Зависимость роста растений величины и устойчивости их урожая от концентрации вещества

Обновлено: 05.10.2024

При рассмотрении особенностей роста необходимо учитывать, что все органы растительного организма взаимосвязаны и оказывают влияние друг на друга. Зависимость роста одной ткани от другой или роста одного органа от другого называют коррелятивным ростом. Корреляции роста проявляются на разных уровнях. Рост и дифференциация каждой клетки зависят от окружающих ее клеток и тканей. Именно поэтому клетка, выделенная из ткани, растет и дифференцируется по иному пути. Явление корреляции проявляется и на уровне отдельных тканей. Так, дифференциация ксилемы ускоряется в присутствии меристематических клеток. Деление камбиальных клеток происходит наиболее интенсивно в зоне, расположенной непосредственно под листом. Особенно ясно взаимодействия (корреляции) проявляются при рассмотрении роста отдельных органов растения. Наблюдается взаимозависимость между ростом стебля и корня.

Часто рост главного побега оказывает влияние на рост боковых. В одних случаях под влиянием главного побега происходит только замедление роста боковых побегов (томаты), в других— полное его прекращение (подсолнечник). Боковые почки растения при интенсивном росте верхушечной могут на протяжении всего вегетационного периода оставаться в покоящемся состоянии, однако достаточно удалить верхушечную почку, чтобы боковые начали интенсивно расти. Сходное положение можно наблюдать и на корневой системе. Удаление кончика корня вызывает его усиленное ветвление. Торможение роста боковых побегов верхушечным органом - называют апикальным доминированием. Оно ярко проявляется и у древесных растений. Можно привести и другие примеры взаимного влияния органов. Так, удаление цветков стимулирует рост вегетативных органов. Удаление боковых побегов (пасынков) вызывает усиленный рост плодов и др.

Ростовые корреляции широко используются в практике растениеводства. Благоприятное влияние таких приемов, как прищипывание кончика корня при высадке рассады овощных культур, пасынкование (удаление боковых побегов) при культуре томатов, чеканка (удаление верхушки) при культуре хлопчатника и др., основано на корреляционных эффектах.

Основное значение в обеспечении взаимного влияния органов растения принадлежит гормонам, в особенности соотношению ауксинов и цитокининов. Ауксины, образовавшиеся в верхушечной почке, передвигаясь вниз, тормозят рост боковых почек. Удаление верхушки побега приводит к уменьшению концентрации ауксинов в боковых почках, в результате чего они трогаются в рост. Большую роль во взаимодействии органов играют и цитокинины. Как уже упоминалось, действие цитокининов в этом отношении противоположно ауксинам. Возможно, что боковые почки не растут из-за недостатка цитокининов.

4)Закономерности роста растений, их использование в садоводстве.

Росту растений свойственны периодичность и ритмичность. Ритмичность и периодичность роста – это регулярно повторяющееся чередование периодов активного роста и периодов его торможения. Периодичность бывает 2 видов:

- суточная – скорость роста растений закономерно изменяется в течение суток в ответ на изменение длины дня. Например, тропические растения ночью растут в 1,5-2 раза быстрее, чем днем. У растений умеренной зоны в принципе рост тоже должен идти быстрее в ночное время, чем в дневное; однако в действительности этого часто не наблюдается, т.к. в умеренной зоне ночь значительно холоднее, чем день, а рост при низких температурах подавлен

- сезонная – скорость роста растений закономерно изменяется по временам года. Сезонная ритмичность характерна для растений тех регионов, где внешние условия по временам года сильно изменяются. Например, в умеренных широтах озимые растения осенью растут, зимой у них ростовые процессы крайне замедлены, а весной снова начинается активный рост (при этом все это время растения находятся в одном и том же большом периоде роста – логарифмическом). Растения экваториальных лесов, где круглый год условия одинаковы, не имеют сезонной периодичности роста.

Суточная и сезонная периодичность являются приспособлением растений ко внешним условиям: в более благоприятные для роста условия растения растут интенсивнее, а в менее благоприятные периоды рост тормозится. Однако, несмотря на то, что периодичность является приспособлением к смене внешних условий, она контролируется не только внешними факторами (температура, влажность, длина дня и т.д.), но и внутренними эндогенными ритмами растений. Например, если растение переместить из естественных условий в постоянную темноту, где исключено влияние на рост длины дня, то растение некоторое время все равно будет быстрее расти ночью, чем днем. Культурные растения умеренных широт, культивируемые в тропических странах с постоянными внешними условиями, тем не менее сбрасывают листья и впадают в состояние покоя на период, который совпадает по срокам с зимой в умеренных широтах. Таким образом, и суточные, и сезонные ритмы роста контролируются как внешними, так и внутренними факторами.

Корреляции роста. называется зависимость роста одного органа растения от другого. Корреляции бывают стимулирующими, когда один орган усиливает рост другого, и ингибиторными, когда один орган подавляет рост другого. По своей природе существует 2 типа корреляций – трофические и гормональные. Трофические корреляции основаны на распределении в растении питательных веществ. Например, если удалить у томата боковые побеги, то при этом усиливается рост плодов, т.к. в плоды оттекают те питательные вещества, которые предназначались для роста побегов. Гормональные корреляции – это воздействие одного органа растения на другой с помощью фитогормонов. Например, у растений с сочными плодами формирующиеся семена выделяют ауксины, которые стимулируют рост околоплодника.

Регенерация.Растения, как и другие живые организмы, способны к регенерации – восстановлению поврежденных или утраченных частей. Различают 2 вида регенерации:

- травматическая – замена и восстановление структур, которые погибли внезапно при действии какого-либо травматического фактора; например – зарастание каллусной тканью механической раны на стебле или отрастание многолетних трав после укоса за счет покоящихся (пазушных) почек

- апикальные, или верхушечные, - располагаются на кончике побега или корня, обеспечивают рост этих органов в длину

- латеральные, или боковые, - располагаются по окружности корня и стебля и обеспечивают увеличение диаметра этих органов; сюда относятся, например, прокамбий, камбий, пробковый камбий – феллоген и т.д.

- интеркалярные, или вставочные, - находятся в основаниях междоузлий (у злаковых) и черешков листьев, обеспечивают рост в длину стебля у злаковых (наряду с верхушечной меристемой стебля) и рост листьев

- раневые – образуются при повреждении тканей и органов; живые клетки, окружающие пораженный участок, дедифференцируются и превращаются в плотную ткань – каллус, который механически закрывает повреждение

ЗАКОН МИНИМУМА ЛИБИХА, открытый Ю. Либихом (1840) закон, согласно к-рому относительное действие отдельного экологич. фактора тем сильнее, чем больше он находится по сравнению с др. экологич. факторами в минимуме; по З. м. Л. , от вещества, концентрация к-рого лежит в минимуме, зависят рост растений, величина и устойчивость их урожая. З. м. Л. (закон о роли экологич. факторов в распространении и количественном развитии организмов) не применим к системам с неустойчивым состоянием, когда поступление в них различных веществ незакономерно меняется и лимитирующими попеременно или одновременно становятся многие факторы. Во многом З. м. Л. уточняется Законом толерантности Шелфорда.

На каждый организм (популяцию) действует одновременно множество экологических факторов. Но наибольшее влияние оказывают лишь те, интенсивность которых находится в зоне пессимума или даже приближается к минимуму. Причем это влияние настолько велико, что определяет уровень существования биологического объекта в целом, невзирая на то, что прочие факторы могут благоприятствовать жизнедеятельности, могут даже находиться в оптимуме.

Эту закономерность впервые установил в 1840 г. Ю. Либих. Она называется законом минимума и формулируется в настоящее время следующим образом: уровень существования популяции (или иного биологического объекта) определяется одним или несколькими факторами, находящимися в минимуме.

Закон Либиха - один из основополагающих законов экологии. Однако в начале XX века американский ученый В. Шелфорд показал, что вещество (или любой другой фактор), присутствующий не только в минимуме, но и в избытке по сравнению с требуемым организму уровнем, может приводить к нежелательным последствиям для организма.[ . ]

Закон Ю.Либиха - растения не могут дать урожай больше того, который позволяет главный ограничивающий фактор(следствие закона ограничивающего фактора).[ . ]

Закон минимума Либиха — закон, открытый Ю. Либихом (1840), согласно которому относительное действие отдельного экологического фактора тем сильнее, чем больше он находится по сравнению с другими факторами в минимуме; по данному закону, от вещества, концентрация которого лежит в минимуме, зависят рост растений, величина и устойчивость их урожайности. Например, содержание в морской воде фосфатов является лимитирующим фактором, которое и определяет обилие планктона и биопродуктивность среды. Однако закон Либиха наиболее четко формулируется тогда, когда речь идет о незаменимых ресурсах (точнее, элементах питания). В дальнейшем оно стало применяться и к заменимым ресурсам, а потом и вообще к любым экологическим факторам.[ . ]

Суть его в том, что урожай зависит от возврата среде жизненно необходимых факторов, использованных организмом. Открытие этого закона способствовало прогрессивному повышению плодородия почвы. К. А. Тимирязев и Д. Н. Прянишников назвали этот закон величайшим приобретением науки.[ . ]

Закон минимума, максимума и оптимума факторов Вильямса. Гласит, что наибольший урожай осуществим при среднем оптимальном наличии фактора, при минимальном и максимальном значениях фактора урожай неосуществим. Этот закон подчеркивает особое значение оптимальных доз минеральных удобрений, так как их избыток может оказаться вредным. Это важное положение, так как из закона Либиха это не вытекало.[ . ]

Любой фактор, приближающийся к пределу толерантности, называется лимитирующим фактором. В 1840 г. Либих сформулировал принцип, названный позднее законом минимума Либиха, который звучит так: веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость урожая во времени. Либих сформулировал свой закон лишь для химических элементов (питательных веществ).[ . ]

Что касается закона минимума Ю. Либиха, то он имеет ограниченное действие и только на уровне химических веществ. Р. Митчер-лих показал, что урожай зависит от совокупного действия всех факторов жизни растений, включая сюда температуру, влажность, освещенность и т. д.[ . ]

ЛИМИТИРУЮЩИЙ ФАКТОР - это экологический фактор (свет, температура, почва, биогенные вещества и др.), который при определенном наборе условий окружающей среды ограничивает какое-либо проявление жизнедеятельности организмов. Это понятие ведет-начало от “закона минимума” Б.Либиха (1840). Так, рост растения зависит от того элемента питания, который присутствует в минимальном количестве. К этому закону Ю.Одум (1986) добавляет вспомогательных принципа.[ . ]

Это положение уточняет закон минимума, сформулированный основателем агрохимии Ю. Либихом еще в 1840 г. Он показал, что урожай растений можно эффективнее всего повысить, улучшив минимальный фактор (обычно увеличив количество азота или фосфора в почве). Но лимитирующим образом могут действовать не только минимальные, но и максимальные значения фактора: высокая щелочность и чрезмерное содержание кальция или натрия в почве, высокая температура, избыточная освещенность и т.п. Это наблюдение легло в основу закона толерантности: лимитирующим может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору.[ . ]

Дополнительное правило взаимодействия факторов в законе минимума: организм в определенной мере способен заменить дефицитное вещество или другой действующий фактор жизни функционально близким веществом или фактором (например, одно вещество другим, химически близким) — вызвало поток аналогичных постулатов. Среди них закон относительности действия лимитирующих факторов, или закон Лундегарда — Полетаева: форма кривой роста численности популяции (ее биомассы) зависит не только от одного вещества с минимальной концентрацией, а от концентрации и свойств других ионов, имеющихся в среде.[ . ]

При дефиците чего-то именно этот недостаток определяет успешность жизни. Однако в целом, поскольку любой фактор может оказаться в минимуме, лишь их оптимальная совокупность обеспечивает процветание. Этот факт сформулирован в виде закона равнозначности всех условий жизни: все условия среды, необходимые для жизни, играют равнозначную роль. В перечень этих условий для людей входят факторы как природной, так и социальной среды.[ . ]

Уже А. Леопольд представление о емкости связывал с практическим применением закона минимума Ю. Либиха. Он указывал, что емкость часто будет определяться по тому фактору среды, который среди прочих находится в минимуме. Он также считал, что емкость имеет сезонные аспекты.[ . ]

Выносливость организма, определяемая самым слабым звеном в цепи его экологических потребностей, характеризуется ЗАКОНОМ МИНИМУМА или ЗАКОНОМ Ю. ЛИБИХА. В соответствии с этим законом жизненные возможности организма лимитируют экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму. При дальнейшем их снижении происходит гибель организма или деструкция экосистемы.[ . ]

Второ.. веж.л!Я вспомогательный принцип каоается взаимодействия факторов.Так, высокая концентрация или дэст .шость одного вещества или действие другого (не минимального) фактора может изменить скорость потребления элемента питания, содержащегося в минимальном количестве. Так, в местах, где много стронция, в раковинах моллюсков кальци до некоторой степени заменяется стронцием.[ . ]

ЗАГРЯЗНЕНИЕ РЕГИОНАЛЬНОЕ — загрязнение окружающей среды, проявляющееся в пределах значительной территории (региона). Формируется на основе локальных загрязнений. ЗАКОН ЛИБИХА (ПРАВИЛО МИНИМУМА) — один из принципов, определяющих роль экологических факторов в распространении и количественном развитии организмов, а именно: веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени.[ . ]

В таблице 111 приведены результаты изучения влияния магния на содержание крахмала в клубнях картофеля. Следует отметить, что значительного повышения содержания крахмала под влиянием магния следует ожидать только при остром или относительном недостатке этого минерального элемента. Данный пример служит наглядным подтверждением правильности принципов, сформулированных в законе минимума Либиха и прежде всего в законе урожайности Митчерлиха о том, что любой питательный элемент (фактор роста) действует тем сильнее, чем меньше его содержание в неудобренном сравниваемом варианте.[ . ]

Недостаток или избыток элементов питания в растениях может быть обусловлен не только их количеством, но и возможным проявлением антагонизма или синергизма при их поглощении из почвы и усвоении из удобрений. В итоге это отражается на питании культур, урожайности и качестве. Однако на практике при составлении стратегии внесения удобрений этот фактор часто игнорируют.

Когда соотношение элементов питания важнее их содержания?

Согласно статистике, на первом месте в ряду неблагоприятных факторов, вызывающих заболевания растений и человека, стоит нарушение питания. Для сельскохозяйственных культур сбалансированное минеральное питание макро- и микроэлементами определяет их развитие, устойчивость к неблагоприятным факторам среды, урожайность и качество растениеводческой продукции.

Между различными макро- и микроэлементами существуют сложные взаимоотношения. Элементы, похожие между собой по физико-химическим свойствам или размеру атомов, могут активно взаимодействовать или конкурировать в системах, которые ответственны за их всасывание, транспорт или метаболизм. Необходимо хорошо представлять такого рода взаимоотношения, чтобы избежать потерь одних элементов при внесении других.

Впервые о вопросах взаимодействия между элементами питания растений начали задумываться ещё в XIX веке. Тогда опытным путем было установлено, что растения лучше растут при определенном балансе между питательными элементами в растворе.

Физиологически уравновешенным считают такой почвенный раствор, в котором катионы и анионы находятся в оптимальном соотношении, что обеспечивает наиболее эффективное использование растением питательных веществ.

Растение поглощает больше тех элементов, в которых нуждается. При этом соотношение между элементами не менее важно, чем абсолютное содержание каждого из них. При использовании минеральных удобрений наиболее значимыми для питания культур являются следующие соотношения между ионами: N : S, NO 3 : K, NO 3 : Ca, NO 3 : Mo, SO 4 : Ca и P : Ca.

Таблица 1. Соотношение N:Р:К в растениях кукурузы при нормальных условиях питания и увлажнения, % [1]

Таблица 2. Оптимальное соотношение между элементами в отдельных культурах во время цветения* [4]

КультураN/ZnP/ZnCa/BFe/MnS/ZnZn/MnK/MnFe/CuFe/Cu+Zn
Пшеница7501406000,51003035041
Сахарная свекла (середина вегетации)12001103501,513030225133
Люцерна10001307501,5705055062
Кукуруза10001003002803040012,53,5
Соя9009050011004020082

*рассчитано по значениям содержания в ррт, 1 ррт = 1 мг\кг

Опасность дефицита в питании.

Следствием любого дефицита питания является снижение урожайности и ценности продукции. Неполноценное питание подрывает иммунитет растений, ослабляя их противостояние грибным и бактериальным инфекциям. Таким примером является сухая гниль корнеплодов свеклы. Это заболевание способно обесценить практически весь урожай, а его истинной и легко устраняемой причиной является нехватка бора в период вегетации растений. Дефицит элемента не всегда обусловлен его недостатком в почве или растении. Он может вызываться взаимодействием с другими элементами, приводя к нарушению физиологических функций у растений. Пример ‒ функциональный (кальциевый) хлороз, который проявляется в обесцвечивании листьев или угнетении точек роста (на посевах льна).

Видимые симптомы дефицита микроэлементов могут проявляться на известкованных почвах с высоким значением рН (более 6,0), в условиях низкой обеспеченности почвы их подвижными формами или при выращивании чувствительных к их недостатку культур и нарушении технологии возделывания.

botanichka

Внешне признаки нарушения условий питания культур проявляются, когда в обмене их веществ произошли глубокие изменения, последствия которых полностью ликвидировать уже невозможно.

Элементы питания по их способности перемещаться в растениях делятся на:

‒ повторно используемые, или реутилизируемые (N, Р, К, Мg),

‒ слабореутилизируемые (Са, В, Сu, Мn, Fe, Zn).

Недостаток повторно используемых элементов питания четко проявляется на состоянии уже развитых, закончивших рост листьев, а слабореутилизируемых ‒ на самых молодых, растущих частях растений.

Виды взаимодействия между элементами.

Между различными ионами (элементами питания) в среде возможно проявление синергизма или антагонизма, а также отсутствие их взаимодействия.

Как правило, ионы с противоположными зарядами взаимно ускоряют свое поступление в растение. Пример – поглощение растениями азота (ионов NO - 3 ) стимулирует поступление в них кальция (Са 2+ ). Явление синергизма также свойственно меди с кобальтом, молибденом и магнием, цинку с бором, магнию с серой и молибденом, а также кальцию с кобальтом. При совместном действии (синергии) урожай выше, чем от применения каждого элемента в отдельности.

Антагонизмэто конкуренция между ионами одного заряда и торможение поступления в растение (Са 2+ и К + , Са 2+ и Мg 2+ , К + и NH + 4 , Са 2+ и Н + ), что отрицательно сказывается на урожае. Так, установлено, что цинк конкурирует с железом, магнием и медью, алюминий – с натрием, а кальций – с железом. Антагонизм присущ почвенным растворам на кислых и щелочных почвах. На почвах с нейтральной реакцией среды антагонизм ионов играет положительную роль, поскольку право выбора поглощения анионов и катионов остается за растением.

Одновременное присутствие в растворе нескольких видов катионов и анионов благодаря антагонизму создает благоприятные условия для развития растения. Вредный избыток какого-либо катиона или аниона всегда можно ослабить соответствующим ионом. Например, поступление иона NО 3 – можно ускорить прибавлением катиона Ca 2+ , а вредный избыток Ca 2+ ослабить Mg 2+ . Вредное действие Н + и Аl 3+ в кислой почве устраняется Са 2+ и Mg 2+ . В этом смысле известкование кислых почв решает многие проблемы питания культур.

Наиболее часто конкурентные взаимодействия свойственны катионам: H + , K + , NH 4+ , Ca 2+ , Mg 2+ . Анионами-антагонистами являются Cl - , NO 3 - , HCO 3 - , SO 4 2- , H 2 PO 4 .

Антагонизм анионов менее выражен и свою отрицательную роль может играть в неуравновешенных растворах, при резком преобладании того или иного иона. Это хорошо изучено на примере известкования почв, когда резкое повышение концентрации кальция может снизить поступление в растения К и Мg.

Отдельные микроэлементы также могут тормозить всасывание других. Однако это происходит лишь при длительном и избыточном поступлении более активного конкурента-антагониста. В случае сбалансированного питания конкуренция будет незначительной.

Взаимодействия между ионами имеют сложную природу. Отклонение концентрации одного элемента на 30-100% от его оптимального содержания в субстрате ведет к изменению поглощения растением других элементов питания. Так, повышение концентрации элемента сминимума до оптимального значения активизирует процессы обмена веществ в растении и как следствие – стимулирует поступление других элементов (синергизм). При дальнейшем повышении концентрации этого элемента в растворе соотношение элементов питания уже нарушается. Так синергические отношения могут перейти в антагонистические.

Явление антагонизма и синергизма в поглощении макро- и микроэлементов может определяться:

- реакцией среды (рН),

- уровнем содержания в среде и растении других элементов минерального питания, их соотношениями,

- видом растений, особенностью их корневой системы,

- температурой, освещенностью и влажностью.

Взаимодействие элементов может происходить в разных средах – в почве, в зоне корневой системы и внутри растения.

Взаимодействие элементов в почве.

В почве содержатся вещества, способные образовывать устойчивые соединения с компонентами удобрений. Так, при внесении фосфорных удобрений или избыточном содержании фосфатов в почве снижается доступность для растений цинка. Аммиачные и аммонийные азотные удобрения также могут образовывать малорастворимые комплексные соединения с цинком и медью. Основным влиянием азотных удобрений является изменение рН почвенного раствора в сторону подкисления, что отражается на увеличении доступности для культур марганца и на других почвенных реакциях. В известкованных почвах отмечается дефицит всех микроэлементов, кроме молибдена. Поэтому даже в отсутствие видимых симптомов недостатка микроэлементов навысокопродуктивных посевах обязательно вносят микроудобрения в некорневые подкормки.

При избытке магния в почве наблюдается его антагонистическое действие на поступление Са и К в растения. Поэтому при регулярном известковании кислых почв доломитовой мукой, которая содержит магний, проводят мониторинг содержания обменного Mg. В условиях Беларуси, где длительное время почвы известкуются доломитовой мукой, запасы магния в почвах выросли в несколько раз. В итоге при содержании обменного магния в почвах республики более 300 мг MgО/кг он отрицательно влияет на дальнейший рост урожайности культур. Оптимальным считается эквивалентное соотношение Са 2+ : Mg 2+ в почвах в пределах от 2 до 7. Соотношение катионов кальция к магнию на пашне Беларуси в настоящее время составляет от 4,1 до 3,2, а на луговых землях – от 5,4 до 3,4, находясь в допустимом диапазоне. Содержание подвижного калия (К 2 О) в почве принято считать избыточным, если оно превышает 4,5% от ёмкости катионного обмена на песчаных и супесчаных почвах и 5% ‒ на суглинистых (Богдевич И.М., 2011).

Взаимодействие между элементами питания отражается и на качестве растениеводческой продукции. Так, накопление калия в сухом веществе кормовых культур должно находиться в пределах оптимума – от 1,2 до 2,2% (К) и не превышать допустимую зоотехническую норму 3%, а эквивалентное соотношение катионов К/Са + Mg следует поддерживать на уровне 1,6-2,2 (Богдевич И.М., 2008, 2011).

Для развития большинства культур оптимальна близкая к нейтральной реакция среды – рН 6,0-6,5. Но надо знать, что для различных удобрений она широко варьирует: для аммонийного питания – рН 7,0, для нитратного – рН 5,5.

Прямое воздействие кислотности среды на питание растений сводится к изменению количества ионов Н + , НСО 3 – , ОН – на поверхности корневых волосков. В зависимости от рН нарушается поступление в растения либо катионов, либо анионов, изменяется растворимость соединений. Так, при подкислении почв улучшается питание растений фосфором и микроэлементами. Однако дальнейшее подкисление уже кислых почв (с рН 5,0-5,5) ухудшает доступность кальция, магния, аммиачного азота и калия. Повышенное содержание в кислом почвенном растворе Al 3+ и Mn 2+ может стать токсичным для отдельных культур. Действие повышенной кислотности усиливается при низкой освещенности и избыточном увлажнении.

В зависимости от температуры окружающей среды изменяется реакция раствора на удобрения. Оптимальная температура воздуха для потребления растениями фосфора и азота ‒23-25° С. При низких температурах (ниже 10°С) особенно плохо усваивается фосфор, а лучше всего – калий.

Элементы питания наиболее интенсивно поступают в растения при оптимальной влажности почвы около 60% от полной влагоемкости, обеспечивающей стабильное физиологическое состояние, хорошее развитие корней и быстрый транспорт ионов к поверхности корней.

Взаимодействие в ризосфере и поглощение корневой системой растений.

Микроорганизмы наиболее активно развиваются в зоне соприкосновения с корнем растений (в ризосфере). Ризосферные микроорганизмы используют для своего питания корневые выделения, не позволяя им накапливаться в токсичных для растения концентрациях. Однако микрофлора почвы может играть как положительную, так и отрицательную роль.

Полезные микроорганизмы способствуют переводу труднорастворимых элементов почвы и удобрений в биодоступные формы, фиксируют атмосферный азот, выделяют биологически активные вещества: витамины, стимуляторы роста и другие полезные вещества. При этом они могут вызывать и негативные для растений процессы: биологическую иммобилизацию, газообразные потери азота при денитрификации, а некоторые микробы выделяют токсичные соединения.

Полезные микроорганизмы предпочитают слабокислую или нейтральную реакцию почвенной среды. Поэтому важно применять удобрения и технологии, способствующие развитию полезных и подавлению вредных организмов.

Между ионами с похожими свойствами при их транспортировке через плазматическую мембрану корневого волоска наблюдается конкуренция. Катионы конкурируют с другими катионами, а анионы – с другими анионами. Физико-химическое сходство между ионами не позволяет эффективно различать их. Так, трудно различимы при поступлении в растения сульфат (SO 2- 4 ) и селенат (SeO 2- 4 ) ионы, сульфат (SO 2- 4 ) и молибдат (МоO 2- 4 ) ионы и др.

Чувствительность растений к концентрации раствора.

На питание растений влияет общая концентрация почвенного раствора. Верхний предел находится в интервале 2-3 г/л раствора всех питательных солей, вызывая пропорциональный рост интенсивности поглощения элементов питания. При избыточной концентрации растения вянут и погибают. Особенно вредна для культур повышенная концентрация микроэлементов. Наиболее чувствительны к повышенной концентрации лён, морковь, люпин и огурцы, а также все молодые растения.

Взаимодействие внутри растения и метаболизм.

Если в почве Zn и P ведут себя как антагонисты, то в растении они уже помогают друг другу (синергизм). При дефиците цинка в растении угнетается поступление фосфора. Синергизм между N и K определяется ролью калия в качестве активатора фермента нитратредуктазы, принимающего участие в метаболизме азота в растении.

Взаимодействие бора с калием объясняется схожестью их влияния на процессы цветения и образования плодов, деления клеток, водный обмен в растении и др. Оптимальный уровень бора повышает проницаемость клеточных мембран для калия.

Недостаток в растении серы приводит к ограниченному поглощению азота, а высокие дозы азота вызывают дефицит серы. В растениях оптимальное соотношение N:S ‒ 5:1-12:1.

Только оптимальное содержание в растении N обеспечивает нормальное поступление в них из почвы К, Р, Mg, Fe, Mn и Zn, а оптимальный уровень бора и меди улучшает поглощение растениями азота. Молибден повышает усвоение азота и фосфора.

Избыток фосфора в сильной мере угнетает поглощение растением катионов микроэлементов – Fe, Mn, Zn и Cu. Избыток калия угнетает поступление в растения Mg и в меньшей мере Са, Fe, Cu, Mn и Zn. Избыток кальция приводит к снижению поступления В, Mn, K и Cu.

Повышаем эффективность использования элементов питания.

В агрономической практике существуют приемы преодоления антагонизма и стимулирования синергизма элементов питания.

1. Вносить элементы питания разными способами: обработка семян, внесение в почву, некорневая подкормка. От совместного использования этих приемов в системе удобрения культур достигается наибольший эффект.

Не забывайте при этом, что листовая подкормка не является основным источником элемента при его дефиците в почве, а только как дополнение. Обработка семян микроэлементами, преимущественно в форме хелатов, также оберегает их от антагонизма с другими ионами почвенного раствора. Известно, что раствор карбамида в некорневую подкормку стимулирует проникновение железа в растения.

2. Корректировать сроки внесения разных элементов в период вегетации в соответствии с биологической потребностью культур. Так, синергизм между N и K можно использовать при их совместном внесении.

3. Учитывать особенности развития корневой системы, когда NР-удобрения можно вносить на значительную глубину.

4. Учитывать свойства разных форм вносимых удобрений (физиологически кислые или щелочные).

5. Хороший эффект даёт использование смешанных посевов культур (бобовых излаковых).

Литература.

2. Оптимизация и поддержание агрохимических свойств дерново-подзолистых почв, обеспечивающих стабильно высокую урожайность и качество продукции основных сельскохозяйственных культур: рекомендации / И.М. Богдевич [и др.]. – Минск: Ин-т почвоведения и агрохимии, 2011.

Читайте также: