Половое размножение одноклеточных растений

Обновлено: 04.10.2024

Целостный организм состоит из дискретных единиц — клеток. Жизнь почти всех клеток короче жизни особи, поэтому суще­ствование каждой особи поддерживается размножением кле­ток. Каждый вид организмов также дискретен, т. е. состоит из отдельных особей. Каждая из них смертна. Существование ви­да поддерживается размножением особей.

Следовательно, размножение — необходимое условие сущест­вования вида и преемственности последовательных генераций внутри вида.

!. В основе классификации форм размножения эукариот лежит тип исходных клеток:

• при бесполом размножении организм производит потомство из соматических клеток, передавая дочерним организмам только собственные наследственные признаки в неизменяемом гене­тическом материале. Происходит простое копирование;

• при половом размножении между специализированными поло­выми клетками происходит обмен генетическим материалом. В этом случае дочерний организм получает генетический мате­риал от разных исходных особей.

Всем видам эукариот свойственны оба вида размножения. Бесполое размножение.

  • • митотическое деление;
  • • шизогония (множественное деление);
  • • почкование;
  • • спорообразование;
  • • вегетативное размножение;
  • • спорообразование.
  • • без оплодотворения;
  • • с оплодотворением.

Органоиды обычно распределяются равномерно. В ряде случаев обнаружено, что делению предшествует их удвоение. После де­ления дочерние особи растут и, достигнув величины материн­ского организма, переходят к новому делению. Шизогония, или множественное деление, — форма размножения, развившаяся из предыдущей. При шизогонии происходит мно­гократное деление ядра без цитокинеза, а затем и вся цито­плазма распределяется на частички, обособляющиеся вокруг ядра. Из одной клетки образуется много дочерних. Почкование заключается в том, что на материнской клетке первоначально образуется небольшой бугорок, содержащий ядро. Почка растет, достигает размеров материнской особи и затем отделяется от нее.

Спорообразование встречается у животных, относящихся к типу простейших, классу споровиков. Спора — одна из стадий жиз­ненного цикла, служащая для размножения, она состоит из клетки, покрытой оболочкой, защищающей от неблагоприят­ных условий внешней среды. Некоторые бактерии после поло­вого процесса способны образовывать споры.

Вопрос 41. Вегетативное (бесполое) размножение многоклеточных

1. Вегетативное размножение

3. Размножение с помощью спор

1. У многоклеточных растений одна из характерных форм беспо­лого размножения — вегетативное размножение. Для такого размножения могут служить отдельные части вегетативных ор­ганов. Так, осот, пырей и многие другие многолетние травы размножаются подземными участками стебля — корневищами.

В ряде случаев образуются специальные органы, служащие для вегетативного размножения. Это видоизмененные части стеб­ля — клубни картофеля, луковицы лука, чеснока.

При вегетативном размножении у многоклеточных животных новый организм образуется из группы клеток, отделяющейся от материнского организма. Вегетативное размножение встре­чается лишь у наиболее примитивных из многоклеточных жи­вотных — губок, кольчатых червей и др.

За счет размножения группы клеток на теле этих животных образуется выпячивание — почка. В почку входят клетки экто-и энтодермы. У гидры почка постепенно увеличивается, на ней формируются щупальца, и затем она отделяется от материн­ской особи.

Ресничные и кольчатые черви делятся перетяжками на не­сколько частей, з каждой из которых восстанавливаются не­достающие органы.

У некоторых кишечнополостных встречается размножение стробиляцией, когда полипоидный организм довольно интен­сивно растет и по достижении известных размеров начинает поперечными перетяжками делиться на дочерние особи. В это время полип напоминает стопку тарелок или блюдец. Образо­вавшиеся особи — медузы — отрываются и начинают самостоя­тельную жизнь.

2. Особая форма вегетативного размножения – полиэмбриония, когда эмбрион делится на несколько частей, каждая из кото­рых развивается в самостоятельный организм. Полиэмбриония распространена у ос, ведущих паразитический образ жизни в личиночном состоянии, среди млекопитающих она встречается у броненосца.

3. Размножение путем спорообразования связано с возникновени­ем специальных клеток – спор. Эта форма размножения харак­терна:

У нитчатых зеленых водорослей из некоторых клеток могут формироваться споры. Они получили название зооспор, так как снабжены ресничками или жгутиками и могут плавать в воде. У более высокоорганизованных растений споры образу­ются в специальных органах – спорангиях. Споры наземных растений неподвижны, очень мелки, содер­жат ядро, цитоплазму и покрыты плотной оболочкой, хорошо защищающей от неблагоприятных условий. Каждая такая клетка дает начало новому организму. Число об­разуемых растениями спор огромно. Благодаря мелким разме­рам споры легко разносятся ветром. Таким образом, размно­жение спорообразованием имеет ряд ценных приспособлений для расселения и поддержания существования видов растений, имеющих эту форму размножения.

У многих растений (мхи, папоротникообразные) размножение спорообразованием чередуется с половым размножением.

Вопрос 42. Половое размножение одноклеточных

1. Половое размножение у одноклеточных.

2. Конъюгация, гаметическая копуляция

3. Изогамия и анизогами

1. Кроме митотического деления, у одноклеточных обнаружен также половой процесс, который заключается обычно в слиянии двух половых клеток — гамет. Формы полового процесса у од­ноклеточных организмов можно объединить в две группы: конъюгацию, при которой специальные половые клетки не об­разуются, и гаметическую копуляцию, когда формируются по­ловые элементы и происходит их попарное слияние.

2. У некоторых видов бактерий существуют особи, которые мож­но назвать женскими (реципиентными) и мужскими (донорски­ми). Последние имеют цитоплазматический фактор пола F+.

Между такими особями периодически осуществляется половой процесс, называемый конъюгацией.

У бактерий (гаплоидов) конъюгаты после синтеза ДНК обра­зуют между собой протоплазматический мостик, через который часть ДНК переходит из донорской клетки в реципиентную, что приводит к комбинативной изменчивости вида.

У инфузорий существует своеобразная форма конъюгации. Инфузории — животные из типа простейших. Их характерной чертой является наличие двух ядер:

При конъюгации инфузории сближаются попарно, между ни­ми образуется протоплазматический мостик. Одновременно в ядерном аппарате каждого из партнеров совершаются сложные процессы: макронуклеус растворяется, а микронуклеус делится без предварительного удвоения хромосом (путем мейоза), в ре­зультате чего формируется стационарное и мигрирующее ядра. Каждое из них содержит гаплоидный набор хромосом. Мигри­рующее ядро переходит в цитоплазму партнера, где оба ядра (стационарное и мигрирующее) сливаются, образуя так назы­ваемый синкарион, содержащий диплоидный набор хромосом. После ряда сложных перестроек из синкариона формируются обычные макро- и микронуклеусы. После конъюгации инфу­зории расходятся. Каждая из них сохраняет самостоятельность, но благодаря обмену кариоплазмой наследственная информация каждой особи изменяется, что (как и в других случаях полового процесса) может привести к появлению новых комбинаций свойств и признаков.

Гаметической копуляцией называется половой процесс у одно­клеточных организмов, при котором две особи приобретают по­ловые различия, т. е. превращаются в гаметы и полностью сли­ваются, образуя зиготу.

3. В процессе эволюции степень различия гамет нарастает. На первом этапе полового размножения у гамет еще не наблюда­ется морфологической дифференцировки, т. е. имеет место изога­мия. Примером может служить размножение раковинной кор­неножки полистолиллы. У этих одноклеточных животных ядро делится путем мейоза, три гаплоидных ядра лизируются, а клетка, приобретая пару жгутиков, становится подвижной изо-гаметой.

Дальнейшее усложнение процесса связано с дифференцировкой гамет на крупные и мелкие клетки, т. е. появлением анизо­гамии. Наиболее примитивная форма ее существует у некото­рых колониальных жгутиконосцев. У Pandorina morum образу­ются как большие, так и малые гаметы, причем и те и другие подвижны. Более того, сливаться попарно могут не только большая гамета с малой, но и малая с малой, однако большая гамета с большой никогда не сливаются. Следовательно, у пандорины наряду с появлением анизогамии еще сохраняется изогамия.

У другого колониального жгутиконосца – Eudorina elegans и хламидомонад макро- и микрогаметы еще подвижны, но сли­ваются лишь разные гаметы, т. е. проявляется исключительно анизогамия. Наконец, у вольвокса большая гамета становится неподвижной, она во много раз крупнее мелких подвижных гамет.

Такая форма анизогамии, когда гаметы резко различны, полу­чила название оогамии. У многоклеточных животных при по­ловом размножении имеет место лишь оогамия.

Вопрос 43. Половое размножение многоклеточных. Строение половых клеток (гамет)

1. Гаметы у многоклеточных

1. Гаметы представляют собой высокодифференцированные по­ловые клетки. В процессе эволюции они приобрели приспо­собления для выполнения специфических функций. Формиро­ванию гамет у многоклеточных предшествует особая форма де­ления клеток — мейоз. В результате мейоза в половых клетках образуется не диплоидный, как в соматических клетках, а гап­лоидный набор хромосом. Развитие гамет у многоклеточных животных происходит в половых железах – гонадах. Различают два типа половых клеток:

Ядра как мужских, так и женских гамет в равной мере содер­жат наследственную информацию, необходимую для развития организма. Но другие функции яйцеклетки и сперматозоида различны, поэтому по строению они резко отличаются друг от друга.

Сперматозоиды развиваются в семенниках, яйцеклетки — в яич­никах. Семенниками обладают особи мужского пола (самцы), яичниками — женские особи (самки).

2. Если мужские и женские клетки развиваются в одной особи, та­кой организм называется гермафродитом. Гермафродитизм свойствен многим животным, стоящим на сравнительно низких ступенях эволюции органического мира:

• плоским и кольчатым червям;

• как патологическое состояние в других группах животных. При естественном гермафродитизме мужские и женские поло­вые железы могут функционировать одновременно на протяже­нии всей жизни данной особи. В таких случаях организмы, как правило, имеют ряд приспособлений, препятствующих само­оплодотворению.

У моллюсков половая железа периодически продуцирует то яй­цеклетки, то сперматозоиды. Это зависит как от возраста осо­би, так и от условий существования. Например, у устриц это может быть обусловлено преобладанием белкового или угле­водного питания.

3. Яйцеклетки неподвижны, имеют шаровидную или слегка вы­тянутую форму. Они содержат все типичные клеточные орга­ноиды, но строение их отличается от такового у других клеток, так как приспособлено для реализации возможности развития целого организма. Размеры яйцеклетки значительно превыша­ют размеры соматических клеток. Внутриклеточная структура цитоплазмы в яйцеклетках специфична для каждого вида жи­вотных, чем обеспечиваются видовые, а нередко и индивидуальные, особенности развития.

В яйцеклетках содержится ряд веществ, необходимых для раз­вития зародыша. К их числу относится питательный матери­ал — желток. У некоторых видов животных накапливается столько желтка в яйцеклетках, что они могут быть видны не­вооруженным глазом.

Яйцеклетки покрыты оболочками, которые по происхождению бывают:

Первичная оболочка образуется из поверхностного слоя еще не­зрелой половой клетки — овоцита. Под электронным микроско­пом видно, что она пронизана микроворсинками и отростками фолликулярных клеток, прилегающих к поверхности яйцеклет­ки. По этим структурам в овоцит поступают питательные ве­щества. После завершения периода роста они стягиваются, а пористость первичной оболочки исчезает.

Вторичная оболочка состоит из фолликулярных клеток или вы­деляемых ими секретов.

Третичными оболочками являются, например, белковая, подскорлуповая и скорлуповая оболочки яиц птиц. Яйцеклетки не у всех видов животных обладают всеми тремя типами оболо­чек, иногда может встречаться всего одна или две из них. Яйцеклетки млекопитающих третичной оболочки не имеют.

4. Сперматозоиды обладают способностью к движению, чем в из­вестной мере обеспечивается возможность встречи с яйцеклет­кой. По морфологическому строению и малому количеству ци­топлазмы сперматозоиды резко отличаются от всех других кле­ток, но все основные органоиды в них имеются.

Типичный сперматозоид имеет:

На переднем конце головки расположена акросома, состоящая из видоизмененного комплекса Гольджи. Основную массу го­ловки занимает ядро. В шейке находятся центриоль и спи­ральная нить, образованная митохондриями. При исследова­нии сперматозоидов обнаружено, что протоплазма головки сперматозоида имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоидов к неблагоприятным влияниям внешней среды. Размеры сперма­тозоидов всегда микроскопические.

Для некоторых животных характерны атипичные сперматозои­ды, строение которых весьма разнообразно. Скажем, спермато­зоиды ракообразных обладают выростами в виде лучей.

Половой процесс у одноклеточных можно объединить в две группы: 1 - коньюгация - в этом случае специализированные половые клетки не образуются; 2 - гаметическая копуляция - в этом случае формируются половые элементы, и происходит их попарно слияние.

Коньюгация - своеобразная форма полового процесса у инфузорий, характерной чертой является наличие двух ядер: макронуклеуса - большого ядра и микронуклеуса - маленького. При половом процессе - при коньюгации - инфузории сближаются попарно, между ними образуется мостик из протоплазмы. В это время в ядерном аппарате партнеров происходят сложные процессы - макронуклеус растворяется, а микронуклеус мейотически делится на стационарное и мигрирующее ядра, содержащие гаплоидный набор хромосом. Мигрирующее ядро переходит в цитоплазму партнера, в котором сливается с его стационарным ядром, образуя синкарион. Он содержит диплоидный набор хромосом. Из синкариона путем сложных перестроек формируются макро- и микронуклеусы.

После коньюгации инфузории расходятся, но благодаря обмену наследственной информацией оба партнера изменяются, что приводит к появлению новых комбинаций свойств и признаков.

Гаметическая копуляция -половой процесс у одноклеточных, при котором обе особи приобретают половые различия, т. е. превращаются в гаметы, полностью сливаются, образуя зиготу. В процессе эволюции степень различия гамет нарастает.

Хологамия - наблюдается у некоторых одноклеточных водорослей, не имеющих твердой оболочки. У них сливаются не специализированные гаметы, а целые одноклеточные организмы, внешне не отличающиеся друг от друга.

Изогамия - сливаются гаметы, одинаковые морфологически. Встречается у водорослей и немногих грибов. Гаметы свободно перемещаются в воде с помощью жгутиков.

Гетерогамия - сливаются подвижные гаметы разных размеров. Встречается у некоторых растений и грибов.

Оогамия - у многих низших и всех высших растений. Женская гамета, лишенная жгутиков, неподвижна, имеет значительные размеры и большой запас питательных веществ, ее называют яйцеклеткой. Мужская гамета маленькая, подвижная, имеет жгутик и называется сперматозоидом. Однако у большинства семенных растений в процессе эволюции мужские гаметы утратили жгутики, они носят специальные названия – спермии. Гаметангии, в которых образуются яйцеклетки, называются оогонии, а у высших – архегониями. Мужские гаметангии у всех растений называются антеридиями.

Биологическое значение оогамии:

Более крупные размеры яйцеклетки позволяют ей иметь необходимый запас питательных веществ для дальнейшего развития.

Неподвижность женской гаметы создала предпосылки для внутреннего оплодотворения и лучшей защиты зиготы в наземных условиях, что и определило наибольшее распространение оогамии у высших растений.

Большое число мужских гамет значительно повышает гарантию полового процесса и возможность передвижения их в небольших количествах воды.

Для многоклеточных животных при половом размножении характерна только оогамия.

Половое размножение многоклеточных.

Многоклеточные размножаются гаметами, которые у мужских особей развиваются в семенниках и называются сперматозоиды. У женских особей развиваются в яичниках и называются яйцеклетками. В целом развитие гамет у многоклеточных происходит в половых железах - гонадах.

Оплодотворение- это слияние двух гамет, в результате чего образуется зигота - начальная стадия развития нового организма. Оплодотворение включает две стадии: 1) активация яйца; 2)синкариогамия, т. е. образование диплоидного ядра зиготы в результате слияния гаплоидных ядер половых клеток, несущих генетическую информацию двух родительских организмов.

Гермафродитизм - это наличие женских и мужских гамет в одной особи. Такой организм называется гермафродитом. Гермафродитизм характерен для низших ступеней эволюции животного мира. В норме встречается у моллюсков, плоских и кольчатых червей. Как патологическое состояние может встречаться в других группах животных. У червей - гермафродитов есть приспособление, препятствующее самооплодотворению. У устриц организм в зависимости от преобладания белкового или углеводного питания продуцирует то яйцеклетки, то сперматозоиды.

Моноспермия и полиспермия.

В яйцеклетку проникает, как правило, один сперматозоид (моноспермия), однако у насекомых, рыб, птиц и ряда, млекопитающих в цитоплазму яйцеклетки попадает сразу несколько сперматозоидов, это явление называется полиспермией. Биологическая роль полиспермии не ясна. Четко установлено, что с ядром яйцеклетки сливается в норме ядро только одного сперматозоида. Другие сперматозоиды подвергаются разрушению. В передаче наследственной информации участвует только один спермий (Двойное оплодотворение у покрытосеменных растений рассказать).

Партеногенез

Особую форму полового размножения представляют собой партеногенез (греч. parthenos - девственница и genos - рождение), т.е. развитие организма из неоплодотворенных яйцевых клеток. Это форма размножения была обнаружена в середине 18 века швейцарским натуралистом Ш.Бонне (1720-1793).

В настоящее время известен не только естественный, но и искусственный партеногенез.

Естественныйпартеногенез существует у ряда растений, червей, насекомых, ракообразных.

У некоторых животных любое яйцо способно развиваться как без оплодотворения, так и после него. Это так называемый факультативный партеногенез. Он встречается у пчел, муравьев, коловраток, у которых из оплодотворенных яиц развиваются самки, а из неоплодотворенных - самцы. У этих животных партеногенез возник как приспособление для регулирования численного соотношения полов.

При облигатном (лат. obligatio - обязательство), т.е. обязательном, партеногенезе яйца развиваются без оплодотворения. Этот вид партеногенеза известен, например, у кавказской скальной ящерицы. У многих видов партеногенез носит циклический характер. У тлей, дафний, коловраток в летнее время существуют лишь самки, размножающиеся партеногенетически, а осенью партеногенез сменяется размножением с оплодотворением (это явление получило название гетерогении). Облигатный и циклический партеногенез исторически развивался у тех видов животных, которые погибали в большом количестве (тли, дафнии) или у которых была затруднена встреча особей различного пола (скальные ящерицы). Вид кавказской скальной ящерицы сохранился лишь благодаря появлению партеногенеза, так как встреча двух особей, обитающих на скалах, отделенных глубокими ущельями, затруднена. в настоящее время все особи этого вида представлены лишь самками, размножающимися партеногенетически.

Установлено существование партеногенеза у птиц. У одной из пород индеек многие яйца развиваются партеногенетически; из них появляются только самцы.

В ядрах соматических клеток особей, развившихся из неоплодотворенных яиц, в ряде случаев имеется гаплоидный набор хромосом (таковы самцы коловраток), в других - диплоидный (тли, дафнии). Восстановление диплоидного набора хромосом достигается различными способами. Иногда одно из редукционных телец возвращается в яйцо или даже не выделяется, а его ядро сливается с ядром яйца; это имеет место у пресноводного рачка артемии. Иногда при овогенезе второго мейотического деления не происходит, в результате чего восстанавливается диплоидный набор хромосом (тли, дафнии).

Искусственныйпартеногенез обнаружен в 1886 году А.А. Тихомировым (1850-1931), он добился развития не оплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или обрабатывая в течение нескольких секунд концентрированной серной кислотой.

В конце 19 и в начале 20 века многочисленными исследователями была доказана возможность искусственного партеногенеза у иглокожих, червей, моллюсков и других животных. Классические работы в этой области выполнены американским ученым Ж.Лебом (1850-1924).

Тот факт, что дробление яйца начинается только после его оплодотворения, получил объяснение благодаря опытам с искусственным партеногенезом, которые показали, что для развития яйца необходима активация. Она является следствием тех сдвигов в обмене веществ, которые сопутствуют оплодотворению. В естественных условиях эти сдвиги происходят после проникновения сперматозоида в яйцеклетку, но в эксперименте могут быть вызваны разнообразными воздействиями: химическими, механическими, термическими и др. Все они, так же как проникновение сперматозоида, влекут за собой обратимые повреждения протоплазмы яйца, что изменяет метаболизм и оказывает активирующие воздействие.

Оказалось, что сравнительно легко поддаются активации яйца млекопитающих. Извлеченные из тела неоплодотворенные яйца кролика были активированы воздействием пониженной температуры. После пересадки в матку другой крольчихи они развились в нормальных крольчат. Предпринимались опыты по активированию неоплодотворенного яйца человека; но удалось получить только ранние стадии развития зародыша, затем он погибал. Б.Л.Астауров (1904-1974) в 1940-1960 гг. разработал промышленный способ получения партеногенетического потомства у тутового шелкопряда.

Андрогенез(греч.andros - мужчина и genesis - рождение). При андрогенезе развитие яйца происходит лишь с мужским ядерным материалом, а материнское ядро устраняется, от яйца остается лишь цитоплазма.

Ядро яйцеклетки может быть убито, например, ионизирующим излучением. Но если в яйцеклетку с убитым ядром проникает лишь один сперматозоид, несущий гаплоидный набор хромосом, то "зигота", остающаяся гаплоидной, оказывается, как правило, нежизнеспособной. Если же при полиспермии в яйцо проникает несколько сперматозоидов, то благодаря слиянию двух мужских ядер восстанавливается диплоидный набор хромосом и "зигота" развивается. Андрогенетические особи получены у тутового шелкопряда и некоторых ос; несмотря на наличие у них материнской цитоплазмы, все они несут лишь отцовские признаки. Феномен андрогенеза используется для изучения роли ядра и цитоплазмы в явлениях наследственности, для управления полом, например у тутового шелкопряда, при необходимости получения только особей мужского пола.

Гиногенез(греч.gyne - женщина) - своеобразная форма размножения, при которой ядро сперматозоида не сливается с ядром яйцеклетки; последующее развитие идет за счет наследственной информации только материнского организма. Гиногенез встречается у некоторых видов рыб, например у серебристого карася, обитающего на Дальнем Востоке. Яйца этой рыбы лишь активируются сперматозоидами, а слияния ядер (синкариогамия) после оплодотворения не происходит. При отсутствии самцов своего вида яйца серебристого карася активируются (т.е. побуждаются к развитию) сперматозоидами многих других видов рыб. При гиногенезе у рыб потомство состоит из одних самок. У тутового шелкопряда, некоторых рыб и хвостатых амфибий удалось экспериментально вызвать гиногенез действием различных повреждающих факторов (радиевые и рентгеновы лучи, химические агенты).

Чередование поколений

Диплоидная зигота, из которой посредством митотического деления формируется новый организм, образуется в результате полового процесса. Следовательно, сливающиеся гаметы должны быть гаплоидными, а значит, в организме время от времени (перед половым процессом) должно уменьшаться число хромосом в формирующихся гаметах, что предотвращает прогрессирующее удвоение числа хромосом в ряду последовательных поколений. Таким механизмом является частный случай деления клеточного ядра – мейоз. Таким образом, оплодотворение и мейоз – это две стороны одного жизненного процесса. Образование в диплоидном организме гамет называется чередованием ядерных фаз.

Многие растения характеризуются чередованием не только гапло- и диплофаз, но и более сложным процессом смены поколений гапло- и диплобионтов. В этом случае каждое последующее поколение отличается от предыдущего не только числом хромосом, но нередко и внешним видом, размерами и способом размножения. Эта закономерная смена в жизненном цикле организмов генераций и называется чередованием поколений (рассказать про папоротник). Спорофит папоротника – многолетнее растение с хорошо развитыми вегетативными органами, приспособленное к наземной жизни, а гаметофит – маленькое растение, живущее недолго и осуществляющее половой процесс в приземном слое воды (без воды оплодотворение не может произойти).

У большинства видов, размножающихся бесполым путем, обычно встречается чередование поколений. Вслед за одним или несколькими поколениями, возникшими бесполым путем, наступает половое размножение. У некоторых видов чередование поколений происходит регулярно, у других - через определенные периоды. В последнем случае это явление находится в тесной зависимости от условий существования.

Различают первичную и вторичную смену поколений. Первичная смена поколений встречается у организмов, которые в процессе эволюции приобрели способность к половому размножению, но сохранили и более низшую форму - бесполое размножение. Она встречается у ряда водорослей, всех высших растений и простейших, относящихся к классу споровиков (Sporozoa). Первичная смена поколений заключается в правильном чередовании поколений, размножающихся половым путем с бесполым размножением.

Вторичная смена поколений сводится к чередованию типичного полового размножения с партеногенезом или со вторично приобретенным бесполым размножением. У животных встречается как первичная, так и вторичная смена поколений.

Первичную смену поколений мы рассмотрим на примере жизненного цикла малярийного плазмодия (Plasmodium vivax) - возбудителя трехдневной малярии. Часть жизненного цикла малярийный плазмодий проходит в теле комара рода анофелес, другую часть - в теле человека. В тех стадиях, которые протекают в теле человека, плазмодий размножается бесполым путем (шизогония). После нескольких поколений размножения шизогонией у плазмодия образуются половые особи (гаметоциты). Созревание гаметоцитов и половое размножение плазмодия происходит в теле комара.

Вторичная смена поколений встречается в форме метагенеза и гетерогонии.

Метагенезомназывается чередование полового размножения с вегетативным, гетерогонией- чередование типичного полового размножения с партеногенезом. Метагенез встречается у некоторых морских кишечно-полостных и выражается в правильном чередовании полипоидного и медузоидного поколений. Полипоидное поколение размножается стробиляцией, медузоидное - половым путем, из оплодотворенных яиц развиваются полипы.

Гетерогония. Эта смена поколений свойственна многим видам животных. В виде правильного чередования типичного полового размножения и партеногенеза она встречается у всех представителей класса сосальщиков (Trematodes) из типа плоских червей (Plathelminthes).

Гетерогония нашла широкое распространение и в типе членистоногих (Arthropoda). Переход от одной формы размножения к другой у них зависит от внешних условий - сезона года, температуры, питания. Так, у дафний в летние месяцы размножение партеногенетическое, а осенью с оплодотворением. В специальных опытах на этих ракообразных показано, что смена форм размножения обусловлена понижением температуры. Так, при 24 градусах они размножаются только партеногенетически, при 16 градусах отмечается появление самцов и оплодотворенных яиц, при 8 градусах количество самцов еще больше возрастает. В пересыхающих водоемах дафнии также переходят к размножению с оплодотворением.

Метагенез и гетерогония развились из форм типичного полового размножения. Появление их связано с возможностью более быстрого получения многих особей путем бесполого размножения и партеногенеза. Однако полностью половое размножение обычно не утрачивается в связи с его важной биологической ролью.

4. Половой диморфизм

Под половым диморфизмом понимаются различия между самцами и самками в строении тела, окраске, инстинктах и ряде других признаков. Половой диморфизм проявляется уже на ранних ступенях эволюции. У круглых червей самки крупнее самцов. У многих из них, например, у аскариды, самец имеет спикулы и загнутый в брюшную стенку задний конец тела.

У представителей всех классов членистоногих половой диморфизм ярко выражен. Для большинства представителей этого типа характерно то, что самки крупнее самцов. Самцы и самки бабочек, как правило, различно окрашены. Самцы у жуков (например, жук-носорог, жук-олень и др.) обладают специальными органами.

Хорошо выражен половой диморфизм у многих видов позвоночных. У некоторых видов рыб он проявляется в величине, особенностях строения тела и окраске. Из земноводных он ярко выражен у тритонов. Самцы этих животных в брачный период имеют яркую окраску брюха и зубчатый гребень на спине.

У большинства видов птиц самцы существенно отличаются от самок, особенно в брачный период. Так, самец болотного кулика турухтана в обычном оперении мало отличается от самки, но весной в его оперении появляются украшения, резко отличающие его от самки и характеризующиеся удивительно большим разнообразием, как формы, так и окраски.

5. Биологическая роль полового размножения

Еще К.А.Тимирязев (1843-1920) и А.Вейсман (1834-1914) отмечали, что половое размножение дает неиссякаемый источник изменчивости, обусловливающий широкие возможности приспособления организмов к среде обитания. В этом преимущество полового размножения перед вегетативным и спорообразованием, при которых организм имеет только одного родителя и почти целиком повторяет его особенности. При половом размножении благодаря рекомбинации наследственных свойств обоих родителей появляются разнообразные потомки. Могут отмечаться и неудачные комбинации наследственных признаков: эти организмы гибнут в результате естественного отбора. С другой стороны, наблюдаются и такие комбинации, которые делают организм хорошо приспособленным к условиям существования. Кроме того, с каждым поколением выживают организмы, имеющие наиболее благоприятные комбинации наследственных свойств, что ведет к прогрессивной эволюции.

Благодаря этой биологической роли половое размножение нашло широкое распространение и занимает доминирующее положение в природе, несмотря на определенные сложности его осуществления. Для полого размножения у большинства видов организмов требуется встреча двух особей разного пола. Даже у истинных гермафродитов обычно существует перекрестное оплодотворение. Встреча двух особей подчас связана с трудностями, поэтому в процессе естественного отбора появились сложные приспособления в строении организмов, развились эндокринные и рефлекторные механизмы, направленные в конечном итоге на обеспечение встречи гамет.

Необходимо кратко рассмотреть особенности полового процесса у одноклеточных организмов, так как в последнее время именно на этих объектах ведутся очень важные генетические исследования.

У одноклеточных организмов имеется как бесполое, так и половое размножение, а также чередование обоих типов размножения. Половое размножение у одноклеточных так же, как и у многоклеточных организмов, сопровождается мейозом и оплодотворением. Половой процесс для этих форм является таким же общим процессом, как и бесполое размножение. Эти способы размножения могут осуществляться у одних и тех же форм, закономерно чередуясь в жизненном цикле с преобладанием одного или другого. Половое и бесполое размножения являются лишь разными способами приспособления организмов данного вида к условиям существования и обеспечения материальной непрерывности между поколениями. В зависимости от биологии размножения механизмы оплодотворения и мейоза могут упрощаться или усложняться.

У простейших наблюдается большое многообразие форм полового процесса. Оплодотворение у них осуществляется в основном двумя способами: посредством копуляции и конъюгации. При копуляции две особи — клетки сливаются в одну и образуют зиготу. Так происходит оплодотворение, например, у водоросли хламидомонады. Жизненный цикл ее состоит в следующем. Две подвижные, снабженные жгутиками гаплоидные гаметы сливаются, образуя зиготу. Диплоидное ядро зиготы претерпевает мейотическое деление и дает начало четырем гаплоидным клеткам, которые образуют гаплоидные клоны. В некоторых условиях вегетативные клетки особей гаплоидного клона приобретают подвижность и функционируют как гаметы.

Инфузории имеют вегетативное ядро — макронуклеус; оно представляет собой полиплоидное ядро, содержащее большое количество наборов хромосом; с началом конъюгации макронуклеус распадается. Генеративным ядром является микронуклеус. У разных видов может быть один или несколько микронуклеусов. Число хромосом в диплоидном наборе также сильно варьирует. Рассмотрим поведение микронуклеуса при конъюгации у парамеций, в частности Paramecium aurelia, которая обладает двумя микронуклеусами.

Половой процесс у Paramecium aurelia

Затем оба конъюганта расходятся, и в каждом из них восстанавливается ядерный аппарат. Синкарион претерпевает два последовательных митотических деления. Из образовавшихся в клетке четырех ядер два в дальнейшем дифференцируются в макронуклеусы. В них происходит репродукция хромосом посредством эндомитозов, в результате чего увеличивается их плоидность. Два Других ядра дают начало диплоидным микронуклеусам. При первом делении тела конъюгантов делятся лишь микронуклеусы. Образующиеся при этом клетки получают тем самым по одному макронуклеусу и по два микронуклеуса.

Обычно при конъюгации происходит обмен лишь ядрами, а цитоплазма практически не смешивается. В некоторых условиях расхождение конъюгантов после миграции пронуклеусов задерживается. В этих случаях может происходить обмен и цитоплазматическим материалом.

Итак, очевидно, что спаривание и обмен гаплоидными пронуклеусами у парамеций есть не что иное, как половой процесс, соответствующий перекрестному опылению у растений и скрещиванию у животных.

Кроме описанного явления, у инфузорий известен и другой процесс, называемый автогамией, — слияние генеративных ядер, принадлежащих одной и той же особи.

Автогамия у инфузории

В таком случае описанные преобразования макро- и микронуклеусов протекают внутри одной особи без конъюгации. Образуются два гаплоидных пронуклеуса, которые затем сливаются внутри одной клетки. Автогамия у инфузорий в какой-то мере аналогична самоопылению и самооплодотворению у многоклеточных.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Половое размножение характеризуется наличием полового процесса, при котором происходит слияние гаплоидных половых клеток (гамет), образовавшихся в результате мейоза.

Следствием этого является неповторимость каждой особи в любой популяции, размножающейся половым путем.

Некоторые одноклеточные и многоклеточные организмы могут размножаться бесполым путем. Другие организмы, чтобы не погибнуть, периодически осуществляют половой процесс.

4.1.2.1. Половой процесс у одноклеточных

Разнообразны формы полового процесса у одноклеточных. Он может осуществляться по типу конъюгации, при которой не образуются специальные половые клетки, и по типу копуляции, когда особи приобретают половые различия, т.е. превращаются в гаметы и полностью сливаются, образуя зиготу.

Конъюгация происходит у инфузорий при неблагоприятных условиях. Инфузории имеют два ядра: макронуклеус и микронуклеус (рис. 79). Макронуклеус отвечает за обменные процессы, микронуклеус принимает участие в половом процессе. При конъюгации две инфузории сближаются, между ними образуется цитоплазматический мостик. Макронуклеус растворяется, микронуклеус делится мейозом. В результате образуются четыре гаплоидных ядра, три из которых растворяются. Оставшееся ядро делится митозом. Образуются гаплоидные стационарное и мигрирующее ядра. Происходит обмен мигрирующими ядрами. После обмена в каждой из инфузорий мигрирующее и стационарное ядра сливаются, образуя синкарион (греч. syn - вместе, karyon - ядро), содержащий диплоидный набор хромосом. После конъюгации инфузории расходятся. Из синкариона формируются макро- и микронуклеусы. В результате конъюгации произошел обмен наследственной информацией, вследствие чего возникли новые комбинации генов, повышающие жизнеспособность особей.


Рис. 79. Конъюгация инфузорий, схема (по Греллю с изменениями). А - начало конъюгации, в левой особи ядерный аппарат без изменений, в правой микронуклеус вздут. Б - первое мейотическое деление микронуклеуса, в левой особи метафаза, в правой - анафаза, начало распада макронуклеуса. В - в левом конъюганте окончание первого деления микронуклеуса, в правом - начало второго деления микронуклеуса, распад макронуклеуса. Г - второе деление микронуклеуса. Д - один микронуклеус в каждой особи приступает к третьему делению, по 3 микронуклеуса в каждом конъюганте дегенерируют. Е - обмен мигрирующими микронуклеусами. Ж - слияние пронуклеусов, образование синкариона. З - эксконъюгант, деление синкариона. И - эксконъюгант, начало превращения одного из продуктов деления синкариона в макронуклеус. К - эксконъюгант, развитие ядерного аппарата закончено, фрагменты старого макронуклеуса резорбировались в цитоплазме.

Копуляция - половой процесс у одноклеточных организмов, при котором полностью сливаются копулирующие особи, выполняющие функции половых клеток (гамет).

Копуляция может быть изогамной (греч. isos - равный, gsmos - брак), если особи, участвующие в копуляции, имеют одинаковые малые размеры, обе подвижны. Так размножается представитель колониальных жгутиковых - политома (рис. 80).


Рис. 80. Жгутиконосец Polytoma, половой процесс (по Догелю): 1 - вегетативные особи, 2 - гаметы, 3-8 - последовательные стадии копуляции гамет, 9, 10 - зигота.

В анизогамной копуляции (греч. anisos - неравный, gamos - брак) участвуют две особи, одна из которых крупная и подвижная, а вторая мелкая и подвижная. Например, анизогамная копуляция характерна для колониальных жгутиковых - пандорины. У пандорины могут сливаться при анизогамной копуляции большая и малая гаметы, или малая с малой, как при изогамной копуляции (рис. 81).


Рис. 81. Pandoria morum, бесполое размножение и половой процесс (по Прингсгейму). А - плавающая колония. Б - бесполое размножение, каждая клетка колонии путем ряда палинтомических делений дает начало новой колонии. В - образование гамет, покидающих колонию. Г - Д - копуляция гамет. Е - молодая зигота. Ж - зигота. 3 - выход зиготы из клеточной оболочки. И - плавающая зооспора - результат развития зиготы. К - развившаяся из зиготы молодая колония.

У колонии вольвокс из класса Жгутиковых происходит оргамная копуляция, при которой большая гамета неподвижна, а малая подвижна (рис. 82).


Рис. 82. Вольвокс. А - Voluox globator - участок колонии с половыми клетками (по Кону). Б - Voluox aureus - колония в процессе бесполого размножения, внутри материнской колонии дочерние колонии (по Клейну). 1 - макрогамета, 2 - микрогаметы, 3 - дочерние колонии.

У многих животных при половом размножении имеет место оогамная копуляция.

Биологическая библиотека - материалы для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Читайте также: