Какую пищу готовят себе растения под воздействием солнечного света из углекислого газа и воды

Обновлено: 05.10.2024

Что такое фотосинтез?

Фотосинтез – биохимический процесс, во время которого с помощью особых пигментов растений и энергии света из неорганических веществ (углекислого газа, воды) возникают органические. Это один из наиболее важных процессов, за счет которого появилось и продолжает существовать большинство организмов на планете.

Интересный факт : к фотосинтезу способны наземные растения, а также зеленые водоросли. При этом водоросли (фитопланктон) вырабатывают 80% кислорода.

Значение фотосинтеза для жизни на Земле

Без фотосинтеза вместо множества живых организмов на нашей планете существовали бы одни лишь бактерии. Именно энергия, полученная в результате данного химического процесса, позволила бактериям эволюционировать.

Любые природные процессы нуждаются в энергии. Она поступает от Солнца. Но правильную форму солнечный свет приобретает лишь после того, как преобразовывается растениями.

Растения используют лишь часть энергии, а остальную накапливают в себе. Ими питаются травоядные животные, которые являются пищей для хищников. В ходе образовавшейся цепочки каждое звено получает необходимые ценные вещества и энергию.

Кислород, вырабатываемый в ходе реакции, необходим для дыхания всем существам. Дыхание представляет процесс, противоположный фотосинтезу. При этом органические вещества окисляются, разрушаются. Полученная энергия используется организмами для выполнения различных жизненно необходимых задач.

В период существования планеты, когда растений было мало, кислород практически отсутствовал. Примитивные формы жизни получали минимум энергии другими способами. Ее было слишком мало для развития. Поэтому дыхание за счет кислорода открыло более широкие возможности.

Еще одна функция фотосинтеза – защита организмов от воздействия ультрафиолетового света. Речь идет об озоновом слое, находящемся в зоне стратосферы на высоте около 20-25 км. Образуется он за счет кислорода, который превращается в озон под действием солнечного света. Без этой защиты жизнь на Земле ограничивалась бы только подводными организмами.

Организмы выделяют во время дыхания углекислый газ. Он является обязательным элементом фотосинтеза. В противном случае углекислый газ просто накапливался бы в верхних слоях атмосферы, значительно усиливая парниковый эффект.

Это серьезная экологическая проблема, суть которой состоит в повышении температуры атмосферы с негативными последствиями. К ним относится изменение климата (глобальное потепление), таяние ледников, повышение уровня Мирового океана и др.

  • выделение кислорода;
  • образование энергии;
  • образование питательных веществ;
  • создание озонового слоя.

Определение и формула фотосинтеза

Углекислый газ + вода + свет = углевод + кислород.

Научная формула фотосинтеза:

6СО2 + 6Н2О → С6Н12О6 + 6О2.

Фотосинтез происходит так, что непосредственный контакт воды и СО2 не наблюдается.

Значение фотосинтеза для растений

Растениям для роста и развития требуются органические вещества, энергия. Благодаря фотосинтезу они обеспечивают себя данными компонентами. Создание органических веществ – основная цель фотосинтеза для растений, а выделение кислорода считается побочной реакцией.

Как происходит фотосинтез?

Фотосинтез протекает непосредственно в зеленых частях растений – хлоропластах . Они входят в состав растительных клеток. Хлоропласты содержат вещество – хлорофилл . Это и есть тот основной фотосинтетический пигмент, благодаря нему происходит вся реакция. Кроме того, хлорофилл определяет зеленый цвет растительности.

Вода поступает через корневую систему растения, а газ проникает непосредственно в листья. Свет выступает в качестве источника энергии. Когда частица света действует на молекулу хлорофилла, происходит ее активация. В молекуле воды H2O кислород (O) остается невостребованным. Таким образом, он становится побочным для растений, но таким важным для нас, продуктом реакции.

Фазы фотосинтеза

Фотосинтез делится на две стадии: световую и темновую. Протекают они одновременно, но в разных частях хлоропласта. Название каждой фазы говорит само за себя. Световая или светозависимая фаза происходит только при участии частиц света. Темновой или светонезависимой фазе наличие света не требуется.

Прежде чем рассматривать каждую фазу подробнее, стоит разобраться в строении хлоропласта, поскольку оно определяет суть и место протекания стадий. Хлоропласт является разновидностью пластид и внутри клетки расположен отдельно от остальных ее компонентов. Он имеет форму зернышка.

Составляющие части хлоропласта, участвующие в фотосинтезе:

  • 2 мембраны;
  • строма (внутренняя жидкость);
  • тилакоиды;
  • люмены (просветы внутри тилакоидов).

Световая фаза фотосинтеза

Протекает на тилакоидах, точнее, их мембранах. Когда на них попадает свет, выделяются и накапливаются негативно заряженные электроны. Таким образом, фотосинтетические пигменты лишаются всех электронов, после чего наступает очередь распада молекул воды:

При этом образованные протоны водорода имеют положительный заряд и копятся на внутренней мембране тилакоида. В итоге протоны с зарядом плюс и электроны с зарядом минус разделены лишь мембраной.

Происходит выработка кислорода, как побочного продукта:

В определенный момент фазы электронов и протонов водорода становится слишком много. Тогда в работу вступает фермент – АТФ-синтаза. Его задача состоит в том, чтобы переместить протоны водорода из мембраны тилакоида в жидкую среду хлоропласта – строму.

На этом этапе водород попадает в распоряжение другого переносчика – НАДФ (сокращение от никотинамиддинуклеотидфосфат). Это также разновидность фермента, который ускоряет окислительные реакции в клетках. В данном случае его работа состоит в транспортировке протонов водорода в реакции углеводов.

На данной стадии происходит процесс фотофосфолирования, во время него вырабатывается огромное количество энергии. Ее источником является АТФ – аденозинтрифосфорная кислота.

  1. Попадание кванта света на хлорофилл.
  2. Выделение электронов.
  3. Выделение кислорода.
  4. Образование НАДФН-оксидазы.
  5. Образование энергии АТФ.

Интересный факт : существует реликтовое растение под названием вельвичия, растущее на африканском побережье Атлантического океана. Это единственный представитель своего рода с минимумом листьев, способных к фотосинтезу. Однако возраст вельвичий достигает около 2000 лет.

Темновая фаза фотосинтеза

Светонезависимая фаза происходит непосредственно в строме. Она представляет собой ряд ферментативных реакций. Углекислый газ, поглощенный на световой стадии, растворился в воде, а на этом этапе он восстанавливается до глюкозы. Также вырабатываются сложные органические вещества.

Реакции темновой фазы делятся на три основных типа и зависят от вида растений (точнее, их метаболизма), в клетках которых происходит фотосинтез:

  • С3-растения;
  • С4-растения;
  • САМ-растения.

К С3-растениям относится большая часть культур сельскохозяйственного назначения, которые растут в умеренном климате. В ходе фотосинтеза у них углекислый газ становится фосфоглицериновой кислотой.

К С4-растениям принадлежат субтропические и тропические виды, преимущественно сорняки. Для них характерна трансформация углекислого газа в оксалоацетат. САМ-растения – категория растений, которым не хватает влаги. Они отличаются особенным видом фотосинтеза – CАМ.

С3-фотосинтез

Наиболее распространенным является С3-фотосинтез, который также именуется циклом Кальвина – в честь американского ученого Мелвина Кальвина, который внес огромный вклад в изучение данных реакций и получил за это Нобелевскую премию.

Растения называются С3 из-за того, что во время реакций темновой фазы образуются 3-углеродные молекулы 3-фосфоглицериновой кислоты – 3-PGA. Непосредственное участие принимают различные ферменты.

Чтобы образовалась полноценная молекула глюкозы, должно пройти 6 циклов реакций светонезависимой фазы. Углевод – главный продукт фотосинтеза в цикле Кальвина, но помимо него вырабатываются жирные и аминокислоты, а также гликолипиды. У С3 растений фотосинтез проходит исключительно в клетках мезофилла.

Главный недостаток С3-фотосинтеза

Растения, относящиеся к группе С3, характеризуются одним существенным недостатком. Если в окружающей среде отмечается недостаточный уровень влаги, способность к фотосинтезу существенно снижается. Это происходит по причине фотодыхания.

Дело в том, что при невысокой концентрации углекислого газа в хлоропластах (меньше 50:1 000 000) вместо фиксации углерода происходит фиксация кислорода. Специальные ферменты существенно замедляются и расходуют солнечную энергию впустую.

Одновременно с этим замедляется рост и развитие растения, поскольку оно недополучает органические вещества. Также не происходит выброс кислорода в атмосферу.

Интересный факт : морской слизень Elysia chlorotica – уникальное животное, которое осуществляет фотосинтез как растения. Оно питается водорослями, хлоропласты которых проникают в клетки пищеварительного тракта и фотосинтезируют там на протяжении месяцев. Вырабатываемые углеводы служат для слизня пищей.

С4-фотосинтез

В отличие от C3-синтеза, здесь реакции фиксации углекислого газа осуществляются в различных клетках растений. Эти виды растений способны справляться с проблемой фотодыхания, и делают они это при помощи двухэтапного цикла.

С одной стороны поддерживается высокий показатель углекислого газа, а с другой – контролируется низкий уровень кислорода в хлоропластах. Подобная тактика позволяет растениям С4 избежать фотодыхания и связанных с ним сложностей. Представителями растений данной группы являются сахарный тростник, кукуруза, просо и др.

По сравнению с растениями С3 они способны намного интенсивнее выполнять процессы фотосинтеза при условии высокой температуры и недостатка влаги. На первом этапе углекислый газ фиксируется в клетках мезофилла, где образуется 4-углеродная кислота. Затем кислота переходит в оболочку и распадается там на 3-углеродное соединение и углекислый газ.

На втором этапе полученный углекислый газ начинает работать в цикле Кальвина, где вырабатывается глицеральдегид-3-фосфат и углеводы, необходимые для энергетического обмена.

Благодаря двухэтапному фотосинтезу в растениях С4 образуется достаточное для цикла Кельвина количество углекислого газа. Поэтому ферменты работают в полную силу и не растрачивают энергию напрасно.

Но у и этой системы есть свои минусы. В частности расходуется больший объем энергии АТФ – она необходима для трансформации 4-углеродных кислот в 3-углеродные и в обратном направлении. Таким образом, С3-фотосинтез всегда продуктивнее, чем С4 при должном количестве воды и света.

Что влияет на скорость фотосинтеза?

Фотосинтез может протекать с различной скоростью. Этот процесс зависит от условий окружающей среды:

  • вода;
  • длина волны света;
  • углекислый газ;
  • температура.

Вода является основополагающим фактором, поэтому при ее недостатке реакции замедляются. Для фотосинтеза наиболее благоприятны волны красного и сине-фиолетового спектра. Также предпочтительнее высокая степень освещенности, но лишь до определенного значения – при его достижении связь между освещенностью и скоростью реакции исчезает.

Высокая концентрация углекислого газа обеспечивает быстрые фотосинтетические процессы и наоборот. Определенная температура важна для ферментов, которые ускоряют реакции. Идеальные условия для них – около 25-30℃.

Фотодыхание

Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.

В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.

В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.

Интересный факт : в течение солнечного дня участок леса площадью 1 гектар потребляет от 120 до 280 кг углекислого газа и выделяет от 180 до 200 кг кислорода.

Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.

Мы уже знаем, что растения корнями впитывают из почвы воду, в которой растворены минеральные соли. Но этого для нормального развития мало. Растениям нужны ещё главные питательные вещества — крахмал и сахар. В почве этих веществ нет, но они есть в растениях.

Процесс создания питательных веществ из углекислого газа и воды под действием солнечного света называется фотосинтезом .

  • корень всасывает из почвы растворы минеральных солей;
  • стебель проводит эти растворы к листьям;
  • листья поглощают из воздуха углекислый газ и образуют сахар и крахмал.

Органические вещества (сахар и крахмал) поступают во все органы растения. Они используются для разных целей:

  • идут на рост тела;
  • используются при дыхании;
  • расходуются при прорастании семян;
  • откладываются про запас (в плодах, корнях, клубнях).

Учёные сделали ещё одно важное открытие: при фотосинтезе вместе с питательными веществами образуется кислород . Растения выделяют его в воздух.


На данном уроке будет рассмотрено, как происходит образование питательных веществ и кислорода в растении, как осуществляется дыхание растений. На уроке также раскрывается различие и взаимосвязь процессов дыхания и образования питательных веществ. Данный урок содержит большое количество анимаций и опытов, что позволяет сделать его более информативным, увлекательным и повысить эффективность учебного процесса.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Дыхание и питание растений"

Здравствуйте ребята! Меня зовут профессор Колбочкин! Очень много своего времени я провожу в своей любимой лаборатории, ставлю различные опыты и эксперименты. И сегодня на уроке я помогу вам узнать, как происходит дыхание и питание растений.

Вы уже знаете, что растение – это живой организм. Значит, для него, как и для всех других живых организмов характерно питание, дыхание, рост, развитие, размножение, старение и гибель.

Растение – живой организм

Растениям для жизни необходима вода, минеральные вещества и воздух. Все эти вещества растения получают из окружающей среды с помощью своих органов. Корень поглощает из почвы воду. Вместе с водой в растение поступают растворённые в ней минеральные вещества. Убедиться в этом нам поможет опыт.

У комнатного растения срежем стебель на высоте 10 сантиметров и на пенёк наденем короткую резиновую трубку, которая соединяет его со стеклянной трубкой. Если почву в горшке полить водой, то вода начинает подниматься по трубке и вытекать из неё. Этот опыт доказывает нам, что корень поглощает из почвы воду с минеральными веществами, которая далее поднимается вверх по растению во все его органы.

Растения получают вещества не только из почвы, но и из воздуха.

С помощью опытов, я и другие учёные установили, что зелёные листья поглощают из воздуха углекислый газ. Под действием солнечного света из углекислого газа и воды в листьях образуются органические вещества – сахар и крахмал, и выделяется кислород. Сначала из углекислого газа и воды образуется сахар. Затем сахар превращается в крахмал и наоборот. Из листьев органические вещества поступают во все органы растения. Они используются растением для различных целей: идут на построение его тела, необходимы для питания, используются при прорастании семян. Часть органических веществ не расходуется и откладывается в запас. Например, у яблони питательные вещества накапливаются в плодах, у моркови в корнеплодах (утолщённых корнях), а у картофеля в клубнях.

Подтвердим это опытом. Возьмём клубень картофеля и разрежем его. Капнем на срез несколько капель раствора йода. Срез картофеля окрасится в сине-фиолетовый цвет. Как известно, от йода крахмал синеет. Значит, можно сделать вывод, что различные органы растения, например клубни картофеля, содержат крахмал.

Кроме сахара и крахмала в зелёных листьях под действием света образуется газ кислород. Он выделяется из листьев в воздух, и необходим всем живым организмам, в том числе и человеку для дыхания. Убедимся в этом с помощью опыта.

Возьмём две ёмкости, опустим в них горшок с растениями и закроем их. Поставим одну ёмкость с растением на яркий свет, вторую - в темноту, например, в тёмный шкаф. Через сутки откроем ёмкости, опустим в них горящие лучинки. В первой - лучинка не гаснет, а продолжает ярко гореть. Значит, в этой ёмкости появился какой-то газ, поддерживающий горение. Поддерживает горение только кислород. Зелёные листья растения выделили кислород. Опущенная во вторую ёмкость горящая лучинка потухнет. Значит, зелёные растения выделяют газ кислород и только на свету.

Листья растений испаряют воду. Проведём небольшой эксперимент. Наклоним ветку с листьями и, не отрезая её от растения, поместим в стеклянную колбу. Горлышко колбы закроем ватой. Через некоторое время стенки колбы покроются капельками воды. Её испарили листья.

Можно определить количество воды, испаряемой растением. Возьмём три пробирки, нальём в них одинаковое количество воды, в две пробирки на поверхность воды нальём масло. Оно покроет воду и не даст ей испаряться с поверхности. Срежем ветку с листьями какого-нибудь растения и поставим в третью пробирку. Уже через сутки воды в пробирке без масла станет меньше, так как часть её испарится. В третьей пробирке воды станет меньше всего. Значит, вода поднялась вверх по растению и испарилась через листья.

Разные растения испаряют разные количества воды. Одно можно сказать точно, так это то, что растения испаряют очень много воды. Для примера одно растение подсолнечника испаряет за день от 3 до 4 стаканов воды, капуста – 5 стаканов, а берёза в жаркий день испаряет до 6 вёдер воды.

Чем крупнее листья растений, чем больше их поверхность, тем больше испаряется воды. В этом легко убедиться, проделав следующий опыт. Поставим в две одинаковые пробирки с водой по одной веточке комнатного растения с мелкими и крупными листьями. Уровень воды быстрее понизится в пробирке, в которой находится ветка с крупными листьями.

Испарение играет в жизни растений большую роль. Ярко освещённые солнцем листья сильно нагреваются. При испарении листья охлаждаются и растение не перегревается. Испарение помогает передвижению воды в растении. Благодаря испарению листьями вода поступает через корни по стеблю в листья. А вместе с ней передвигаются и растворённые в ней питательные вещества.

Растения, как и все другие живые организмы, дышат. При дыхании они поглощают из окружающей среды кислород и выделяют углекислый газ. Дыхание происходит у растений круглые сутки — и на свету, и в темноте.

Если дыхание прекращается, растение гибнет. Дышат все органы растения. Убедиться, что все органы растения дышат, можно, поставив опыт.

Возьмём три прозрачные ёмкости. В одну из них поместим прорастающие семена гороха. Во вторую ёмкость положим корнеплод моркови. В третью ёмкость поместим свежесрезанный стебель растения с листьями. На следующий день опустим в каждую из ёмкостей горящую лучинку. Лучинки гаснут, потому что в процессе дыхания органы растения поглотили кислород из воздуха, и выделили большое количество углекислого газа, который не поддерживает горение. Для дыхания необходим кислород.

Проведём опыт. В две стакана с водой поместим растения. Нальём во второй стакан масло, которое покроет всю поверхность воды плёнкой. Спустя некоторое время растение во втором стакане погибнет, так как через слой масла к корням не поступает кислород. Растения поглощают при дыхании значительно меньше кислорода, чем выделяют его при образовании питательных веществ. Благодаря этому днём растения обогащают атмосферу кислородом и поглощают из неё выделяемый всеми живыми организмами углекислый газ.

Подведём итог. Растения – это живые организмы. Для них, как и для всех живых организмов характерно питание и дыхание. Всё необходимое для жизни – воду, минеральные вещества и воздух, растения получают из окружающей среды с помощью своих органов. На свету зелёные листья поглощают из воздуха углекислый газ. Под действием солнечного света из углекислого газа и воды в листьях образуются органические вещества – сахар и крахмал, которые являются основной пищей растений. Вместе с питательными веществами образуется кислород. Растения выделяют его в воздух. Кислородам дышат животные, люди и сами растения. Если бы на Земле не росли растения, в воздухе совсем бы не было кислорода!

При дыхании растения поглощают из окружающей среды кислород и выделяют углекислый газ. Дыхание происходит у них круглые сутки — и на свету, и в темноте.

Растения – биологическое царство, многоклеточные живые организмы, которые делятся на деревья, кустарники и травы. Как и любое другое живое существо на планете, оно нуждается в веществах, которые обеспечивают его жизнедеятельность.

Что такое питание растений

Это процесс получения ими полезных веществ, которые необходимы для полного жизненного цикла. Без микро- и макроэлементов растения не смогут долго существовать, они начинают увядать, а в конце погибают.

Ученые нашли более 50 элементов, содержащихся в этих организмах. Но самыми важными из них являются только 13, без остальных растения могут успешно расти. Самыми необходимыми элементами считают азот, калий и фосфор.


Без них существования ни одного организма невозможно. К побочным химическим элементам относят:

  • кальций;
  • магний;
  • железо;
  • фосфор;
  • хлор;
  • медь;
  • молибден;
  • и прочие.

Для чего растениям нужно питание

Без этого оно не сможет совершать обмен веществ с другими живыми и неживыми элементами живой природы и погибнет.

Каждый вид нуждается в каких-то веществах больше, чем в других. Корнеплодам нужно больше калия, чем остальным растениям. Капусте нужны повышенные дозы азота. Сахарная свекла требует много натрия. Бобовые растения, в отличие от других, не выживут без кобальта.

Типы питания растений

Ученые разделают питание на две большие категории: гетеротрофную и автотрофную. В первом случае растения похожи на животных. Они нуждаются в белках, жирах и других полезных соединениях, которые вырабатываются другими представителями флоры и фауны.

Автотрофные – зеленые растения, которые могут принимать только неорганические вещества. Это их отличает от животных, они могут питаться исключительно солнцем и использовать неживую природу, чтобы существовать.

Все полезные элементы автотрофы берут из воздуха и почвы. Через листья они получают все, что им необходимо.

Гетеротрофные растения питаются как животные. Они берут полезные элементы из других живых существ, которых поглощают.

Виды питания растений

Автотрофы питаются при помощи солнечного света. Иногда их еще называют первичными продуцентами. Они получают все вещества от солнца, а процесс называется фотосинтезом.

В каждой клетке растения есть хлоропласты, именно они способны превратить свет в жизненно важную энергию. Весь процесс питания растений проходит преимущественно в листьях. Если каких-то веществ недостаточно, то растение берет их из почвы. При помощи воды оно доставляется также к листьям, где проходит синтез.

У автотрофов есть специальный пигмент, который называется хлорофилл. Именно из-за него листья зеленого цвета, он помогает лучше улавливать солнечный свет.

Вода используется автотрофами для доставки минеральных веществ из корней, принимает участие в обмене и доставке кислорода, когда фотосинтез невозможен ночью.

Фотосинтез делится на несколько этапов:

  • поглощение солнечного света;
  • превращение его в полезные вещества;
  • образование кислорода и водорода;
  • кислород растение отдает, а из последнего элемента добывает необходимые вещества.

Гетеротрофы не могут синтезировать полезные элементы из внешней среды, Некоторые из них являются хищниками, которые уничтожают живые организмы.

Виды питания гетеротрофных растений.

  1. Насекомоядные растения не могут осуществлять фотосинтез, поэтому их листья нужны для поимки других живых существ. Насекомые попадают на листья, приклеиваются к ним и больше не могут улететь. Растения их переваривают и забирают все питательные элементы. Они возникли в результате эволюции в местах, где очень мало минеральных веществ. Чтобы выжить, они адаптировались к новым условиям.
  2. Сапрофиты также были вынуждены вести образ жизни насекомоядных, но они могут питаться только вымершими организмами. При помощи корней они получают все необходимое из них.
  3. Симбиотические могут питаться как фотосинтезом, так и от других живых организмов. Чаще всего им свойственен автотрофный вид питания, но в случае дефицита, они могут брать полезные минеральные соединения из разлагающихся организмов в почве.

Функции питания растений

Питание выполняет важные функции в жизни организмов и всей Земли. Главными функциями являются:

  • обеспечение полезными элементами;
  • участие в природном обмене;
  • при отсутствии питания, они погибнут, как и другие существа, для которых они являются питанием.
  • обеспечение живых существ кислородом и поглощением углекислого газа;
  • мертвые трава, кустарники и деревья формируют новый слой почвы;
  • растения состоят из жидкости и могут ее накапливать;

Особенности питания растений

Трава, кустарники и деревья поглощают полезные вещества и элементы. В результате они получают все необходимое, чтобы расти и размножаться. Именно благодаря питанию, растения могут обмениваться с внешним миром, живыми и неживыми организмами.

Знание особенностей питания каждого из растений, позволяет человеку выбрать удобрения, лучшее место для произрастания одного или другого вида и рассчитать необходимую дозу воды и не дать исчезнуть вымирающим видам.

Минеральное питание растений

Организмы могут поглощать вещества из земли, они действуют выборочно и берут только элементы, которые не могут получить в результате фотосинтеза. Растения усваивают из почвы также катионы и анионы.

При помощи корневой системы они получают фосфор, азот, серу, кальций магний и другие полезные вещества, которые жизненно необходимы каждому.

Все коревые системы сильно отличаются и зависят от местности, где растет тот или иной вид. Например, у озимой пшеницы корни составляют примерно 70% от их надземной длины. Очень часто растениям не нужно пускать корни глубже, чем на полметра. Все необходимые вещества они могут получить на такой глубине. Некоторые отростки большинства растений не достигают двух метров.

Минеральные питательные вещества растения получают при помощи своей корневой системы. Волоски, находящиеся на отростках всасывают все полезные вещества и обеспечивают организм всем необходимым.

У корней во внутреннем слое есть специальная кора, которая отсеивает все элементы не нужные сейчас траве, кустарнику или дереву. Она способна дать организму только нужные вещества, а остальные отдает обратно в почву. Эта функция позволяет получать разные элементы в разных периодах жизни.

На стадиях развития растению нужен разный набор веществ, в некоторых они нуждаются на стадии роста, другие им нужны, когда пришло время размножения. Самые важные из них:

Если хоть одного из них будет недоставать, растение не сможет размножиться и бороться с внешними раздражителями.

При нехватке азота, новые листья начинают становиться более мелкими, а старые неравномерно начинают желтеть. Отсутствие поступления калия в полном объеме влияет на способность деления клеток внутри организма. На листьях могут появляться дырочки, хотя по краям они будут выглядеть нормально. А количество фосфора напрямую влияет на обмен веществ.

Избыток элементов также может привести к неприятным последствиям. Новые листочки не будут выглядеть здоровыми, они начнут виться и становиться неестественными.

Также растения нуждаются в других элементах, но их количество не так важно. Они нуждаются в тех же веществах, как и любые другие живые существа на планете.

  1. Магний. Влияет на количество хлоропластов. Недостаток приводит к неравномерному цвету листьев. Жилки становятся более темными, а весь остальной лист светлеет.
  2. Сера. Ее дефицит приводит к уменьшению скорости фотосинтеза и растение не может добывать полезные элементы из света эффективно.
  3. Фосфаты. При недостатке листья могут начать отпадать значительно раньше. Части могут начать отмирать и покрываться пятнами.
  4. Железо. Элемент влияет на цвет, от дефицита начинают желтеть листья.

Организм не может заменить одни элементы другими. Каждый из них выполняет свои функции, поэтому для организма важно получить все необходимое из почвы или солнечного света.

Азот напрямую влияет на скорость роста и цвет, фосфор в необходимом количестве позволяет плодам быстро развиться, а калий ускоряет процесс поступления веществ от корней к листьям и наоборот.

Органическое питание растений

Этот вид питания обеспечивается листьями. При помощи их растения могут синтезировать полезные вещества из солнечного света, этот типа насыщения организмов называется еще воздушным питанием. Растения используют фотосинтез, чтобы превратить солнечный свет в энергию для роста.

Воздушное питание – усвоение растением углекислого газа и выделение кислорода. Они поглощают CO2 и сами преобразуют его в белки и жиры. Растения поглощают углерод для своих потребностей и выделяют кислород.


Чтобы осуществлять фотосинтез, многоклеточным организмам нужен солнечный свет. В его поглощении принимает участие хлорофилл, он преобразует его в химическую энергию. В результате фотосинтез помогает из солнечного света получить растениям все, что им нужно.

Простой углевод используется жизненной формой на Земле для синтезирования сахара и клетчатки. Кроме этого растения получают другие важные элементы: органические кислоты, белки, жиры и другие питательные элементы.

Растения дышат, в процессе они теряют до 20% всех элементов, которые смогли синтезировать. Этот процесс противоположен фотосинтезу, живые существа окисляют углеводы при помощи кислорода. Оно используется для поглощения из почвы других полезных элементов, которые они не могут получить из солнечного света.

При помощи дыхания необходимые вещества передвигаются от корней к самым кончикам листьев. В живой природе растения могут использовать не более 3% солнечного света. Поэтому в процесс вмешивается человек, чтобы дать больше энергии растению, а оно будет быстрее расти и давать плоды.

Некоторые виды могут получать из воздуха азот, к ним относят бобовые культуры и простые соли. Этот вид использует свои способности для защиты своих листьев и плодов от внешних раздражителей и подкормки.

Питание растений водой

Вода играет неоценимую роль в жизнедеятельности этих организмов. Они состоят из жидкости на 95%, все процессы связаны с циркуляцией воды. Если ее в растениях будет недостаточно, замедлится обмен веществ, который повлияет на все процессы.

  1. Вода – ключевой элемент, используемый проводящей системой. Она ускоряет передвижение полезных веществ от листьев к корням и наоборот.
  2. Без жидкости семена не смогут выжить и прорасти.
  3. Фотосинтез невозможен без воды.
  4. Именно жидкость делает растения упругими, они не разрушаются под действием ветра и других природных стихий.

Волоски на корнях поглощают не только минеральные элементы из почвы. Они также берут влагу и доставляют ее от корней по стеблю до каждого листика. Вода поглощается с избытком, она участвует в процессе обмена веществ, доставляется к листьям, а оттуда она испаряется.

Если воды будет недостаточно, то избыточное испарение приведет к тому, что растение начнет чахнуть. Часть жидкости организм сможет восполнить ночью через листья, когда влаги в воздухе больше, но все равно ему требуется постоянное поступление жидкости в корневую систему.

Большинство растений нуждается в подпитке водой, выживать без этого могут лишь те, кто адаптировался к жестким условиям в пустынных частях Земли.

Водный обмен состоит из трех этапов:

  • поглощение воды корнями;
  • обмен веществ и передвижение жидкости по проводящей ткани;
  • испарение.

Организмы используют лишь небольшую долю той воды, которую они поглотили из земли. Обычно на синтез уходит менее одного процента. Один стебель пшеницы, например, за сутки может испарить более 50 грамм воды.

Растение поглощает воду вместе с минеральными веществами, ненужные корневая система отдает обратно в землю, а испаряется жидкость уже полностью без полезных элементов. Вода в растениях почти всегда идет от корня к листьям.

Условия, необходимые для питания растений

Нельзя точно назвать все условия, которые нужны каждому отдельному виду на Земле. Все организмы адаптировались к разным условиям, поэтому они нуждаются только в том, к чему их адаптировала природа за долгие годы эволюции.


Этого нельзя сказать о культурах, которые были адаптированы для употребления человеком в пищу. Чтобы фрукты и овощи оставались вкусными и полезными, они постоянно нуждаются в помощи фермеров, подпитке удобрениями, своевременным поливом и уничтожении вредителей.

Такие культуры очень чувствительны к изменениям и постоянно нуждаются в помощи человека. Выведенные растения могут прижиться в условиях дикой природы, но их плоды будут не так вкусны, как те, за которыми постоянно ухаживают в фермерских хозяйствах.


Чтобы растение смогло прижиться в новых для себя условиях, оно должно получить все питательные элементы таким образом, каким живой организм привык получать их из дикой природы. Живущие в пустыне не смогут самостоятельно завершить свой жизненный цикл в условиях степи и лесостепи, а растения, прекрасно усвоившиеся в сложных условиях горной местности, очень быстро зачахнут в экваториальном климате или будут поглощены местной флорой и фауной.

К чему приводит недостаток питания растений

Недостаток питательных веществ не обязательно приведет к гибели организма. Очень часто растения могут выжить, попав в сложные для себя условия. Природой заложено, что некоторое время они могут адаптироваться и попытаться выжить. Способны пережить заморозки, холодную зиму или слишком жаркое лето.

Растения могут восстановиться, после длительного нахождения в нетипичной для себя среде. Если не смогут себя полностью обеспечить питательными элементами, то сначала они начнут чахнуть, утратят способности размножаться, а потом будут вытеснены другими видами, которые лучше адаптируются к изменившейся окружающей среде.

Ученые считают, что самым важным дефицитным элементом все же остается азот. Его недостаток наиболее часто приводит к гибели растений. Поэтому человек в первую очередь должен озаботиться подпиткой именно этим элементом.

Правильное питание растений играет важную роль в скорости роста и появления плодов. Все питательные вещества они получают из солнечного света при помощи фотосинтеза и из почвы. Вода играет немаловажную роль в транспортировке полезных элементов от корней к листьям. После этого она испаряется.

При дефиците питательных веществ организм умрет не сразу, но в будущем если он не получит важные элементы, то не сможет размножаться и погибнет.

Читайте также: