Формы устойчивости растений к вредителям

Обновлено: 05.10.2024

В борьбе с различными болезнями и вредителями растений огромная роль принадлежит не только агротехническим и химическим средствам, но и селекции.

Устойчивость растений к заболеваниям связана со сложной системой их морфо-физиологических особенностей. Они могут не поражаться, если их фенофазы и цикл развития патогена, не совпадают. Устойчивость или слабая поражаемость может быть обусловлена анатомическими особенностями строения листа, стебля, цветка, физиологическими и биохимическими свойствами растений.

Для оценки селекционного материала на устойчивость используют данные естественного заражения и проводят специальные испытания с искусственным внесением инфекции на инфекционных и провокационных фонах, которые организуются на изолированных участках, в теплицах, оранжереях, в вегетационных домиках, где можно создавать оптимальные условия для быстрого и надежного заражения растений, грибами, бактериями и вирусами. Оценка устойчивости растений к болезням проводится в процентах или в баллах.

У насекомых повреждающих культурные растения специализация выражена значительно слабее, чем у грибов, бактерий и вирусов.

Они могут повреждать все формы определенного вида, а порой все виды данного рода растений. (примеры – клоп – черепашки, саранча).

Сорта и формы растений не повреждаемые вредителями, или обладающие способностью восстанавливать рост поврежденных органов и тканей называются устойчивыми.

Различия по степени повреждения разных сортов с/х культур обуславливаются следующими особенностями:

- анатомо-морфологическими. Отдельные органы и ткани имеют такое строение, которое препятствует проникновению насекомого к месту питания или вообще повреждению их. (опушение, восковой налет, форма листа, наличие химических веществ отпугивающих насекомых, выполненная соломина).

- физиологическими. Различия в сроках фенофаз различных сортов и насекомых (пшеница – ранние сроки фазы всходы-кущение позволяют уйти от заражения шведской мухой).

- способностью сортов восстанавливать или компенсировать рост поврежденных насекомыми органов и тканей. (некоторые сорта пшеницы образовывают вторичные побеги кущения при повреждении растений личинками шведской мухи).

- биохимического состава тканей и органов растений (картофель - в листьях которого содержится алкалоид демиссин не повреждается колорадским жуком).

Для оценки устойчивости сортов к вредителям применяют полевые и лабораторно-полевые методы.

Методы заражения можно сгруппировать в следующие группы:

1) заражение через почву – применяют для обитающих в почве патогенов (корневые гнили)

2) заражение семян – применяют при оценке к головне (пшеница, ячмень, кукуруза)

3) заражение листьев – используют при оценке устойчивости к ржавчине, мучнистой росе и некоторым вирусным и бактериальным болезням - заражение или сухими спорами или суспензией

4) заражение через цветок – при оценке устойчивости к пыльной головне, спорынье ржи.

Степень устойчивости сортов определяют путем подсчета среднего числа пораженных растений или количества вредных насекомых, приходящихся на единицу площади (1м 2 ) – для болезней общего типа – пыльная головня, увядание. Если речь идет о листовых болезнях, которые поражают все листья, но в разной степени, то учет ведут % площади листа, которая поражена по специальным шкалам.

В селекции используют и лабораторные методы оценки (заразиха подсолнечника, ложно-мучнистая роса).

Оценка на пригодность к механизированному возделыванию

Полегание бывает стеблевое и прикорневое.

Стеблевое – наклон стебля происходит по длине нижнего междоузлия.

Прикорневое – у самого основания стебля.

Устойчивые и неустойчивые сорта и линии отличаются между собой по анатомическому строению.

Устойчивые – имеют более мощную склеренхимную ткань, большую толщину междоузлий. Первые два междоузлия укороченные. Корни расположены радиально, более толстые и прочные. Хорошо развита вторичная корневая система.

Устойчивость к полеганию оценивают по 5 и 9-ти бальной системе (5 и 9 отсутствует полегание, 1 – механизированная уборка невозможна).

Осыпание – приводит к большим потерям урожая.

У пшеницы осыпание связано со строением колосковых чешуй.

Устойчивые сорта имеют жесткие грибы, чешуи с широким основанием в листе их прикрепления к стержню колоса, киль и жилкование у них выражены более резко. Сорта по этим признакам отличаются четко.

Твердые пшеницы осыпаются значительно меньше мягких.

Наиболее распространенный метод оценки сортов к осыпанию – оценка их при перестое на корню.

В данной главе рассмотрена важная экологическая проблема – выявление закономерностей проявления невосприимчивости и путей практического использования этого свойства при создании устойчивых сортов сельскохозяйственных культур. Описаны общие закономерности и классификация явлений иммунитета растений к вредителям. Дан анализ имеющейся в литературных источниках информации по данной проблеме.

1.1. Наука об иммунитете: предмет, задачи, история развития

1.2. Устойчивость растений к вредителям

1.2.1. Биохимические особенности

Выбор вредителями растения для питания или наоборот, исключение из числа кормовых, основан на их способности улавливать биохимические различия разных видов и сортов.
Пример, колорадский жук предпочитает табак, картофель дикий и культурный. Биологические требования к составу пищи у насекомых часто меняются. По мере развития растения происходит смена хозяина.

1.2.2. Анатомо-морфологические особенности

Характер строения покровных тканей и анатомо-морфологические особенности растений влияют на избирательность вредителя.
Например, опушенность листьев мягкой пшеницы, более глубокие бороздки стимулируют яйцекладку гессенской мухи, а у твердой листья более гладкие и привлекательность вредителя меньше.
Панцирные сорта подсолнечника защищают семена от повреждения. Отродившиеся гусеницы не способны прогрызть панцирный слой оболочки, расположенный между пробковой и склеренхимной тканями. Это препятствует проникновению их в семянку.

1.2.3. Фенологические особенности

Многие вредители повреждают (или заселяют) растения только в определенные фазы их развития. Устойчивыми будут те, которые способны уйти от повреждений в критические фазы, когда потери ощутимы (шведская муха, просяной комарик и т. д.).
Устойчивые растения оказывают также антибиотическое действие на вредителя в момент питания и способны подавлять массовые развития вредителя либо изменять продолжительность их развития. Антибиотические действия обусловлены содержанием в устойчивых формах растений биологически активных веществ.

1.3. Типы повреждений растений вредными насекомыми и их ответная реакция

Вредители наносят повреждения в процессе питания, а некоторые и в период откладки яиц. Тип повреждений, наблюдаемый при питании, обусловлен строением ротового аппарата и биологическими свойствами вида. Он специфичен. Характер и степень повреждений растений определяют дальнейшую их жизнеспособность.
У вредителей с грызущим ротовым аппаратом различают следующие типы повреждений: скелетирования, сплошное объедание листьев и т. д.
Повреждения, вызываемые вредителями с колюще-сосущим ротовым аппаратом существенно отличаются от повреждений насекомых с грызущим ротовым аппаратом. Их внешний вид определяется характером ответных реакций растения на внедрение частей ротового аппарата и действия вводимых слюнных секретов. Различают два типа его внедрения в ткани растений.
Интрацеллюлярный тип — введение частей ротового аппарата в межклеточное пространство через естественные ходы без нарушения целостности клеточных стенок. Характерно для тлей.
Интрацеллюлозный тип — введение ротового аппарата в ткани растений путем прокалывания клеточных стенок. Характерно для клопов, цикадок, клещей.
Некоторым видам тлей свойственны оба типа внедрения. Вокруг мест питания вредители с колюще-сосущим ротовым аппаратом наблюдаются следующие нарушения: окраски, образование вздутий, галлов, усыхания, опадание цветов, бутонов и т. д.
Вредители с колюще-сосущим ротовым аппаратом вступают в более тесные взаимоотношения с поврежденным растением. Введя со слюной ферменты в растение, они способны к внеклеточному перевариванию тканей хозяина. У растения нарушается обмен веществ, в собственных ферментах усиливаются гидролитические процессы.

1.4. Типы устойчивости

Иммунитет растений к вредителям равно как и к микроорганизмам (бактерии, вирусы, грибы) является важным биологическим свойством обеспечивающим выживаемость растительных органов.
Существует большое разнообразие форм проявления устойчивости растений к вредителям, причем многие из них дополняют друг друга.
Различают три основных типа проявления устойчивости:
1) отвержение и выбор растений вредителями при откладке яиц или при питании (полная неповрежденность отдельных видов или сортов) растений определяется видом вредителей;
2) антибиотическое воздействие кормового растения на вредителя (неповреждаемость или слабая повреждаемость);
3) выносливость растений к повреждениям (см. гл. 2).

1.4.1. Отвержение и выбор растений вредителями

1.4.2. Антибиотическое воздействие кормового растения на вредителей

Антибиоз – это неблагоприятное воздействие растения на фитофага, проявляющееся при использовании его насекомым в пищу или для откладки яиц. В качестве факторов антибиоза могут выступать:
– вещества вторичного обмена;
– структурные особенности основных биополимеров, синтезируемых растениями и степень их доступности для усвоения фитофагами;
– пищевая ценность растения для вредителя;
– анатомо-физиологические особенности растений, затрудняющие доступ фитофага к зонам его наиболее благоприятного питания;
– ростовые процессы растений, приводящие к самоочищению растения от вредителя или нарушающие условия нормального развития фитофага.
На территориях, занятых устойчивыми сортами растений, обычно создаются условия, предотвращающие массовые размножения насекомых. Сорта, обладающие свойствами антибиоза, становятся мощным рычагом управления численностью насекомых.

1.5. Вещества вторичного обмена

Растениям наряду с синтезом веществ первичного обмена свойственен синтез веществ вторичного обмена, одной из функций которых является охрана целостности организма.
Вещества вторичного обмена представлены в виде различных эфирных масел, алколоидов гликозидов и других веществ, специфичных для определенных групп растений на уровне семейств, родов, а то и видов.
Например, колорадский жук перешел с дикорастущих пасленовых на картофель, который от своих диких сородичей отличается низким содержание гликоалколоидов, что улучшало питание и размножение вредителя. Устранение фактора ингибирующего размножение, обеспечили этому виду колоссальные возможности для захвата огромных территорий.
Эти вещества, безусловно, играли большую роль в историческом прошлом, являясь одной из причин становления пищевой специализации фитофагов (группы потребителей крестоцветных, пасленовых, маревых и т. д.).
Вредители капусты, например, приобрели способность к обезвреживанию ядовитого гликозида синергина и к использованию его в качестве источника энергии.
Вредители табака приспособились к никотину, вредители клещевины – к цианогену. Никотин, анабазин, пиретрин широко известны как инсектициды.
Адоптации фитофагов к использованию растений, содержащих те или иные вещества вторичного обмена относительны, поэтому при питании растениями, содержащими более высокие концентрации веществ вторичного обмена фитофаги начинают испытывать их отрицательное антибиотическое действие.
Наиболее чувствительны к веществам вторичного обмена личинки младших возрастов. Они гибнут уже в первые дни питания на 70–80 % (колорадский жук, гусеницы кукурузного мотылька).
Кроме гибели они могут вызывать расстройство пищеварительной, нервной, половой и других систем. В некоторых случаях отрицательное влияние этих веществ отмечено на отложенные яйца, на растения устойчивых сортов (колорадский жук, пьявица).
В селекции растений на устойчивость к вредителям оценка уровня содержания веществ вторичного обмена в различных сортах может усиленно использоваться в качестве маркера их устойчивости. Но вести селекцию на повышение концентрации этих веществ нельзя.

1.6. Структура и особенности основных биополимеров, синтезируемых растениями

Известно, что наиболее эффективным источником биологической энергии являются углеводы. При усвоении биополимеров растений в процессе пищеварения большое значение имеет степень стереохимического соответствия гидролитических ферментов насекомых молекулярным структурам пищи. При таком соответствии обеспечивается быстрый с минимальными затратами энергии гидролиз биополимеров и их всасывание. И наоборот, энергетические затраты на переваривание пищи насекомым возрастают при недостаточном стереохимическом соответствии между гидролизами и структурными особенностями биополимеров пищи.
Важное значение имеет также степень сбалансированности различных питательных веществ в соответствии с требованиями насекомых. Эта несбалансированность приводит к неэффективному использованию элементов пищи. Поэтому большое иммунологическое значение имеет уровень атакуемости биополимеров пищи гидролизами потребителя. При низком уровне атакуемости даже те растения, которые характеризуются высокой биологической ценностью, не могут быть использованы потребителем полностью. В результате этого у насекомых возникает так называемый синдром неполного голодания.
Усложнение формы полимеров пищевого субстрата свойственного устойчивым сортам приводит к различного рода отклонениям в жизнедеятельности фитофагов – усиливается секреция гидролитических ферментов, повышается их активность (клоп-черепашка, личинки злаковых мух и т. д.). При питании фитофагов на несвойственных для него тканях на устойчивых сортах создается дисбаланс в организме, что приводит к задержке в росте, снижению накопления жировых запасов, низкой подвижности, пониженной устойчивости к неблагоприятным условиям среды (при перезимовке) и часто к гибели.

Пищевые взаимоотношения возникли на основе многообразия типов питания и обмена веществ. Вначале они носили характер сосуществования между организациями, составляющими ценозы. Дальнейшая эволюция органического мира сопровождалась возникновением новых типов межвидовых отношений – появились бинарные и полинарные формы: симбиоз и паразитизм.
Система растение – насекомое—фитофаг относится к сложным. Организмы, составляющие эту систему, находятся на разных ступенях эволюционной лестницы, т. е. существенно различаются по уровню организации и, следовательно, наделены разными возможностями для реализации взаимодействия. В силу подвижности насекомых связи их с растениями в онтогенезе непостоянны во времени и для свободноживущих ограничиваются в основном актом еды или моментом откладки яиц. Хорошо развитые рецепторы обеспечивают широкие возможности выбора насекомыми кормового растения, различных его органов и тканей.
Малые размеры тела при общей высокой организации, высокая теплоотдача, подвижность в сочетании с огромным воспроизводительным потенциалом и другие специфические особенности делают насекомых весьма требовательными к пластическому и энергетическому обеспечению. Эта особенность насекомых превратила их в один из главных преобразователей энергии и информации в экосистемах как потребителей первичной и вторичной биологической продукции.
Общий характер отношений между насекомыми и растениями определяется двоякой ролью растений. Растение, выступая как компонент биоценоза, может играть роль внешнего фактора по отношению к насекомым-фитофагам, и в то же время, поступая в организм насекомого в качестве пищи, растение начинает играть роль и внутреннего фактора.

По отношению к любым патогенам в настоящее время различают целый ряд типов устойчивости. Устойчивость может быть абсолютной — в этом случае говорят об иммунитете, высокой, средней, слабой.

Степень устойчивости определяется по величине и характеру поражений, а также по скорости развития болезни.

В широком смысле устойчивость может быть обусловлена любым наследственным признаком растения-хозяина, ослабляющим влияние патогена, включая устойчивость к насекомому-переносчику, уход от болезни в силу несовпадения фаз развития растения-хозяина и паразита. Так, например, раннеспелые сорта люпина желтого (Академический 1 и др.) обладают повышенной устойчивостью к вирусному израстанию не в силу наличия у них генов устойчивости, а в результате несовпадения фазы цветения с отрождением и лётом тли — переносчика вирусов.

Помимо устойчивости различают толерантность (выносливость), при наличии которой растение заражено, но противостоит паразиту. Толерантность определяют по степени воздействия на хозяйственно ценную часть урожая, например, зерна. Два сорта могут обладать одинаковой восприимчивостью к патогену, но различаться по толерантности. Несмотря на многие отрицательные стороны селекции на толерантность к болезням (формы с ослабленными симптомами поражения таят в себе потенциальную опасность как носители скрытой инфекции) были получены большие экономические преимущества от широкого использования вирусовыносливых сортов более чем 20 культур. Также успешно была использована толерантность по отношению ко многим вредным насекомым (18).

Большинство растений успешно противостоит многочисленным патогенным организмам, таким, как грибы, бактерии, вирусы, микомицеты.

В настоящее время принято выделять два типа иммунитета — конститутивный и индуцибельный, или, по Вавилову (4), соответственно морфологический (пассивный) и физиологический (активный). К первому из них относят все случаи устойчивости, связанные с механическими особенностями в строении и развитии органов растений, а также с синтезом компонентов вторичного метаболизма, препятствующих проникновению в растение патогенов, например, толстая кутикула, густое опушение, размер и форма устьиц, восковой налёт, эфирные масла, предварительное образование антибиотических соединений, содержащихся в здоровых растениях и др. (77).

Так, наличие алкалоидов в растениях диких и ряда культурных видов люпина способствует их защите от ряда вредителей и болезней: антипитательные соединения белковой и небелковой природы — лектины, танины, гликозиды и др., содержащиеся в семенах большинства зерновых бобовых культур, являются естественными барьерами для развития ряда болезней и вредителей.

Индуцибельная устойчивость обусловлена реакцией хозяина в ответ на внедрение патогена. Самым ярким проявлением активной устойчивости является реакция сверхчувствительности (СВЧ) — быстрое отмирание зараженных клеток, ограничивающее распространение возбудителей и последующую их гибель. Реакция может быть очень быстрой, а микротическое пятно на поверхности листа ничтожно малым. Механизм сверхчувствительности заключается в том, что в ответ на внедрение патогена в клетках образуются вещества, токсичные и для возбудителей болезни и для клеток хозяина. Токсины, образуемые растением-хозяином представляют из себя низкомолекулярные вещества, получившие название фитоалексинов. Известны фитоалексины — пизатин у гороха, фазеолин у фасоли и др. Активная устойчивость может быть обусловлена быстрым отложением инкрустирующих веществ (каллеза, лигнина) на стенках клетки, в которую патоген пытается внедрится.

Различают устойчивость качественную — при этом распределение частот устойчивых и восприимчивых растений в популяции дискретно и их нетрудно идентифицировать, и количественную, при которой наблюдается непрерывная шкала переходов от устойчивости к восприимчивости и нет между ними четких переходов.

Кроме сверхчувствительности к механизмам устойчивости относятся: уход от болезни, связанный с низкой всхожестью спор на поверхности листьев; слабое обоснование гриба в растении-хозяине; медленный рост гриба в растении-хозяине вследствие наличия антибиотических веществ или отсутствия питательных веществ для патогена в клетках хозяина; устойчивость к споруляции, вызывающая ее задержку; выносливость, при которой у зараженных растений отмечается лишь незначительное замедление роста или деформации листьев.

К насекомым у растений различают три основных типа устойчивости: отсутствие предпочтения — насекомые менее охотно заселяют одни генотипы, чем другие; антибиоз — замедление роста отдельных вредных насекомых и снижение скорости их размножения; выносливость — противостояние последействиям нашествия насекомых (1).

При описании различных фенотипов и генотипов возбудителей болезней и вредителей в данной работе мы будем придерживаться, в основном, терминов, используемых Расселом (1982) в его обширной монографии „Селекция растений и устойчивость к вредителям и болезням“ (18).

Физиологическая раса — негомогенный организм и может включать широко различающиеся особи, единственный общий признак которых — унаследованная способность поражать конкретные генотипы растения-хозяина. Иногда расы имеют и морфологические отличия. Для выделения физиологических рас у паразитических грибов создаются специальные наборы сортов — дифференциаторов, несущих различные гены устойчивости к определенным расам. Если при введении новых сортов — дифференциаторов окажется, что раса патогена неоднородна, т.е. часть ее инокулюма способна заразить данный сорт, а часть неспособна, то расу разбивают на биотипы (патотипы). Термин биотип также применяется для вредных насекомых, штамм — для бактерий и вирусов.

Вирулентная физиологическая раса грибного возбудителя — это раса, несущая гены, которые преодолевают устойчивость конкретного генотипа хозяина, превращая его в восприимчивый; авирулентная раса неспособна поражать данный генотип.

Вирулентные штаммы бактерий и вирусов обуславливают более сильные признаки болезни, чем авирулентные.

Агрессивная или сильная раса гриба во многом эквивалентна вирулентному штамму вируса, вызывая сильное поражение всех генотипов хозяина, которые она способна поражать и не связана с расо-специфической устойчивостью.

Ван дер Планк (5) ввел понятие о двух типах устойчивости к патогенам: горизонтальная или нерасоспецифическая устойчивость, эффективная против всех генетических вариантов конкретного паразита; вертикальная или расоспецифическая устойчивость, эффективная только против определенных физиологических рас, биотипов.

Этими терминами нужно пользоваться осторожно, так как иногда не удается испытать сорт или селекционный материал против всех вариантов патогена. Более подробно генетическая природа обоих типов устойчивости рассмотрена в статье — „Генетика устойчивости растений и вирулентности патогенов - типы наследственной устойчивости растений“.

В литературе также широко применяются термины: полевая устойчивость, эффективная в естественных условиях и чаще трудно воспроизводимая в искусственных; долговременная устойчивость — предложенная Джонсом и Лоу (цит. Рассел, (18) вместо термина горизонтальная и переходящая устойчивость (близкая расоспецифической), защищающая от паразита в течении короткого времени, вследствии возникновения или размножения рас патогена, преодолевающих устойчивость, неполная или частичная устойчивость.


Резистентность (от латинского resistento-сопротивляемость) – устойчивость различных организмов к химическим и биологическим препаратам.

Содержание:

Устойчивость организма к пестициду – это биологическое свойство сопротивляться его отравляющему действию. Устойчивый организм нормально функционирует, развивается и размножается в среде, содержащей яд. [2]

Устойчивость и резистентность организмов нередко рассматривают как синонимы. Однако целесообразнее термин устойчивость употреблять в общем смысле этого слова либо в частных случаях в отношении природных стрессовых факторов, болезней и вредителей. Термином резистентность желательно обозначать устойчивость организмов к пестицидам. [3]

Резистентность - Померанцевая щитовка

Померанцевая щитовка

Резистентность - Померанцевая щитовка

История обнаружения явления

Первая информация о появлении устойчивых к химическим пестицидам организмов появилась в научной печати в 1915 году в США.

В частности, сообщалось о возникновении в калифорнийских садах колоний померанцевой щитовки, устойчивых к синильной кислоте.

Позднее, проявив внимание к этому вопросу, специалисты обнаружили признаки устойчивости и у других вредных организмов к сере и даже к инсектициду растительного происхождения – пиретруму, получаемому из ромашки далматской и других ее видов. До 1940-х годов резистентности не придавали большого значения, однако с появлением в 1960-х годах целой серии химических препаратов она вновь привлекла внимание. [3]

Различают устойчивость природную, основанную на биологических и биохимических особенностях организмов, и приобретенную, появляющуюся только в результате взаимодействия с ядом. [2]

Природная устойчивость

Природная устойчивость подразделяется на:

  • видовую,
  • половую,
  • фазовую (стадийную),
  • возрастную,
  • сезонную и
  • временную.

Этот вид устойчивости возник и существует вне зависимости от применения химических средств защиты растений.

Видовая устойчивость

обусловлена особенностями биологии определенных видов вредных организмов (насекомых, клещей грызунов и других).

Устойчивость организмов сильно колеблется в пределах одного вида, что следует учитывать при использовании пестицидов.

Половая устойчивость

В ряде случаев более устойчивы к ядовитым веществам женские особи насекомых и животных. Такая устойчивость преодолевается подбором соответствующих доз.

Фазовая устойчивость

Изменения устойчивости вредных организмов отмечаются и в онтогенезе в зависимости от фазы (стадии) развития. Наиболее чувствительны к ядам личинки и взрослые насекомые, конидии грибов в момент прорастания, растения в фазе проростков. Высокоустойчивы насекомые в фазе яйца, куколки и во время диапаузы, зимующие споры грибов и бактерий, семена растений.

Устойчивость вредных организмов к ядам в пределах одной фазы развития изменяется в зависимости от возраста, времени суток и времени года (сезона). Личинки насекомых более чувствительны к инсектицидам в раннем возрасте, а к моменту линьки их устойчивость возрастает.

Возрастная устойчивость

Сезонная устойчивость

Для насекомых, зимующих в фазе имаго или личинки, характерна сезонная устойчивость. В конце лета или осенью эти виды более устойчивы к пестицидам, так как накапливают значительное количество жира и мало питаются. Весной они более чувствительны к ядам потому, что организм ослаблен длительной зимовкой. [2]

Приобретённая устойчивость (собственно резистентность)

В результате систематического применения инсектицидов и акарицидов у насекомых и клещей может появиться устойчивость (резистентность) к ним. Устойчивые к действию инсектицидов насекомые не гибнут от данных ядохимикатов, применяемых в дозах, выбывающих гибель обычной (чувствительной) популяции.

Основной причиной резистентности является селекция устойчивых особей, выживающих после применения препарата в определенной дозе. Каждая популяции насекомых представляет совокупность особей, отличающихся по своим биологическим особенностям, в том числе и по чувствительности к действию ядов. При систематическом применении инсектицидов у быстроразмножающихся видов (дающих за сезон несколько поколений) отбирается и селекционируется часть популяции, содержащая гомозиготные особи (по гену устойчивости), и результате чего на время наследственно закрепляется устойчивость к данному фактору. [1]

В основе преобразования чувствительной популяции в устойчивую лежат количественные изменения её генотипического состава. [4]

Различают несколько разновидностей устойчивости. Кроме прямой (индивидуальной) устойчивости к инсектициду, нередко возникает перекрестная групповая устойчивость (кросс-резистентность) к целой группе химических соединений из данного класса, хотя остальные соединения при этом и не применялись. Чаще всего это происходит в отношении соединений, обладающих аналогичным или родственным механизмом токсического действия. Реже возникает и проявляется менее четко перекрестная межгрупповая устойчивость, проявляющаяся в отношении соединений из других химических классов. [1]

Индивидуальная устойчивость

Это резистентность только к одному пестициду. Встречается довольно редко и обусловливается активностью узкоспециализированных ферментов, разрушающих токсичное вещество. Например, устойчивость насекомых к карбофосу объясняется тем, что этот пестицид быстро разрушается в организме устойчивых насекомых ферментом малатионоксидазой.

Групповая устойчивость

Это устойчивость к двум или нескольким пестицидам, родственным по строению и механизму действия, относящимся к одной группе, возникающая после применения препарата этой группы. Например, после обработок насекомых препаратами ГХЦГ возникала раса вредителей, устойчивая ко всем хлорорганическим инсектицидам. Групповая устойчивость насекомых или клещей обусловлена следующими причинами:

  • более медленным проникновением яда в организм и более быстрым выведением его. Устойчивые особи выделяют в 2-3 раза больше токсиканта, чем чувствительные;
  • быстрой детоксикацией ядовитого вещества вследствие более высокой активности ферментов или появления специфичных энзимов. У устойчивых к фосфорорганическим соединениям рас насекомых активность алиэстераз и фосфатаз выше, чему чувствительных. В результате инсектицид быстро разрушается. Некоторые виды насекомых обладают набором специфичных ферментов, активно разрушающих инсектициды (у устойчивых к карбофосу – малатионоксидаза);
  • различной проницаемостью оболочек нервных стволов. В организме устойчивых насекомых инсектицид плохо проникает в нервные клетки (установлено для полихлорциклодиенов);
  • повышенным содержанием липидов в теле устойчивых особей. Эго приводит к тому, что липидорастворимые яды в значительном количестве удерживаются в жировом слое и оказываются выведенными из сферы действия.

Перекрёстная устойчивость

Это устойчивость к двум или нескольким пестицидам разных групп как по химическому строению, так и по механизму действия, возникающая после использования одного препарата. Такая устойчивость встречается редко и мало изучена. Подобное явление, по-видимому, объясняется тем, что ранее примененный инсектицид усиливает активность неспецифических ферментов эндоплазматической сети жирового тела. Поэтому новый препарат быстро разрушается до нетоксичных продуктов. [2]

Пути преодоления устойчивости

Для борьбы с устойчивыми популяциями вредных организмов и чтобы предотвратить возникновение резистентности к пестицидам необходимо тщaтeльное соблюдение норм расхода препаратов и сроков их применения.

Для предотвращения возникновения популяций с приобретённой устойчивостью применяют:

  • чередование пестицидов с различным механизмом действия как в течении сезона, так и по годам; [2]
  • замена применяемых препаратов токсикантами другого химического класса, чередование пестицидов разного механизма действия и спектра активности. Например, пиретроиды при установлении к ним резистентности у колорадского жука целесообразно чередовать с неоникотиноидами; [3]
  • добавление к пестицидам синергистов – веществ, усиливающих действие препарата. [2] Однако не рекомендуется использовать смеси инсектицидов, например пиретроидов и фосфорорганических препаратов, в неполных, относительно от рекомендованных, дозах. При их неоднократном применении разовьется резистентность к каждому компоненту смесей, и сразу два препарата будут потеряны для производства. При высоких уровнях резистентности к одному из компонентов применение смеси вообще малоэффективно; [3]
  • прекращение применения пестицидов, входящих в группу, к которой проявилась резистентность. В этом случае популяция организмов с течением времени вновь насыщается чувствительными особями и к конце концов становится нерезистентной. Данный процесс носит на звание реверсии резистентности. [3]

В случае, если в популяции вредителей обнаруживается множественная резистентность и преодолеть ее можно только отказом от использования пестицидов, заменяя их другими средствами и методами борьбы (устойчивые сорта, трансгенные растения, биологический и другие). [3]

Читайте также: