РЛЭ ВС, РТО, РПП, РК и т. д.) ограничения и условия, навигационные процедуры для штатных и нештат­ных ситуаций, прописывает правила обновления баз данных, технического обслужи­вания, утверждает программы и проводит подготовку летного и технического персо­нала;

4) государствам следует установить соответствующие административные про­цедуры с тем, чтобы исключить перегруженность своих служб выдачи разрешений и свести к минимуму расходы эксплуатантов.

Читайте также: