Урожайность пшеницы норма реакции

Обновлено: 15.09.2024

Предел проявления модификационной изменчивости организма при неизменном генотипе — норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции — спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет предел для каждого вида — например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных изменений есть разные пределы нормы реакции. Например, сильно варьируют величина удоя, продуктивность злаков (количественные изменения), слабо — интенсивность окраски животных и т. д. (качественные изменения). В соответствии с этим норма реакции может быть широкой (количественные изменения — размеры листьев многих растений, размеры тела многих насекомых в зависимости от условий питания их личинок) и узкой (качественные изменения — окраска у куколок и имаго некоторых бабочек). Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков — широкая (например, сезонные изменения окраски у многих видов животных северных широт).

Фенотипические изменения, возникающие на основе одного и того же генотипа в разных условиях его реализации, называют модификациями. Примером модификаций могут служить изменения содержания жира в молоке животных или массы тела в зависимости от их питания, изменения количества эритроцитов в крови, в зависимости от парциального давления кислорода в воздухе, изменения темпа роста растений при разной освещенности и содержании минеральных веществ в почве. Другим примером модификационной изменчивости являются различия, наблюдаемые у генетически идентичных монозиготных близнецов или потомков одного растения, полученных путем вегетативного размножения, но развивавшихся в разных условиях среды.

Модификации отдельного признака или свойства, формируемого данным генотипом, образуют непрерывный ряд. Частота встречаемости каждого варианта в таком вариационном ряду различна. Чаще обнаруживаются средние значения признака. Чем дальше признак отстоит от среднего значения, тем реже он наблюдается (рис. 6.1).

Так как фенотипическое проявление наследственной информации может модифицироваться условиями среды, в генотипе организма запрограммировано не конкретное значение отдельных его характеристик, а лишь возможность их формирования в определенных пределах, называемых нормой реакции. Таким образом, норма реакции представляет собой пределы модификационной изменчивости признака, допустимой при данном генотипе. Некоторые признаки характеризуются широкой нормой реакции. Как правило, это количественные признаки, контролируемые полигенами (масса тела, жирность молока, пигментация кожи), другие свойства характеризуются узкой нормой реакции и слабо или почти не модифицируются в разных условиях (цвет глаз, группа крови).

44.Фенотип. Фенотип как результат реализации наследственной информации (генотипа) в определенных условиях среды. Значение средовых и генотипических факторов в формировании патологически измененного фенотипа человека.

Фенотип – все признаки организма, формирующиеся в результате взаимодействия генотипа и среды. (Иогансен – 1803год) свойства любого организма зависят от генотипа и от среды, поэтому формирование организма – результат взаимодействия генетических факторов и факторов внешней среды.

Долгое время считалось, что в зиготе находятся разные хромосомы для разных клеток, однако теперь известно, что в зиготе имеется та же генетическая информация, что и во всех клетках данного организма. В специализированных клетках работают гены, характерные для функций данных клеток, а все остальные – до 95% - заблокированы. Каждая эмбриональная клетка потенциально может стать любой клеткой организма, т.е. специализироваться в любую сторону – полипотентные клетки. Каждая клетка организма способна дифференцироваться только по одному пути. Направление специализации определяется внешней средой (химическим окружением хромосом – цитоплазмой). На самых ранних этапах эмбриогенеза, генотип уже взаимодействует со средой. Взаимодействие удобно просматривать на примере глобиновых генов. До и после рождения эти гены работают неодинаково. В раннем эмбриогенезе включается ген, отвечающий за альфа-цепь гемоглобина (он активен на протяжении всей жизни), а ген, отвечающий за синтез бета-цепи, неактивен. Зато есть ген, отвечающий за синтез гамма-цепи. После рождения ген бета-цепи начинает работать, а гамма - блокируется. Эти изменения связаны с особенностями дыхания. Фетальный гемоглобин легко доносит воздух до зародыша.

Фенотипическое проявление генотипа в зависимости Ио среды изменяется в пределах нормы реакции. От родителей потомки получают специфические типы химических реакций на разные условия среды. Совокупность всех химических реакций определят метаболизм – обмен веществ. Интенсивность обмена веществ варьирует в широких пределах. У каждого человека свои особенности обмена веществ, которые передается от поколения к поколению, и подчиняются законам Менделя. Различия в обмене веществ реализуются в конкретных условиях среды на уровне синтеза белка.

Дифференцированная реакция растений примулы в разных условиях окружающей среды. При обычной температуре 20-25 градусов и нормальном давлении – красные цветы, при повышенной температуре или давлении – белые цветы. Семена обладают теми же свойствами.

Муха – дрозофила имеет ген, формирующий замыкание крыльев на спину. Если мух с мутантным генов выводить при температуре22-25 градусов, крылья загнуты. При более низкой температуре – нормальные крылья и лишь у некоторых – загнуты. Ген обуславливает синтез термочувствительного белка. Поэтому, обсыхая после выхода из куколки, при повышенной температуре происходит деформация крыльев.


45.Комбинативная изменчивость, её механизмы. Значение комбинативной изменчивости в обеспечении генотипического разнообразия людей.

46.Генные болезни человека, механизмы их возникновения и проявления. Примеры.

Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена.

В зависимости от функциональной значимости первичных продуктов соответствующих генов генные болезни подразделяют на наследственные нарушения ферментных систем (энзимопатии), дефекты белков крови (гемоглобинопатии), дефекты структурных белков (коллагеновые болезни) и генные болезни с невыясненным первичным биохимическим дефектом.

Энзимопатии. В основе энзимопатии лежат либо изменения активности фермента, либо снижение интенсивности его синтеза. У гетерозигот-носителей мутантного гена присутствие нормального аллеля обеспечивает сохранение около 50% активности фермента по сравнению с нормальным состоянием. Поэтому наследственные дефекты ферментов клинически проявляются у гомозигот, а у гетерозигот недостаточная активность фермента выявляется специальными исследованиями.

В зависимости от характера нарушения обмена веществ в клетках среди энзимопатий различают следующие формы.

1. Наследственные дефекты обмена углеводов (галактоземия — нарушение метаболизма молочного сахара лактозы; мукополисаха-ридозы — нарушение расщепления полисахаридов).

2. Наследственные дефекты обмена липидов и липопротеинов (сфинголипидозы — нарушение расщепления структурных липидов; нарушения обмена липидов плазмы крови, сопровождающиеся увеличением или снижением в крови холестерина, лецитина).

3. Наследственные дефекты обмена аминокислот (фенилкетонурия —нарушение обмена фенилаланина (см. разд. 4.1); тирозиноз— нарушение обмена тирозина; альбинизм — нарушение синтеза пигмента меланина из тирозина и др.).

4. Наследственные дефекты обмена витаминов (гомоцистинурия — развивается как результат генетического, дефекта кофермента витаминов В6 и B12, наследуется по аутосомно-рецессивному типу).

5. Наследственные дефекты обмена пуриновых и пиримидиновых азотистых оснований (синдром Леша — Найяна, связанный с недостаточностью фермента, который катализирует превращение свободных пуриновых оснований в нуклеотиды, наследуется по Х-сцепленному рецессивному типу).

6. Наследственные дефекты биосинтеза гормонов (адреногенитальный синдром, связанный с мутациями генов, которые контролируют синтез андрогенов; тестикулярная феминизация, при которой не образуются рецепторы андрогенов).

7. Наследственные дефекты ферментов эритроцитов (некоторые гемолитические несфероцитарные анемии, характеризующиеся нормальной структурой гемоглобина, но нарушением ферментной системы, участвующей в анаэробном (бескислородном) расщеплении глюкозы. Наследуются как по аутосомно-рецессивному, так и по Х-сцепленному рецессивному типу).

Гемоглобинопатии. Это группа наследственных заболеваний, вызываемых первичным дефектом пептидных цепей гемоглобина и связанным с этим нарушением его свойств и функций. К ним относят метгемоглобинемии, эритроцитозы, серповидно-клеточную анемию, талассемии (см. § 4.1).

Коллагеновые болезни. В основе возникновения этих заболеваний лежат генетические дефекты биосинтеза и распада коллагена — важнейшего структурного компонента соединительной ткани. К этой группе относят болезнь Эллерса — Данлоса, характеризующуюся большим генетическим полиморфизмом и наследующуюся как по аутосомно-доминантному, так и по аутосомно-рецессивному типу, болезнь Марфана, наследующуюся по аутосомно-доминантному типу, и ряд других заболеваний.

Наследственные болезни с невыясненным первичным биохимическим дефектом. К этой группе принадлежит подавляющее большинство моногенных наследственных болезней. Наиболее распространенными являются следующие.

1. Муковисцидозы — встречаются с частотой 1:2500 новорожденных; наследуются по аутосомно-рецессивному типу. В основе патогенеза заболевания —наследственное поражение экзокринных желез и железистых клеток организма, выделение ими густого, измененного по составу секрета и связанные с этим последствия.

2. Ахондроплазия — заболевание, в 80—95% случаев обусловленное вновь возникшей мутацией; наследуется по аутосомно-доминантному типу; встречается с частотой приблизительно 1:100 000. Это заболевание костной системы, при котором наблюдаются аномалии развития хрящевой ткани преимущественно в эпифизах трубчатых костей и костях основания черепа (рис. 6.23).

3. Мышечные дистрофии (миопатии) заболевания, связанные с поражением поперечно-полосатых и гладких мышц. Различные формы характеризуются разным типом наследования. Например, прогрессирующая псевдогипертрофическая миопатия Дюшена наследуется по Х-сцепленному рецессивному типу и проявляется преимущественно у мальчиков в начале первого десятилетия жизни. Известна мышечная псевдогипертрофическая дистрофия, наследующаяся по аутосомно-рецессивному типу, которая начинает развиваться во второй половине первого десятилетия жизни и встречается с одинаковой частотой у обоих полов. Мышечная дистрофия плечевого и тазового пояса: наследуется по аутосомно-доминантному типу и т.д.

Генетическое многообразие генных болезней. Изучение наследственных заболеваний у человека свидетельствует о том, что нередко сходное фенотипическое проявление болезни бывает обусловлено несколькими различными мутациями. Это явление впервые было описано в 30-х гг. С. Н. Давиденковым и названо генетической гетерогенностью наследственных заболеваний. Генетическая гетерогенность наследственных болезней может быть обусловлена мутациями разных генов, кодирующих ферменты одного метаболического пути, а также мутациями одного и того же гена, приводящими к появлению разных его аллелей.

Среди рассмотренных выше наследственных болезней особенно высокой степенью генетического полиморфизма отличаются мукопо-лисахаридозы, генетическая разнородность которых объясняется множественными мутациями в 11—12 генах, связанных общей функцией расщепления полисахаридов. Большой генетической гетерогенностью характеризуется врожденная аутосомно-рецессивная форма глухоты, при которой различают не менее 35 генетически различных вариантов с фенотипически сходным проявлением.

Большие перспективы в расшифровке наследственной гетерогенности генных болезней открываются в связи с применением молекулярно-генетических методов их прямого анализа с помощью ДНК-зондов.

Есть моногенные и полигенные болезни.

Моногенные болезни наследственного предрасположения – наследственные заболевания, проявляющиеся из-за мутации одного гена или проявляющиеся при действии определенного фактора среды (аутосомно-рецессивные или сцепленные с Х-хромосомой).

Проявляются при воздействии факторов:

Парамиотомия – в сырую погоду происходят тонические спазмы мышц при холоде, под влиянием тепла – проходят. Болезнь связана с термочувствительным белком. Реакция проявляется в младенчестве и не изменяется на протяжении жизни человека.

Пигментная ксеродерма - веснушчатая кожа особого типа. Проявляется в 4-6 лет. Дети не переносят УФ-свет возникают злокачественные опухоли, такие дети умирают от метастаз еще до 15 лет. Не переносят также и гамма-лучей.

Альфа-1 антитрипсин при загрязнении воздуха, табачном дыме проявляется острой закупоркой бронхов или циррозом печени.

У европеоидов люди, не переносящие молоко, составляют 10-20%, в Африке – 70-80%.

Влияние лекарственных средств: сульфаниламидные препараты провоцируют заболевания крови.

Есть полигенные болезни наследственного происхождения – такие болезни, которые возникают при действии многих факторов (мультифакториальные) и в результате взаимодействия многих генов. Установить диагноз в таком случае очень сложно, т.к. действует много факторов, и появляется новое качество при взаимодействии факторов.

47.Хромосомные болезни человека, механизмы их возникновения и проявления. Примеры.

Хромосомные болезни, наследственные заболевания, обусловленные изменением числа или структуры хромосом.

Эта группа заболеваний обусловлена изменением структуры отдельных хромосом или их количества в кариотипе. Как правило, при таких мутациях наблюдается дисбаланс наследственного материала, который и ведет к нарушению развития организма. У человека описаны геномные мутации по типу полиплоидии, которые редко наблюдаются у живорожденных, а в основном обнаруживаются у абортированных эмбрионов и плодов и у мертворожденных. Основную часть хромосомных болезней составляют анэуплоидии, причем моносомии по аутосомам у живорожденных встречаются крайне редко. Большинство из них касаются 21-й и 22-й хромосом и чаще обнаруживаются у мозаиков, имеющих одновременно клетки с нормальным и мутантным кариотипом. Достаточно редко обнаруживается моносомия и по Х-хромосоме (синдром Шерешевского — Тернера).

В отличие от моносомии трисомии описаны по большому числу аутосом: 8, 9, 13, 14, 18, 21, 22-й и Х-хромосоме, которая может присутствовать в кариотипе в 4—5 экземплярах, что вполне совместимо с жизнью.

Структурные перестройки хромосом также, как правило, сопровождаются дисбалансом генетического материала (делеции, дупликации). Степень снижения жизнеспособности при хромосомных аберрациях зависит от количества недостающего или избыточного наследственного материала и от вида измененной хромосомы.

К настоящему времени описано около 100 клинико-цитогенетических синдромов, в основе которых лежат различные хромосомные аномалии.

Хромосомные изменения, приводящие к порокам развития, чаще всего привносятся в зиготу с гаметой одного из родителей при оплодотворении. При этом все клетки нового организма будут содержать аномальный хромосомный набор и для диагностики такого заболевания достаточно проанализировать кариотип клеток какой-нибудь ткани.

Если хромосомные нарушения возникают в одном из бластомеров во время первых делений зиготы, образующейся из нормальных гамет, то развивается мозаичный организм, большая или меньшая часть клеток которого несет нормальный хромосомный набор. Диагностика мозаичных форм хромосомных болезней отличается большей трудоемкостью и требует изучения кариотипа большого числа клеток из разных тканей.

Для определения вероятности появления хромосомной болезни в потомстве в семьях, уже имеющих больных детей, важно установить, является ли это хромосомное нарушение заново возникшим или оно унаследовано от предыдущего поколения. Чаще родители человека с хромосомным заболеванием имеют нормальный кариотип, а появление больного потомства является результатом мутации, возникшей в одной из гамет. В этом случае возможность повторного хромосомного нарушения у детей в данной семье маловероятна и не превосходит таковой в целом для популяции. Вместе с тем описано немало семей, в которых наблюдается предрасположение, например, к нерасхождению хромосом.

В случае наследуемых хромосомных болезней в соматических клетках родителей обнаруживаются хромосомные или геномные мутации, которые могут передаваться их зрелым половым клеткам в ходе гаметогенеза. Передают потомству хромосомные нарушения обычно фенотипически нормальные родители, являющиеся носителями сбалансированных хромосомных перестроек — реципрокных транслокаций, робертсоновских транслокаций или перицентрических инверсий. У носителей такого рода хромосомных перестроек с определенной вероятностью образуются нормальные гаметы, а также гаметы, несущие сбалансированную перестройку, и половые клетки с нарушенным балансом генов в геноме (рис. 6.22).

Рис. 6.22. Вероятность образования нормальных и аномальных гамет у носителей сбалансированной хромосомной перестройки

Показана робертсоновская транслокация 21-й хромосомы (окрашена) на одну из акродентрических хромосом (не окрашена);

I — кариотип носителя сбалансированной хромосомной перестройки, II — варианты (а, б) расположения бивалентов в экваториальной плоскости веретена деления (метафаза I), III — результат 1-го редукционного деления мейоза; IV — результат 2-го эквационного деления мейоза; V — гаметы со сбалансированной хромосомной перестройкой; VI — нормальные гаметы; VII — гаметы, не имеющие 21-й хромосомы; VIII — гаметы, содержащие две 21-е хромосомы (VII и VIII — гаметы с несбалансированным геномом)

Возможность наследования хромосомных аномалий делает необходимым анализ кариотипа родителей, уже имеющих больных детей, и пренатальную диагностику развивающегося внутриутробно плода для исключения вероятности повторного рождения ребенка с хромосомной болезнью.

Полуспецифические симптомы проявления хромосомных болезней связаны в значительной мере с дисбалансом генов, представленных многими копиями, которые контролируют ключевые процессы в жизнедеятельности клеток и кодируют, к примеру, структуру рРНК, тРНК, гистонов, рибосомальных белков, актина, тубулина.

Неспецифические проявления при хромосомных болезнях связывают с изменением содержания гетерохроматина в клетках, который оказывает влияние на нормальное течение клеточного деления и роста, формирование в онтогенезе количественных признаков, определяемых полигенами.

Для медицинской практики в 1971 году был проведен симпозиум по медицинской генетике в Париже. Была принята международная Парижская классификация для обозначения кариотипа человека. 46,хх; 46,ху – кариотип нормального человека.

Во время мейоза возможно появление аномальных половых клеток.

47,хху – синдром Клайнфельтера.

Мужчина, частота встречаемости 1 из 1000 новорожденных мальчиков.

Задание ЕГЭ по биологии
Линия заданий - 8
Наслаждайтесь интересным учебником и решайте десятки тестов на Studarium,
мы всегда рады вам! =)

2823. Установите соответствие между признаком и диапазоном его нормы реакции:к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) удойность коровы
Б) масса животного
В) размеры листьев растения
Г) окраска шерсти животных
Д) окраска цветка растений

Воспроизведение организмов, его значение. Способы размножения, сходство и различие полового и бесполого размножения. Оплодотворение у цветковых растений и позвоночных животных. Внешнее и внутреннее оплодотворение .

Онтогенез и присущие ему закономерности. Эмбриональное и постэмбриональное развитие организмов. Причины нарушения развития организмов.

Закономерности изменчивости. Ненаследственная (модификационная) изменчивость . Норма реакции . Наследственная изменчивость: мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции .

Селекция , ее задачи и практическое значение. Вклад Н.И. Вавилова в развитие селекции: учение о центрах многообразия и происхождения культурных растений; закон гомологических рядов в наследственной изменчивости. Методы селекции и их генетические основы. Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов. Значение генетики для селекции. Биологические основы выращивания культурных растений и домашних животных.

Биотехнология , ее направления. Клеточная и генная инженерия, клонирование . Роль клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома).

Заданий относится к повышенному уровню, за правильное выполнение можно получить 2 балла.

Разбор типовых заданий №8 ЕГЭ по биологии

  1. Воспроизведение организмов/Биотехнология
  2. Закономерности наследственности и изменчивости
  3. Онтогенез. Жизненный цикл растений/ Зародышевые листки

Выглядит сложно, но, если разобраться, то все не так плохо. Можно выделить 20 типов заданий, это не так много, потому что несколько заданий могут относиться к одной теме.

Воспроизведение организмов и Биотехнология

Половое и бесполое размножение

А) происходит без образования гамет

Б) участвует лишь один организм

В) происходит слияние гаплоидных ядер

Г) образуется потомство идентичное исходной особи

Д) у потомства проявляется комбинативная изменчивость

Е) происходит с образованием гамет

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Основная черта полового размножения – участие в процессе гамет (половых клеток) двух разнополых организмов, потомство притом получается разнородным, так как проявляется наследственная изменчивость, а именно – комбинативная.

У бесполого размножения, соответственно, все наоборот: потомство идентичное, участвует одна особь.

А Б В Г Д Е
1 1 2 1 2 2

Установите соответствие между способом размножения и конкретным примером: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) спорообразование папоротника

Б) образование гамет хламидомонады

В) образование спор у сфагнума

Г) почкование дрожжей

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Читаем дальше. Нерест рыбы. Это просто. Ну, конечно же, это половое размножение.

Почкование – однозначно бесполое. Очень известный пример данного типа размножения, поэтому вряд ли вызовет вопросы.

И у мха, и у папоротника есть зиготы. В ответах этого слова нет, так что относится к половому размножению эти варианты не могут.

А Б В Г Д
1 2 1 1 2

Гаметогенез

Установите соответствие между процессом, происходящим при сперматогенезе, и зоной, в которой происходит данный процесс.

А) митотическое деление первичных половых клеток

Б) образование диплоидных сперматогониев

В) образование сперматоцитов 1-го порядка

Г) мейотическое деление клеток

Д) образование гаплоидных сперматид

2) зона размножения

3) зона созревания

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Гаметогенез -процесс развития и созревания половых клеток: сперматозоидов и яйцеклеток.


На каждой стадии у клеток есть свои названия:

Клетки, получившиеся в результате митозов называются сперматогонии и овогонии.

Клетки, которые делятся первый раз мейозом- сперматоцит и овоциты I порядка.

Второй раз мейоз – сперматоциты и овоциты II порядка.

После второго мейоза сперматоциты становятся сперматидами, а потом- сперматозоидами.

После второго мейоза 3 клетки отмирают, а одна становится яйцеклеткой.

Рассмотрим еще одну схему. Стадия размножения охватывает многократное деление митозом первичных половых клеток.

Увеличение размеров клеток и первый мейоз- стадия роста.

Второй мейоз и до конца – созревание.

Соединим данные с названиями клеток, стадиями и делениями:

А Б В Г Д
2 2 1 3 3

Типы развития насекомых

  1. Прямое – ребенок похож на родителя, только меньше по размерам и у него недоразвиты некоторые органы (млекопитающие, птицы).
  2. Непрямое (с превращением, с метаморфозом) – ребенок (личинка) сильно отличается от родителя (лягушки, насекомые).

При непрямом развитии уменьшена конкуренция между детьми и взрослыми, поскольку они живут в разных местах и питаются разной пищей.

У всех насекомых развитие непрямое, превращение может быть полное и неполное.

Полное: из яйца развивается личинка, она питается, растет, затем превращается в покоящуюся стадию куколку, внутри которой происходит полная перестройка всех органов, из куколки выходит взрослое насекомое ( имаго ).

Неполное: стадия куколки отсутствует.

Установите соответствие между насекомым и типом его развития: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) медоносная пчела

В) азиатская саранча

Г) капустная белянка

Д) зеленый кузнечик

1) с неполным превращением

2) с полным превращением

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Для выполнения этого задания нужно не только выучить что такое полное\неполное превращение, но и отряды насекомых (или как минимум по представителю).

А Б В Г Д
2 2 1 2 1

Различные методы

Установите соответствие между методом селекции и его использованием в селекции растений и животных.

А) массовый отбор

Б) отбор по экстерьеру

В) получение полиплоидов

Г) искусственный мутагенез

Д) испытание родителей по потомству

1) селекция растений

2) селекция животных

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Массовый отбор, наверно, больше характерен для растений нежели, для животных. Растений просто больше и они занимают большие площади территории.

Экстерьер – внешний вид . Это относится к селекции животных. Выведение новых пород основано и на этом тоже, на внешнем виде.

Полиплоидов скорее легче получить у растений, чем у животных. Они проще.

Животных не подвергают искусственному мутагенезу из-за смертности.

Родители, потомство – явно говорится о животных.

А Б В Г Д
1 2 1 1 2

Установите соответствие между методами и областями науки и производства, в которых эти методы используются: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) получение полиплоидов

Б) метод культуры клеток и тканей

В) использование дрожжей для производства

белков и витаминов

Г) метод рекомбинантных плазмид

Д) испытание по потомству

Запишите в таблицу выбранные цифры под соответствующими буквами.

Разберемся с терминологией:

Биотехнология — это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Селекция: получение полиплоидов; испытание по потомству; гетерозис. Биотехнология: метод культуры клеток и тканей; использование дрожжей для производства белков и витаминов; метод рекомбинантных плазмид.

Гетерозис — увеличение жизнеспособности гибридов вследствие унаследования определённого набора аллелей различных генов от своих разнородных родителей.

По простому, если обобщить, то в биотехнологии из одного генерируют другое, а при селекции используют существующие материалы и работают с ними.

А Б В Г Д Е
1 2 2 2 1 1

Установите соответствие между приёмами и методами биотехнологии: для этого к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

А) работа с каллусной тканью

Б) введение плазмид в бактериальные

В) гибридизация соматических клеток

Г) трансплантация ядер клеток

Д) получение рекомбинантной ДНК и РНК

1) клеточная инженерия

2) генная инженерия

Запишите в таблицу выбранные цифры под соответствующими буквами:

Здесь все совсем легко: где клетка – там клеточная инженерия, где не клетка- генная. Ну и ткань состоит из клеток.

А Б В Г Д
1 2 1 1 2

Закономерности наследственности и изменчивости

Наследственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа сохраняют в своих потомках характерные черты вида.

Изменчивость — разнообразие признаков среди представителей данного вида, а также свойство потомков приобретать отличия от родительских форм

Генная мутация – изменения ДНК в пределах одного гена.

Геномная мутация– мутация, в результате которой происходит изменение числа хромосом .

  • Гаплоидия– уменьшение в кариотипе соматических клеток числа хромосом вдвое.
  • Полиплоидия – увеличение в кариотипе соматических клеток числа хромосом в какое-то количество раз.
  • Анеуплоидия– изменение в кариотипе соматических клеток числа хромосом на какое-то число.
  • Полисомия– появление в генотипе дополнительных половых хромосом (X,Y).

Хромосомные мутации– изменения в структуре хромосом.

  • Делеция – утрата участка хромосомы.
  • Дупликация – удвоение участка хромосомы.
  • Инверсия – поворот на 180 градусов участка хромосомы

Транслокация – перестановка участка хромосомы на другое место.


Мутации

Установите соответствие между характеристикой мутации и ее типом.

А) включение двух лишних нуклеотидов в молекулу ДНК

Б) кратное увеличение числа хромосом в гаплоидной клетке

В) нарушение последовательности аминокислот в молекуле белка

Г) поворот участка хромосомы на 180 градусов

Д) уменьшение числа хромосом в соматической клетке

Е) обмен участками негомологичных хромосом

Запишите в таблицу выбранные цифры под соответствующими буквами.

2.кратное увеличение числа хромосом-геномная

3.аминокислоты, состоящие из триплетов нуклеотидов- генная

4.поворот хромосомы- хромосомная

5.уменьшение числа хромосом- геномная

6.обмен участками хромосом- хромосомная

А Б В Г Д Е
2 3 2 1 3 1

Установите соответствие между характеристикой изменчивости и её примерами: к каждой позиции, данной в первом столбце, подберите соответствующую позицию к рисунку из второго столбца.

А) изменчивость носит групповой характер

Б) приводит к созданию новых генотипов

Г) проявляется в новых комбинациях признаков

Д) изменения носят только фенотипический характер

Е) изменения определяются нормой реакции

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Если у растения листья вытянулись из-за недостатка света, но растение изменилось только внешне, то есть фенотипически. В генотипе у него ничего не изменилось. Это был пример ненаследственной изменчивости, она же фенотипическая, она же модификационная.

Модификационная изменчивость носит групповой характер, а комбинативная- индивидуальный.

А Б В Г Д Е
1 2 2 2 1 1

Норма реакции

Установите соответствие между признаком и диапазоном его нормы реакции : к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) строение глаза насекомого

Б) удойность коровы

В) урожайность пшеницы

Г) масса тела человека

Д) количество пальцев на руках

1) узкая норма реакции

2) широкая норма реакции

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам

Норма реакции — это та максимальная доля от фенотипического значения признака, на которую может изменить признак среда.

Глаз одного вида насекомых не будет кардинально отличаться, норма реакции узкая.

Корова может дать в один день много молока, а в другой- всего ничего, норма широкая.

Один год может быть урожайным, а другой – нет, норма широкая.

Человек весил 55 кг, набрал до 100кг, норма широкая.

Количество пальцев в норме 5, бывают аномалии, но +-1, норма узкая.

А Б В Г Д
1 2 2 2 1

Онтогенез. Жизненный цикл растений и зародышевые листки.

Стадии развития

Каждый зародышевый листок дает начало чему-то

Зародышевый листок Системы органов
Эктодерма Кожа, нервная система, органы чувств
Мезодерма Пищеварительный канал, печень, поджелудочная железа, легкие, хорда
Энтодерма Мышцы, кровь , сосуды, кости, хрящи, гонады

Установите соответствие между процессами, происходящими на разных стадиях развития зародыша трёхслойных животных, и стадиями, на которых эти процессы происходят: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) образуется однослойный зародыш

Б) формируется мезодерма

В) образуется двуслойный зародыш

Г) образуется вторичная полость тела

Д) образуется однослойный зародышевый пузырёк

Е) начинается органогенез

Запишите в таблицу выбранные цифры под соответствующими буквами


Однослойный зародыш – это бластуляция.

Образование мезодермы происходит в стадию нейрулы.

Двуслойный зародыш – гаструляция.

Вторичная полость – нейрула.

Первичный пузырек – бластула.

А Б В Г Д Е
1 3 2 3 1 3

Жизненный цикл мха

Жизненные циклы остается только выучить.

На схеме видно, что взрослые растения гаплоидны, а это значит, что гаплоидны и листья.


Закономерности изменчивости.
Изменчивость признаков. Норма реакции

Ключевые слова конспекта: изменчивость: прерывистая (дискретная), непрерывная; признаки: качественные, количественные; варианта; вариационный ряд; вариационная кривая: вариационная кривая нормального распределения; предел изменчивости признака; норма реакции.
Раздел ЕГЭ: 3.6. Закономерности изменчивости… Норма реакции… Значение изменчивости в жизни организмов и в эволюции

Организм наряду с наследственностью обладает изменчивостью. Изменчивость — это способность организма изменять свои признаки, она зависит от генотипа и воздействия окружающей среды. Изменчивость есть результат взаимодействия генотипа со средой. Способность организма изменяться под воздействием окружающей среды обеспечивает его приспособление к условиям существования.

Существуют две формы изменчивости: дискретная (прерывистая) и непрерывная. При дискретной изменчивости различия между особями резко выражены, при непрерывной имеется вариационный ряд, отражающий предел изменчивости признака — норму реакции.

Закономерности изменчивости

Модификационная, или фенотипическая, изменчивость носит адаптивный характер и не наследуется.

Наследственная изменчивость затрагивает генотип. Наследственные изменения имеют случайный характер. Выделяют два вида наследственной, или генотипической, изменчивости: комбинативную и мутационную. Комбинативная изменчивость возникает в результате комбинации генов и хромосом в процессе мейоза, а также случайного сочетания гамет при оплодотворении. Мутации происходят из-за нарушения структуры ДНК, отдельных хромосом и всего генома, что приводит к изменению генотипа. Мутации чаще вредны, так как снижают адаптивные свойства организма. Однако именно мутации создают резерв наследственной изменчивости, накапливаясь у гетерозигот. Выявлена закономерность в проявлении мутаций у близкородственных видов организмов. Закон гомологических рядов в наследственной изменчивости, установленный Н. И. Вавиловым, имеет большое значение в селекционной работе при выведении новых сортов культурных растений и пород домашних животных.

Качественные и количественные признаки

При одном и том же генотипе могут формироваться разные фенотипы. Фенотип есть результат взаимодействия генотипа с факторами среды. На одном дереве листья (цветки, плоды) отличаются друг от друга. Под влиянием внешних факторов фенотип может изменяться.

Качественные признаки: форма и окраска семян у гороха посевного

Качественные признаки: форма и окраска семян у гороха посевного

Все признаки организмов разделяют на качественные и количественные. Форма плодов или семян, окраска цветков, шерсти животных — это качественные признаки, по которым особи резко отличаются друг от друга.

Если признаки поддаются измерению (высота стебля, размеры листьев, надои молока, яйценоскость) — это количественные признаки.

Количественный признак — размеры листьев у лавровишни

Количественный признак — размеры листьев у лавровишни

Жёлтая и зелёная окраска, гладкая и морщинистая форма семян гороха — примеры качественных признаков. По таким признакам особи легко различаются, так как между ними нет промежуточных форм. Изменчивость признаков в этом случае носит скачкообразный, прерывистый характер. Изменчивость признаков, при которой можно чётко выделить определённые группы особей, называют прерывистой или дискретной.

В другом случае, при наследовании, например, массы семян или высоты стебля, наблюдаются различия в степени интенсивности развития признака.

В данном случае строгое деление на группы невозможно, и признак требует какой-то количественной оценки. Один из примеров количественного изменения признака — величина листьев у одного растения, например лавровишни. Изменчивость, при которой у отдельных особей отсутствуют чёткие границы между признаками, называют непрерывной.

Прерывистую и непрерывную изменчивость могут иметь как количественные, так и качественные признаки. Например, количественный признак — плодовитость свиней — относится к прерывистому виду изменчивости, так как позволяет сгруппировать свиноматок по количеству поросят: 5, 7, 8, 10 и т. д. Но при исследовании такого количественного признака, как масса новорождённых поросят, мы встречаемся с непрерывной изменчивостью.

Такие качественные признаки, как окраска и форма семян гороха посевного, цветков душистого горошка, ночной красавицы, являются примерами прерывистой изменчивости, а другие — цвет волос и кожи у человека, окраска зёрен пшеницы при скрещивании белозёрного сорта с краснозёрным — пример непрерывной изменчивости.

Определение характера изменчивости количественных признаков

Количественные признаки поддаются определённому описанию. Если измерить величину семян тыквы одного сорта растения или даже одной особи, то окажется, что они имеют разную длину. То же самое можно наблюдать, если измерить высоту стеблей различных особей одного сорта гороха посевного. Следовательно, для характеристики количественных признаков особи или сорта (величины и массы семян, длины стебля) необходимо произвести измерения и определить их среднюю величину.

В качестве примера определим среднюю величину семян тыквы одного сорта. Измерим длину (в мм) 50 произвольно взятых семян:


Расположим числа, отображающие последовательное изменение признака, в порядке его увеличения: от самого малого значения до самого большого. Каждое число в ряду представляет собой варианту. Если расположить все значения длины семян в порядке их возрастания, то получится вариационный ряд.

Вариационный ряд длины семян тыквы: 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 19.

Вариационный ряд — это ряд изменчивости признака, который образован отдельными значениями вариант, расположенных в порядке увеличения или уменьшения выраженности признака.

Для установления предела изменчивости признака определим частоту встречаемости каждой варианты. Подсчитаем количество семян, имеющих одинаковую длину. Для удобства составим Таблицу, где первый ряд чисел отображает величину изменения признака, а второй — соответствует частоте встречаемости изменений (количество семян каждой длины).

Таблица. Изменение признака и частота его встречаемости

Таблица. Изменение признака и частота его встречаемости

На основании полученных результатов построим график. Для этого по оси абсцисс отложим значения отдельных вариант (длину семян), по оси ординат — числа, соответствующие частоте встречаемости каждой варианты (признака). Соединив точки на графике, получим вариационную кривую, которая является графическим выражением характера изменчивости признака; она отражает размах вариаций и частоту встречаемости вариант.

Вариационная кривая, отражающая распределение семян тыквы по их величине

Вариационная кривая, отражающая распределение семян тыквы по их величине


Из графика видно, что варианты со средним значением встречаются чаще, а варианты с двумя крайними значениями — реже. Они являются отклонениями от нормы — средней величины, причём чем сильнее отклонение, тем меньше частота встречаемости варианты. Для объективной характеристики изменчивости признака определяется его среднее значение по формуле где М — средняя величина; ∑ — знак суммирования; υ — значение варианты; p — частота встречаемости этой варианты; n — общее число вариант ряда.

Определим среднее значение величины семян тыквы по формуле. Средней величине признака на графике соответствует самая высокая точка.

Полигон распределения семян фасоли по величине (I) и массе (II) (по В. Иоганнсену)

Полигон распределения семян фасоли по величине (I) и массе (II) (по В. Иоганнсену)

Эта закономерность касается не только рассмотренного примера, но и других количественных признаков. Датский учёный Вильгельм Иоганнсен, изучая варьирование массы семян в чистой линии фасоли, установил изменчивость этого признака и построил вариационную кривую. Так как в чистой линии фасоли все семена имели одинаковый генотип, то различия в их массе были связаны с влиянием внешних факторов: глубины заделки семян в почву, различий в количестве влаги и структуре почвы, распределения в почве минеральных веществ. На рисунке видно, как комбинация благоприятных и неблагоприятных факторов оказывает определённое воздействие на формирование семян, их величину и массу.

Норма реакции

Предел вариации любого признака у особей с одинаковой наследственностью графически представляет собой вариационную кривую нормального распределения, имеющую форму колокола. Для получения достоверных результатов число исследуемых вариант должно быть достаточно большим. В этом случае кривая нормального распределения имеет плавный, постепенно повышающийся и постепенно понижающийся характер.

Вариационная кривая нормального распределения

Вариационная кривая нормального распределения

В биологии по характеру вариационной кривой судят о степени изменчивости признака. Две крайние точки графика означают предел изменчивости признака, его верхнюю и нижнюю границы. Весь полигон распределения соответствует норме реакции признака. Норма реакции — это предел изменчивости признака, который обусловлен данным генотипом. Центральная часть графика — это средняя величина признака.

Изучив по графику характер изменчивости признака, можно сделать вывод, что наследуется не признак, а норма реакции. Она бывает широкой или узкой. Чем шире диапазон, тем шире норма реакции, т. е. различные признаки могут изменяться в большем или меньшем диапазоне. Широкой нормой реакции обладают такие признаки, как масса тела и цвет волос у человека, масса тела и надои молока у коров и т. д. Узкая норма реакции характерна для таких признаков, как рост человека, жирность молока у коров, длина шерсти у овец. Эти признаки в меньшей степени зависят от внешних условий.

Чем шире норма реакций, тем пластичнее признак, тем более он адаптирован к условиям среды. Это увеличивает вероятность выживания вида в изменяющихся условиях. Однако есть признаки, которые остаются неизменными независимо от среды, например группа крови у человека.

Значение изменчивости в жизни организмов и в эволюции


Читайте также: