Гниение яблока это окислительно восстановительная реакция

Обновлено: 07.09.2024

FOR-DLE.ru - Всё для твоего DLE ;)
Привет, я Стас ! Я занимаюсь так называемой "вёрсткой" шаблонов под DataLife Engine.

На своем сайте я выкладываю уникальные, адаптивные, и качественные шаблоны. Все шаблоны проверяются на всех самых популярных браузерх.
Раньше я занимался простой вёрсткой одностраничных, новостных и т.п. шаблонов на HTML, Bootstrap. Однажды увидев сайты на DLE решил склеить пару шаблонов и выложить их в интернет. В итоге эта парочка шаблонов набрала неплохую популярность и хорошие отзывы, и я решил создать отдельный проект.
Кроме шаблонов я так же буду выкладывать полезную информацию для DataLife Engin и "статейки" для веб мастеров. Так же данный проект будет очень полезен для новичков и для тех, кто хочет правильно содержать свой сайт на DataLife Engine. Надеюсь моя работа вам понравится и вы поддержите этот проект. Как легко и удобно следить за обновлениями на сайте?
Достаточно просто зарегистрироваться на сайте, и уведомления о каждой новой публикации будут приходить на вашу электронную почту!

ГДЗ Химия 11 класc Габриелян О.С. Остроумов И.Г. Сладков С.А. §14 Окислительно-восстановительные реакции ОТВЕТЫ

Задание 2
Какие из четырёх типов реакций: соединения, разложения, замещения и обмена ― относятся к окислительно-восстановительным не относятся к окислительно-восстановительным могут быть и теми, и другими? Подтвердите своё мнение уравнениями соответствующих реакций. К окислительно-восстановительным относятся все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество.
Zn 0 + H +1 Cl = Zn +2 Cl2 + H2 0 ↑
S +4 O2 -2 + O2 0 = S +6 O3 -2
2K +1 Cl +5 O3 -2 MnO2 ⟶ 2K +1 Cl -1 + O2 0

Задание 3
Почему аммиак проявляет только восстановительные свойства, а азотная кислота – только окислительные? Азот в аммиаке находится в минимальной степени окисления -3, а азот в азотной кислоте ― в максимальной степени окисления +5

Задание 5
Методом электронного баланса уравняйте окислительно-восстановительные реакции, схемы которых:
а) Al + CuCl2 ⟶ AlCl3 + Cu
Al 0 + Cu +2 Cl2 ⟶ Al +3 Cl3 + 3Cu 0
Cu +2 +2ē ⟶ Cu 0 |2|6|3 ― процесс восстановления
Al 0 -3ē ⟶ Al +3 |3| |2 ― процесс окисления
Проводим вертикальную черту и пишем за ней число электронов, которые присоединили и отдали атомы меди и алюминия. Находим наименьшее общее кратное для чисел 2 и 3. Это число 6, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 2 и 3, записываем результат за третьей чертой в строках, касающихся элементов меди и алюминия. Множители 3 и 2 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы этих элементов в формуле исходного вещества и продукта реакции, поэтому коэффициент 3 ставим перед формулами двух соединений меди (CuCl2, Cu) и коэффициент 2 — перед формулами двух соединений алюминия (Al, AlCl3).
2Al + 3CuCl2 = 2AlCl3 + 3Cu
В приведённой реакции алюминий — восстановитель, а хлорид меди (II) (за счёт атомов меди в степени окисления +2) — окислитель.

б) NH3 + CuO ⟶ N2 + H2O + Cu,
N -3 H3 + Cu +2 O ⟶ N2 0 + H2O + Cu 0
Cu +2 +2ē ⟶ Cu 0 |2|6|3 ― процесс восстановления
2N -3 -6ē ⟶ N2 0 |6| |1 ― процесс окисления
Проводим вертикальную черту и пишем за ней число электронов, которые присоединили и отдали атомы меди и азота. Находим наименьшее общее кратное для чисел 2 и 6. Это число 6, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 2 и 6, записываем результат за третьей чертой в строках, касающихся элементов меди и азота. Множители 3 и 1 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы элемента меди в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 3 перед формулами двух соединений меди (CuO, Cu), а разными являются коэффициенты азота — коэффициент 1 (относится к двум атомам азота) перед формулой азота N2.
NH3 + 3CuO ⟶ N2 + H2O + 3Cu
Подбираем коэффициенты для остальных соединений. Получим уравнение:
2NH3 + 3CuO = N2 + 3H2O + 3Cu

в) KClO3 + S ⟶ KCl + SO2
KCl +5 O3 + S 0 ⟶ KCl -1 + S +4 O2
Cl +5 +6ē ⟶ Cl -1 |6|12|2 ― процесс восстановления
S 0 -4ē ⟶ S +4 |4| |3 ― процесс окисления
Проводим вертикальную черту и пишем за ней число электронов, которые присоединили и отдали атомы хлора и серы. Находим наименьшее общее кратное для чисел 6 и 4. Это число 12, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 6 и 4, записываем результат за третьей чертой в строках, касающихся элементов хлора и серы. Множители 2 и 3 являются искомыми коэффициентами. Поскольку элементы изменили степень окисления полностью (в правой части схемы эти элементы ни в одном веществе не проявляют такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы этих элементов в формуле исходного вещества и продукта реакции, поэтому коэффициент 2 ставим перед формулами двух соединений хлора (KClO3, KCl) и коэффициент 3 — перед формулами двух соединений серы (S, SO2).
2KClO3 + 3S = 2KCl + 3SO2

г) H2SO4 (конц.) + Zn ⟶ ZnSO4 + H2S + H2O
H2S +6 O4 + Zn 0 ⟶ Zn +2 S +6 O4 + H2S -2 + H2O
S +6 +8ē ⟶ S -2 |8|8|1 ― процесс восстановления
Zn 0 -2ē ⟶ Zn +2 |2| |4 ― процесс окисления
Проводим вертикальную черту и пишем за ней число электронов, которые присоединили и отдали атомы серы и цинка. Находим наименьшее общее кратное для чисел 8 и 2. Это число 8, которое записываем за второй вертикальной чертой посередине, и поделив его поочередно на 8 и 2, записываем результат за третьей чертой в строках, касающихся элементов серы и цинка. Множители 1 и 4 являются искомыми коэффициентами. Поскольку элемент цинк изменил степень окисления полностью (в правой части схемы этот элемент ни в одном веществе не проявляет такую же степень окисления, как в исходном веществе) и одинаковыми являются индексы этого элемента в формуле исходного вещества и продукта реакции, поэтому ставим коэффициент 4 перед формулами двух соединений цинка (Zn, ZnSO4). Поскольку элемент сера изменил степень окисления не полностью, поэтому ставим коэффициент 1 только перед формулой сероводорода H2S:
H2SO4 (конц.) + 4Zn ⟶ 4ZnSO4 + H2S↑ + H2O
Подбираем коэффициенты для остальных соединений. Получим уравнение:
5H2SO4 (конц.) + 4Zn = 4ZnSO4 + H2S↑ + 4H2O

Задание 6
Дайте характеристику реакции цинка с соляной кислотой по всем возможным признакам классификации реакций.
Zn + 2HCl ⟶ ZnCl2 + H2
Реакция замещения, экзотермическая, необратимая, гетерогенная, некаталитическая, окислительно-восстановительная .

Задание 7
Рассмотрите взаимодействие этилена с бромной водой с позиции окисления-восстановления.
C2H4 + Br2 = C2H4Br2
C2 +2 H4 + Br2 0 ⟶ C2 +3 H4Br2 -1
C +2 +1ē ⟶ C +3 |1|х 2 ― процесс восстановления
Br2 0 -2ē ⟶ 2Br -1 |2|х 1 ― процесс окисления
Проводим вертикальную черту и пишем за ней число электронов, которые присоединили и отдали атомы углерода и брома. Находим наименьшее общее кратное для чисел 1 и 2 ― это число 2 и, поделив его поочередно на 1 и 2, записываем результат за второй чертой в строках, касающихся элементов углерода и брома. Множители 2 и 1 являются искомыми множителями. Сложим левые и правые части уравнений полуреакций, умножив их на дополнительные множители 2 и 1:
2C +2 + 2ē + Br2 0 - 2ē ⟶ 2C +3 + 2Br -1
2C +2 + Br2 0 ⟶ 2C +3 + 2Br -1
Эти коэффициенты переносим в уравнение реакции (имея в виду, что в формулах C2H4 и C2H4Br2 уже указаны два атома углерода и два атома брома).
В приведённой реакции бром — восстановитель, а этилен (за счёт атомов углерода в степени окисления +2) — окислитель.

Презентация на тему: " (ОВР) Брожение Гниение Это единственный первичный источник энергии для всего живого: 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2." — Транскрипт:

7 Это единственный первичный источник энергии для всего живого: 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2.

8 ОВР это такие реакции, при которых происходит изменение степеней окисления атомов химических элементов (или ионов), образующих реагирующие вещества.

9 переход электронов от одних атомов или ионов к другим и образование новых веществ.

10 ОКИСЛЕНИЕ ОТДАЧА ЭЛЕКТРОНОВ (повышение с.о.) ВОССТАНОВЛЕНИЕ ВЗЯТИЕ ЭЛЕКТРОНОВ (понижение с.о.)

11 Восстановители (отдающие электроны): металлы, водород, уголь, СO,сероводород, аммиак. Окислители (принимающие электроны): O 2, галогены, азотная и серная кислоты, KMnO 4, K 2 Cr 2 O 7.

15 Алгоритм составления уравнений ОВР методом электронного баланса 1.Составить схему реакции. 2.Определить степени окисления элементов в реагентах и в продуктах реакции. 3. Определить, является ли реакция окислительно- восстановительной или она протекает без изменения степеней окисления элементов. Эта реакция является ОВР. 4. Подчеркнуть элементы, степени окисления которых изменяются.

16 Алгоритм составления уравнений ОВР методом электронного баланса 5. Определить, какой элемент окисляется (его степень окисления повышается) и какой элемент восстанавливается (его степень окисления понижается) в процессе реакции. 6. Записать процесс окисления (смещение электронов от атома элемента) и процесс восстановления (смещение электронов к атому элемента). 7. Определить восстановитель и окислитель. 8. Найти наименьшее общее кратное между числом электронов, отданных восстановителем, и числом электронов, принятых окислителем, – электронный баланс. окисляется, процесс окисления, восстановитель восстанавливается, процесс восстановления, окислитель

17 Алгоритм составления уравнений ОВР методом электронного баланса 9. Определить коэффициенты перед окислителем, восстановителем, продуктами окисления и восстановления. 10. Расставить коэффициенты в схеме окислительно- восстановительной реакции. 11. Проверить: посчитать количество атомов каждого элемента справа и слева, если количества атомов одинаковы – поставить знак равенства.

19 Часть А. Выберите один вариант ответа из предложенных.

20 1. Окислительно- восстановительными реакциями называются: а) реакции, которые протекают с изменением степеней окисления атомов; б) реакции, которые протекают без изменения степеней окисления атомов; в) реакции между сложными веществами, в которых они обмениваются своими составными частями.

21 2. Окислитель – это атом, который: а) отдаёт электроны и понижает свою степень окисления; б) принимает электроны и понижает свою степень окисления; в) принимает электроны и повышает свою степень окисления; г) отдаёт электроны и повышает свою степень окисления.

22 3. Процесс восстановления – это процесс: а) отдачи электронов; б) принятия электронов; в) повышения степени окисления атома.

23 4. Данное вещество может быть только окислителем: а) H 2 S; б) H 2 SO 4 ; в) Na 2 SO 3 ; г) SO 2.

24 5. В данном веществе атом азота может быть только восстановителем: а) NH 3 ; б) HNO 3 ; в) NO 2 ; г) HNO 2.

25 Часть В. Установите соответствие.

26 1. Установите соответствие между полуреакцией и названием процесса. а) б) в) г) 1)Процесс окисления 2)Процесс восстановления

27 2. Установите соответствие между уравнением химической реакции и типом, к которому она относится. а) 2H 2 +O 2 =2H 2 O б) 2CuO=2Cu+O 2 в) Na 2 O+2HCl=2NaCl+H 2 O г) 4HNO 3 =4NO 2 +2H 2 O+O 2 1)Разложения, ОВР 2)Соединения, не ОВР 3)Обмена, не ОВР 4)Соединения, ОВР

28 3. Установите соответствие между формулой вещества и окислительно- восстановительными свойствами входящего в него атома фосфора. а) H 3 PO 4 б) P 2 O 5 в) PH 3 г) Na 3 P 1) Окислитель 2) Восстановитель 3) Окислитель и восстановитель

29 Часть С. Из предложенных реакций выберите только ОВР, определите степени окисления атомов, укажите окислитель, восстановитель, процессы окисления и восстановления, расставьте коэффициенты методом электронного баланса: NaOH + HCl NaCl + H 2 O, Fe(OH) 3 Fe 2 O 3 + H 2 O, Na + H 2 SO 4 Na 2 SO 4 + H 2.

30 Ответ на задание части С. процесс окисления, восстановитель процесс восстановления, окислитель


Разбираться в ОВР важно, чтобы хорошо сдать ЕГЭ по химии. Какие реакции называются окислительно-восстановительными, их типы, а также примеры окислителей и восстановителей — в нашей подробной статье.

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Что такое ОВР

Окислительно-восстановительная реакция (ОВР) — это реакция, которая протекает с изменением степеней окисления.

В такой реакции всегда участвуют вещество-окислитель и вещество-восстановитель. Другие вещества могут выступать в качестве среды, в которой протекает данная реакция.

Конечно, в каждом правиле есть исключения. Например, реакция диспропорционирования галогенов в горячем растворе щелочи выглядит так: Br2 + KOH = KBrO3 + KBr + H2O. Здесь и окислителем, и восстановителем является простое вещество бром (Br2).

Теперь посмотрим внимательнее на вещества — участники окислительно-восстановительных реакций.

Окислитель — вещество, в состав которого входит ион или атом, который в процессе реакции будет принимать электроны, тем самым понижая свою степень окисления.

Восстановитель — вещество, в состав которого входит ион или атом, который в процессе реакции будет отдавать электроны, тем самым повышая свою степень окисления.

Из определений понятно, что реакция включает два противоположных по действиям явления: процесс окисления и процесс восстановления. Процесс восстановления — это процесс принятия электронов, а процесс окисления — процесс отдачи электронов. Оба процесса протекают одновременно: окислитель восстанавливается, а восстановитель окисляется.

Вот мы и узнали общие закономерности протекания окислительно-восстановительных реакций. Теперь давайте разберемся, какие вещества могут быть окислителями, а какие — восстановителями, и может ли одно вещество проявлять те и другие свойства.

Примеры веществ-окислителей

Вещества — только окислители, рисунок 1

Вещества — только окислители, рисунок 2

И марганец, и хром в кислой среде (H + ) образуют соли той кислоты, которая образовывала среду. В нейтральной среде (H2O) марганец превращается в оксид бурого цвета, а хром — в серо-зеленый нерастворимый в воде гидроксид. В щелочной среде (OH − ) марганец превращается в манганат (MnO4 2− ), а хром — в комплексное соединение светло-зеленого цвета.

Только окислителями могут быть простые вещества-неметаллы. Например, представители VIIA группы — галогены. Проявляя окислительные свойства в кислой среде, галогены восстанавливаются до соответствующих им галогеноводородных кислот: HF, HCl, HBr, HI. В щелочной среде образуются соли галогеноводородных кислот.

Кислород превращается в анион с устойчивой степенью окисления −2. А сера ведет себя как окислитель по отношению к водороду и металлам, образуя при этом сероводород и сульфиды.

Только окислителями могут быть и протон водорода (H + ) и катионы металлов в их высших степенях окисления при нескольких возможных. Ион Н + при взаимодействии с восстановителями переходит в газообразный водород (H2), а катионы металлов — в ионы с более низкой степенью окисления: 2CuCl2 + 2KI = CuCl + 2KCl + I2.

Рассмотрим как ведут себя сильные кислоты-окислители — азотная и серная. В зависимости от их концентрации меняются и продукты реакции.

Разбавленная азотная кислота никогда не реагирует с металлами с выделением водорода в отличие от разбавленной серной кислоты. Обе эти кислоты реагируют с металлами, стоящими в ряду активности после водорода.

Продукты взаимодействия металлов с азотной и серной кислотами

Эти кислоты проявляют окислительные способности и с некоторыми неметаллами, окисляя их до соответствующих кислот в высшей степени окисления неметалла-восстановителя.

Продукты взаимодействия неметаллов с азотной и серной кислотами

Для удобства мы собрали цвета переходов важнейших веществ-окислителей в одном месте.

Цвета переходов окислителей

Примеры веществ-восстановителей

Типичными восстановителями могут быть щелочные (IA) и щелочноземельные (IIA) металлы, цинк и алюминий, а также катионы металлов в своих низших степенях окисления при нескольких возможных. Например:

Типичными восстановителями также могут быть бескислородные кислоты и их соли. Например, H2S + 4Cl2 + 4H2O = 8HCl + H2SO4.

Гидриды активных металлов (щелочных и щелочноземельных) тоже являются типичными восстановителями. Например, NaH + H2O = NaOH + H2.

Для удобства мы собрали цвета переходов важнейших веществ-восстановителей в одном месте.

Цвета переходов восстановителей

Окислительно-восстановительная двойственность

Окислительно-восстановительная двойственность — это способность атома проявлять как свойства окислителя, так и свойства восстановителя в зависимости от условия протекания химической реакции.

Разберем вещества, атомы которых обладают окислительно-восстановительной двойственностью.

По отношению к водороду и металлам сера играет роль окислителя: S + H2 = H2S.

При взаимодействии с сильными окислителями повышает свою степень окисления до +4 или +6: S + KMnO4 = K2SO4 + MnO2.

Кислородсодержащие соединения серы в степени окисления +4

Сера в сульфитах и сернистой кислоте при взаимодействии с сильными окислителями повышает степень окисления до +6: SO2 + 2HNO3 (конц) = H2SO4 + 2NO2.

С восстановителями соединения серы проявляют окислительные свойства, восстанавливаясь до степени окисления 0 или −2: SO2 + C = CO2 + S.

Пероксид водорода

Атом кислорода в пероксиде водорода находится в промежуточной степени окисления –1, и в присутствии восстановителей может понижать степень окисления до –2: 4H2O2 + PbS = PbSO4 + 4H2O.

Атом кислорода в пероксиде водорода находится в промежуточной степени окисления –1, и в присутствии окислителей может повышать степень окисления до 0: 3H2O2 + 2KMnO4 = 3O2 + 2MnO2 + 2KOH + 2H2O.

Простое вещество йод

Окислительная способность проявляется у йода в реакции с такими восстановителями, как сероводород, фосфор и металлы: I2 + H2S = S + 2HI.

Йод при взаимодействии с более сильными окислителями играет роль восстановителя: I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl.

Азотистая кислота и нитриты

При взаимодействии с более сильными окислителями азот повышает степень окисления до +5 и превращается либо в азотную кислоту из азотистой, либо в нитрат-анион из нитрит-аниона: 5NaNO2 + 2KMnO4 + 3H2SO4 = 5NaNO3 + 2MnSO4 + K2SO4 + 3H2O.

При взаимодействии с сильными восстановителями обычно происходит восстановление до NO (иногда до других соединений азота в более низких степенях окисления): 2HNO2 + 2HI = 2NO + I2 + 2H2O.

Для удобства мы собрали представителей типичных окислителей и восстановителей в одну схему.

Важнейшие окислители и восстановители

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции можно поделить на четыре типа:

Рассмотрим каждую по отдельности.

Межмолекулярная ОВР — это реакция, окислитель и восстановитель которой являются различными веществами.

2KI + Br2 = 2KBr + I2, где Br2 — окислитель, а KI — восстановитель (за счёт I −1 ).

Внутримолекулярная ОВР — это реакция, в которой один атом является окислителем, а другой восстановителем в рамках одного соединения.

Пример такой окислительно-восстановительной реакции:

Внутримолекулярная ОВР

где Cl +5 — окислитель, а O −2 — восстановитель.

Термическое разложение нитратов — это внутримолекулярная ОВР. Вот схема разложения нитратов в зависимости от металла, входящего в состав соли.

Разложение нитратов

Исключение — разложение нитрата железа (II): 4Fe(NO3)2 = 2Fe2O3 + 8NO2 + O2. Здесь железо окисляется до +3 вопреки правилам. Иначе разлагается при нагревании и нитрат аммония: NH4NO3 = N2O + 2H2O.

Окислительно-восстановительная реакция диспропорционирования — это реакция, в ходе которой один и тот же атом является и окислителем, и восстановителем. Например, 3HNO2 = HNO3 + 2NO + H2O, где N +3 переходит в N +5 , являясь восстановителем, и N +3 переходит в N +2 , являясь окислителем.

Окислительно-восстановительная реакция контрпропорционирования — это реакция, в которой атомы одного и того же химического элемента в разных степенях окисления входят в состав разных веществ, при этом образуя новые молекулы одного и того же продукта.

Основные правила составления ОВР

Подобрать среди исходных веществ окислитель и восстановитель, а также вещество, которое отвечает за среду — при необходимости. Для этого нужно расставить степени окисления элементов и сравнить их окислительно-восстановительные свойства.

Составить уравнение реакции и записать продукты реакции. Следует помнить, что в кислой среде образуются соли одно-, двух- и трехзарядных катионов, а для создания среды чаще всего используют серную кислоту. В кислой среде невозможно образование оснó‎вных оксидов и гидроксидов, так как они вступят в реакцию с кислотой. В щелочной среде не могут образовываться кислоты и кислотные оксиды, а образуются соли.

Уравнять методом электронного баланса или методом полуреакций.

Составим алгоритм для уравнивания окислительно-восстановительных реакций методом электронного баланса.

Главное условие протекания ОВР — общее число электронов, отданных восстановителем, должно быть равно общему числу электронов, принятых окислителем.

Определите атомы, которые меняют свои степени окисления в ходе реакции.

Выпишите, сколько электронов принял окислитель и отдал восстановитель. Если восстановителей несколько, выписываем все.

Найдите НОК для суммарно отданных/принятых электронов.

Расставьте первые полученные коэффициенты перед окислителем и одним или несколькими восстановителями.

Уравняйте все присутствующие металлы в уравнении реакции.

Уравняйте кислотные остатки.

Уравняйте водород — в обеих частях его должно быть одинаковое количество.

В 7 классе вы уже ознакомились с реакциями окисления. Мы рассматривали их как реакции веществ с Оксигеном с образованием оксидов. Можно сказать, что окисление — это процесс присоединения веществом атомов Оксигена (рис. 15.1, а). Вместе с окислением в природе происходит противоположный процесс, который сопровождается отдачей веществом атомов Оксигена. Этот процесс называют восстановлением. На примере реакции восстановления меди (рис. 15.1, б) становится понятным название этого процесса: поскольку из черного купрум(II) оксида получили блестящий металл, то было логично назвать этот процесс восстановлением металла.


Рис. 15.1. Реакции окисления (а) и восстановления (б) меди

Обратите внимание: Купрум отдает атомы Оксигена и восстанавливается, но одновременно атомы Гидрогена соединяются с атомами Оксигена и окисляются (рис. 15.1, б).

Итак, процессы окисления и восстановления — это противоположные взаимосвязанные процессы: восстановление всегда сопровождается окислением, и наоборот. Поэтому используют термин окислительно-восстановительные реакции (сокращенно ОВР).

Электронная природа окислительно-восстановительных реакций

С развитием химии ученые установили электронную природу процессов окисления и восстановления. Одним из первых электронную теорию окислительно-восстановительных процессов предложил наш соотечественник Л. В. Писаржевский. Он сопоставил процессы окисления и восстановления с изменением степеней окисления элементов вследствие перехода электронов от атомов одних элементов к другим.

• Реакции, в которых хотя бы один химический элемент меняет свою степень окисления, называют окислительно-восстановительными.

Рассмотрим еще раз реакцию окисления меди, но на этот раз обратим внимание на степени окисления элементов реагентов и продуктов реакции:


Мы видим, что в результате реакции Купрум повышает свою степень окисления с 0 до +2. Для этого атомы Купрума должны отдать по 2 электрона. Этот процесс можно описать схемой:


• Окисление — это процесс отдачи электронов атомом (ионом) с повышением степени окисления.

В этой реакции Купрум понижает свою степень окисления с 0 до -2. Для этого атомы Оксигена должны принять по 2 электрона:


Так атомы Оксигена дополняют (восстанавливают) свою электронную оболочку.

• Восстановление — это процесс присоединения электронов атомом (ионом) с понижением степени окисления.


Элемент, который отдает электроны и тем самым повышает свою степень окисления, называют восстановителем. Вещество, содержащее элемент-восстановитель, также называют восстановителем. Поскольку восстановитель в ходе реакции отдает электроны, то сам он при этом окисляется.

• Восстановитель — это частица (молекула, атом или ион), которая отдает электроны.

В реакции меди с кислородом атомы Купрума окисляются, поскольку отдают электроны, но они в этой реакции являются восстановителями, поскольку отдают электроны и восстанавливают атомы Оксигена.

Элемент, который присоединяет электроны, а также вещество, в составе которого он содержится, называют окислителем. Поскольку окислитель в ходе реакции присоединяет электроны, то сам он при этом восстанавливается.

• Окислитель — это частица (молекула, атом или ион), которая присоединяет электроны.

В реакции, которую мы рассмотрели, Оксиген восстанавливается, поскольку присоединяет электроны, но одновременно он является окислителем и окисляет Купрум.

В общем случае все определения, которые мы рассмотрели в этом подразделе, можно представить схемой:



Лев Владимирович Писаржевский (1874-1938)

Рассмотрим реакцию хлоридной кислоты со щелочью:


Легко заметить, что в этой реакции ни один химический элемент не меняет свою степень окисления, поэтому данная реакция не является окислительно-восстановительной, как и любая другая реакция ионного обмена. Главное отличие окислительно-восстановительных реакций от реакций ионного обмена заключается в том, что при окислительно-восстановительных реакциях происходит переход электронов от восстановителя к окислителю.


Значение окислительно-восстановительных реакций

Окислительно-восстановительные реакции имеют большое значение в природе и деятельности человека. Они являются основой многих процессов жизнедеятельности живых организмов. В промышленности ОВР — один из главных методов получения новых веществ, в особенности металлов, а также в производстве кислот, лекарств, красителей и т. д.

Значение ОВР в природе


Фотосинтез — это окислительно-восстановительная реакция, обеспечивающая жизнь на планете. Под действием света в зеленых растениях происходит процесс, который можно описать суммарным уравнением: 6CO2 + 6H2O = C6H12O6 + 6O2↑. Окислителем здесь выступает углекислый газ, а восстановителем — атомы Оксигена в составе воды.

Обмен веществ и энергии в клетках происходит в процессе многочисленных окислительно-восстановительных реакций. Процессы дыхания, пищеварения — все это цепи ОВР. Превращение энергии, освобождающейся при ОВР, в энергию химических связей молекул АТФ происходит в митохондриях.

Любая реакция горения является окислительно-восстановительной. С давних времен горение является источником энергии для человека. Горение древесины можно описать уравнением, обратным к процессу фотосинтеза: C6H12O6 + 6O2 = 6CO2 + 6H2O.

Гниение также является окислительно-восстановительным процессом, который происходит при участии бактерий. В результате гниения выделяется энергия, необходимая для жизнедеятельности этих бактерий. Миллионы лет назад благодаря этим процессам сформировались полезные ископаемые.

Брожение — еще один пример природных ОВР. Этот процесс происходит при участии грибов, которые таким способом получают необходимую энергию. Человек использует брожение для приготовления квашеных овощей, дрожжевого теста, кисломолочных продуктов, сыра, пива и т. п.

Коррозия — это многостадийный окислительновосстановительный процесс, описывающийся уравнением: 4Fe + 3O2 + 6H2O = 4Fe(OH)3. Коррозию можно назвать процессом, противоположным получению металлов на заводах. Этот процесс приводит к повреждению металлических конструкций.

Значение ОВР в технике


Получение энергии из любого топлива основано на ОВР. Например, в двигателях внутреннего сгорания происходит реакция сгорания бензина. Энергия, выделяющаяся в результате реакции, превращается в механическую энергию для перемещения автомобиля.

В обычных батарейках также протекают ОВР, энергия от которых преобразуется в электрическую энергию. Такие источники электрического тока называют гальваническими элементами. Аккумуляторы в автомобилях, ноутбуках и мобильных телефонах — это также гальванические элементы, в которых протекают различные ОВР.

В топливных элементах энергия вырабатывается в результате окислительно-восстановительной реакции горения. Перспективным является топливный элемент, в котором происходит сгорание водорода, поскольку единственный продукт этой реакции — вода. Автомобили с такими топливными элементами будут экологически чистыми.

Окислительно-восстановительные реакции являются основой метода гальванопластики — покрытия поверхности тонким слоем металла. На изделие любой сложности из любого материала наносят слой металла. Этим методом наносят позолоту на деревянные изделия, хромируют детали автомобилей, бытовой техники и т. п.

Металлургические процессы — получение металлов — невозможны без ОВР. Металлы (железо, медь, свинец и др.) восстанавливают из руды коксом (специально обработанным углем). Алюминий из руды восстанавливают электрическим током. По выпуску черных металлов Украина занимает одно из первых мест в мире.

Без ОВР невозможен химический анализ некоторых веществ. Используя различные реагенты, определяют концентрацию кислорода, ионов Феррума или Хрома в смесях. Также с помощью ОВР можно определить содержание витамина C (аскорбиновой кислоты) во фруктах, соках и др.

Ключевая идея

Окисление и восстановление — противоположные взаимосвязанные процессы, которые заключаются в обмене электронами.

Контрольные вопросы

Задания для усвоения материала

178. Определите, какие из приведенных реакций являются окислительно-восстановительными. Для ОВР обозначьте стрелкой направление переноса электронов и их количество, как на схеме на с. 90.

179. В каждом уравнении реакции определите элементы, которые являются восстановителями и окислителями:


181. Охарактеризуйте значение ОВР в быту, технике, природе.

182. Изделия из серебра при длительном хранении тускнеют из-за образования на поверхности нерастворимого аргентум(I) сульфида черного цвета. Восстановить блеск серебра можно кипячением изделия в растворе соды вместе с алюминиевой фольгой. Какое вещество в этом случае будет окислителем, а какое — восстановителем? Составьте уравнение этой реакции.

183. Свободные радикалы в организме (частицы с неспаренными электронами) вызывают гибель клеток или их перерождение в раковые клетки. Нейтрализовать действие свободных радикалов могут некоторые вещества, которые называются антиоксидантами, например аскорбиновая кислота. Предположите, какие свойства (окислителей или восстановителей) характерны для свободных радикалов и антиоксидантов.

Читайте также: