Посадка мк 2 размеры

Обновлено: 05.10.2024

Кроме сверления глухих и сквозных отверстий доступны следующие операции:

  • финишная доводка для улучшения шероховатости (зенкерование и развертывание);
  • рассверливание на больший диаметр, работа ступенчатыми сверлами;
  • зенкование (съем фасок зенковкой);
  • нарезание внутренней резьбы метчиком;
  • фрезерование торцевыми и концевыми фрезами (доступно у тяжелых редукторных и радиально сверлильных станков, таких как Jet GHD-50PF и GRD-460);
  • шлифование поверхностей;
  • вырезание у глухого отверстия плоского дна (после сверла оно конусное) под гайки и шляпки болтов с помощью цилиндрических пазовых сверл;
  • трепанирование для вырезки дисков из листов (кольцевое сверление коронками);
  • раскатка отверстий роликовыми и шариковыми оправками для наклепывания внутренней поверхности с целью повышения их износоустойчивости. Этот процесс сопровождается небольшим увеличением диаметра отверстий.

По каким параметрам ведется выбор?

При подборе сверлильного станка в первую очередь учитываются:

  • наибольший диаметр сверления и растачивания в стали и чугуне – главная характеристика, зависящая от мощности;
  • габариты стола и расстояние шпиндель-основание – определяют предельные размеры заготовки. У некоторых станков верхняя часть основания тоже имеет Т-образные пазы, что позволяет крепить еще более высокие заготовки, отодвинув в сторону стол;
  • возможность наклона рабочего стола в горизонтальной плоскости – для создания наклонных отверстий;
  • количество скоростей (или наличие плавного изменения частоты вращения, доступное у некоторых моделей) – чем их больше, тем точнее можно подобрать режим для любого материала, диаметра сверления и подачи;
  • возможность фрезерования и резьбонарезания;
  • автоматическая подача пиноли – для качественного быстрого равномерного сверления при минимальных усилиях со стороны оператора

У каких моделей можно плавно настроить частоту вращения шпинделя?

Какие сверлильные станки кроме сверления и нарезки резьбы могут вести фрезерование?

Обработка металлических заготовок торцевыми (диаметром до 100 мм) и концевыми (до 25 мм) фрезами в доступна на станках Jet GHD-50PF 50000438T и GHD-46. Это возможно за счет мощного двигателя с зубчатой передачей редуктора и встроенной системы подвода СОЖ для охлаждения фрез.
Для настольной работы с миниатюрными деталями подойдет Корвет 411, позволяющий выполнять пазы концевыми фрезами, диаметром до 6 мм, зажатыми в цанговом патроне. Оснащение этого станка крестовым угловым столом и делительной головкой позволяет перемещать заготовку в горизонтальной плоскости и вращать ее на заданный угол. Это дает возможность использовать его в качестве настольной вертикально-фрезерной машины.

На каких моделях для крупносерийного производства можно максимально быстро делать резьбу в малогабаритных хрупких заготовках с тонкими стенками?

При нарезке на обычном редукторном сверлильном станке резьбы большой длины, например в трубах, при обратном движении метчика происходит упругое вытягивание детали. Это повышает требования к зажимным приспособлениям и ограничивает возможность работы с малопрочными деталями. Кроме того, при подводе метчика оператору требуется выполнять несколько заходных витков резьбы вручную.
Этих недостатков лишены станки с автоматическим резьбонарезанием Jet KST-223A и KST-231A. У них движение подачи и отвода шпинделя ведется машинным приводом. Метчик врезается в заготовку без участия оператора, а при отводе инструмента нет осевого растяжения детали за счет выхода режущих кромок четко по нарезанным выемкам резьбы. Это ускоряет процесс, снимает необходимость сильного зажима деталей и позволяет обрабатывать тонкостенные трубы без угрозы их деформации.

Можно ли сэкономить, используя вместо вертикально-сверлильного станка дрель, зажатую в стойке вертикального сверления? Если нет, то какую посоветуете настольную модель в пределах 4-5 тыс. руб. для гаражных работ?

Дрель, зажатая в вертикальную стойку (такую, как Stayer 32240), не обеспечит достаточной точности для сверления отверстий. Это связано с неизбежным люфтом в месте зажима шейки шпинделя дрели. Кроме того, из-за малого веса такого приспособления все вибрации при работе будут в большей степени влиять на увод сверла, чем в случае применения массивного специализированного станка.
Также учитывайте, что коллекторный двигатель электродрели не рассчитан на частую долговременную нагрузку. Даже с профессиональными моделями придется менять износившиеся графитовые щетки токосъемников. У вертикально-сверлильных станков двигатель асинхронный, более долговечный и тихий в работе, не требующий технического обслуживания. Поэтому в Вашем случае гораздо целесообразнее и дешевле приобрести легкий сверлильный станок, например Jet JDP-8L, Энкор Корвет или Калибр серии СС.

Существуют ли станки с автоматическим включением/выключением шпинделя при часто повторяющихся однотипных операциях сверления и нарезания резьбы?

Такие модели есть – Jet KST-340 и KST-560. У них, в отличие от обычных вертикально-сверлильных станков, есть возможность ведения непрерывного сверления или нарезания резьбы без ручного включения/выключения шпинделя на каждом цикле. То есть при отведении инструмента в крайнее верхнее положение он выключается сам, благодаря чему можно безопасно снять готовую деталь и поставить новую заготовку. Далее для продолжения работы достаточно начать крутить маховик ручной подачи. За счет встроенного кулачкового концевика шпиндель включится автоматически. Это значительно сэкономит вспомогательное время выполнения операции.

Подскажите недорогой легкий радиально-сверлильный станок для работы в мастерской. Желательна возможность установки больших деталей (около метра высотой).

В ряд нетяжелых и недорогих моделей, весом до 40 – 60 кг, входят следующие: Optimum RB8S, Jet JDR-34F, Proma R-8616F/400, Optimum RB6T, Энкор Корвет-48 и Jet JDR-34. Первые три позволяют работать с большими заготовками (до 1200 мм высотой) при их размещении на основании станка. Кроме того, подвижный по горизонтальной оси шпиндель позволяет быстро базировать положение отверстий в любой точке заготовки без ее переустановки.
Энкор Корвет-48 и Optimum RB6T можно разместить даже дома, на обычном столе, за счет небольшого веса и малошумности. Последняя модель может поворачивать сверлильную головку в вертикальной плоскости для сверления косых отверстий без необходимости наклона громоздких заготовок.

Предстоит серийное сверление линейного ряда отверстий в швеллерах и уголках. На каком оборудовании такую работу можно сделать быстрее всего?

Как определить оптимальную подачу инструмента для разновеликих отверстий в различных материалах?

Чаще всего в качестве инструмента используются сверла из быстрорежущей стали Р18 и Р6М5. Для них подача определяется по формуле S = C× (D0.6)×К,
где С – коэффициент, зависящий от твердости материала заготовки;
D – диаметр сверла, мм;
К – коэффициент, зависящий от соотношения длины и диаметра отверстия.
Все справочные данные Вы сможете найти в справочнике Анурьева или другой технической литературе.

На какой частоте вращения лучше всего сверлить дерево, пластик и нержавеющую сталь?

Оптимальная скорость зависит, прежде всего, от вида обрабатываемого материала и диаметра сверления. Например, для работы по нержавейке со сверлом из быстрорежущей стали Р6М5, диаметром 10 мм, выбирается частота вращения около 300 об/мин. По более мягкой низкоуглеродистой стали (Ст. 45) – вдвое больше.
Чем менее плотный материал, тем с большей скоростью можно его сверлить: при том же диаметре инструмента для чугуна ставится 1000 об/мин, для пластиков и цветных металлов 1500 об/мин, а для дерева 2000 об/мин.
Если в производстве часто выполняются однотипные операции сверления, то для экономии ресурса инструмента есть смысл еще более точно определить наилучшую частоту вращения сверла. При этом дополнительно учитывается его материал – это может быть инструментальная, быстрорежущая (Р6М5, Р18 и др.) или твердосплавная сталь (ВК8, ВК18). Также берется в расчет величина подачи инструмента (в мм/об). Эти значения выбираются по таблице технической литературы, например из справочника Анурьева, а наиболее ходовые величины выведены на панель станков.

Для чего в сверлильных станках ставится клиноременная передача, а не обычный редуктор?

Действительно, гораздо удобнее переключать зубчатый редуктор рычагом, чем вручную переставлять ремень. Зато в случае заклинивания сверла произойдет лишь проскальзывание ремня по шкивам – износ его будет минимален. У зубчатого редуктора в этом случае существует большая вероятность поломки зубьев колес, которая потребует дорогостоящего ремонта. Поэтому у всех легких сверлильных станков, мощностью менее 1 кВт, чаще всего ставится ременная передача.
Более тяжелые мощные станки, такие как Jet GHD-50PF, оснащены редуктором – для передачи большого крутящего момента и сверления крупных отверстий (до 40 – 50 мм и более).

Каким образом можно быстро высверлить отверстия одинаковой глубины?

Для создания множества идентичных отверстий используется упор глубины. Он представляет собой резьбовой вал, который опускается при совместном параллельном движении вместе со шпинделем. На валу на нужной высоте (в зависимости от требующейся глубины сверления) устанавливается пара законтренных гаек. Когда они достигают блока упора (узла, через который по резьбе проходит вал), двигатель выключается. Шпиндель автоматически отводится вверх в исходное положение за счет действия возвратной пружины.
Для настройки упора достаточно установить шпиндель с зажатым сверлом на требующуюся глубину сверления, и в этом положении поместить гайки над блоком упора.

Зачем нужна возможность поворота сверлильной головки в вертикальной плоскости, присутствующая у некоторых моделей? Ведь для наклонных отверстий достаточно повернуть рабочий стол.

Наклон шпинделя позволяет выполнять сверление под углом в тяжелых или вытянутых заготовках, которые сложно поворачивать на столе. Такая конструкция, например, у станков Энкор Корвет-48 , Jet GHD-46, JDR-540, Optimum RB8S, RB6T, Proma R-8616F/400.

В каком порядке производится ручная смена числа оборотов на клиноременной передаче? Как определить ее оптимальный натяг?

Для изменения частоты вращения шпинделя у станков с ременным вариатором, прежде всего, отключите машину от сети и снимите кожух. На его внутренней стороне нанесена схема перестановки шкивов для разных скоростей, сверьтесь с ней. Перед настройкой необходимо освободить зажим подвески мотора с обеих сторон и ослабить натяг ремня фиксаторами. После этого можно перекинуть его на нужную комбинацию шкивов в соответствии со схемой, далее натянуть в новом положении и снова укрепить подвеску двигателя.
Оптимальный натяг определяется нажатием большого пальца в середину ремня – он должен прогибаться на величину около 5 – 10 мм.
При частой смене скоростей не забывайте ставить на место кожух для исключения несчастных случаев и порчи передач стружкой и прочими посторонними предметами.

При работе сверлильного станка возникают чрезмерные вибрации, снижающие точность выполнения отверстия. Из-за чего это происходит?

Чаще всего это связано со следующими причинами:

  • затупилось сверло – попробуйте его заменить;
  • ослабло натяжение ремня. Кроме того, на него мог налипнуть мусор – проверьте, нет ли на поверхности посторонних вкраплений, и при необходимости замените ремень;
  • разболталась опора станка – отрегулируйте стойку для достижения плоскостности.
  • возник дисбаланс одного или нескольких шкивов;
  • расшаталась шайба ведущего ремня двигателя или второго ведомого ремня шпинделя. В первом случае затяните гайку шпинделя, а во втором –резьбовой штифт;
  • если вибрация сопровождается сильным непрерывным выходом стружки, уменьшите глубину сверления или величину подачи;
  • проверьте смазку пиноли шпинделя.

Иногда получаемые отверстия скошены. Как этого избежать?

Чаще всего это связано с затупившимся или погнувшимся сверлом, которое надо заменить. Также оно может быть недостаточно сильно затянуто в патроне. Следите, чтобы на поверхность хвостовиков инструментов не попадало масло, грязь и мелкая стружка, которые приведут к прокручиванию оснастки в зажиме и застреванию ее в заготовке.
Несоосность отверстий при отклонении их центра от намеченного может быть связана и с неоднородностью материала заготовки. Инструмент всегда стремится по пути наименьшего сопротивления, в направлении минимальной плотности среды. Поэтому если у станка недостаточно жесткая система СПИД (Станок–Приспособление–Инструмент–Деталь), при попадании сверла на сучок в дереве или на газовую камеру в металле его направление сбивается. Во избежание этого перед началом работы выполняйте центровку – предварительное засверливание отверстия специальным центровочным сверлом.

Сломался шток оправки патрона, обломок застрял в шпинделе. Как его можно извлечь и поставить новый патрон?

Лучше всего осторожно выбить остатки старого штока с помощью клина. Новый патрон вставляется через соответствующую оправку, при этом чтобы он плотно прилегал не нужно прилагать больших усилий. Достаточно слегка простучать деревянной киянкой или латунным молотком.

При сверлении накаляется сверло, а снижение оборотов не всегда помогает. Что еще можно сделать?

Перегрев зоны сверления может быть вызван не только чрезмерной частотой вращения шпинделя, но и слишком малой подачей или забивкой канавок сверла мелкой стружкой. Попробуйте чаще извлекать инструмент для его очистки или увеличить подачу для сокращения времени контакта оснастки с заготовкой.

Почему станок Корвет 49 в первый же день работы вместо заявленного диапазона 350 – 3000 об/мин выдает лишь 450 – 2650 об/мин?

Попробуйте включить оборудование еще раз и дайте ему поработать несколько минут на холостых оборотах. Возможно, вариатор при первом включении не успел приработаться.
Помните, что регулировать скорость вращения у сверлильного станка Корвет 49 можно только при включенном двигателе и свободном вращении, но не во время сверления под нагрузкой. Иначе при последующем запуске возможно застревание ремня.

Что можно использовать в качестве СОЖ при сверлении и нарезании резьбы метчиком? Всегда ли требуется охлаждение?

Выбор СОЖ (смазывающе-охлаждающей жидкости) зависит от обрабатываемого материала. Для обычных низкоуглеродистых сталей применяется эмульсионный раствор, для легированных сталей – раствор из минеральных и синтетических масел, для алюминия и его сплавов – смесь керосина и эмульсии. Если у станка в конструкции нет системы подачи СОЖ, то в качестве универсального безвредного для машины охлаждения применяют смесь керосина и машинного масла.
Без охлаждающей жидкости можно сверлить чугун, латунь и бронзу.
При нарезке резьб метчиком из быстрорежущей стали со скоростью более 45 м/мин применение СОЖ обязательно. Иначе возможен перегрев и разупрочнение инструмента. Сверление с охлаждением также необходимо при глубине от 3 – 5 диаметров сверла и более. Во всех случаях подача специальной жидкости позволяет ускорить работу почти в 1,5 раза.

В чем разница между самозажимным и быстрозажимным патроном?

В самозажимном не требуется сильно зажимать инструмент. Достаточно слегка его наживить, и кулачки зафиксируются самостоятельно – по инерции под действием вращения шпинделя. Благодаря этому исключается возможность проворачивания сверла при перегрузке.
Применяется самозажимной патрон в профессиональных станках для массового производства (например MATRIX 16880, ПСС-10 В12), чтобы сэкономить время на установку инструмента и исключить возможность его проскальзывания в кулачках.

Какой патрон под посадку В18 обеспечит вылет для маленьких сверл (от 1 мм)?

Конус Морзе В18 является гораздо менее распространенным, чем В16. Для него можно подобрать патрон Proma 25181113 (посадка B18, диапазон 1–13 мм). Для использования инструментов с посадкой от 13 до 16 мм придется переставлять патрон Proma 25180316 (B18; хвостовики 3–16 мм) или другой подобный.

С помощью каких приспособлений можно сверлить отверстия, диаметром 33 мм, в швеллерах на Корвет-43?

Описанная задача может быть выполнена несколькими способами на станке Корвет-43 и другом со схожей мощностью. Можно использовать биметаллические коронки с шестигранным хвостовиком (для диаметра 33 мм это, например, Bosch 2.608.584.142 со стандартным 6-гранным переходником или 2.608.584.625 с переходником Power Change). Другой вариант – самоцентрирующиеся ступенчатые сверла HSS с цилиндрическим хвостовиком , позволяющие в зависимости от глубины сверления получить ряд различных диаметров. Так, для 33 мм подойдет Bosch 2.608.597.521, которое может выполнять отверстия 4; 6; 8; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39 мм. Т.е. одним этим сверлом можно получить любой из перечисленных диаметров в зависимости от глубины его погружения.

Как обозначаются посадочные размеры для патронов? В чем отличие между серией размеров МК и В?

Какие посадки наиболее распространены у сверлильных патронов?

У малых патронов с зажимом до 6 мм чаще всего используются конусные посадки В10, для диапазонов до 10 и 13 мм – В12, а для более крупных с раскрытием до 16 мм – В16 и В18. Соответственно этим посадкам подбираются переходные оправки для установки в станки.

Для закрепления инструмента на станках в машиностроении широко применяются хвостовики и оправки конической формы, называемой конусом Морзе. Эта простая и, в то же время, надежная конструкция позволяет быстро и максимально точно закрепить инструмент в патроне станка.

конус морзе

История создания

Появления такой конструкции, а так же происхождение самого названия до сих пор покрыто множеством тайн. Достоверно известно, что в 1863 году американский инженер Стивен Морзе зарегистрировал патент на изобретение спирального сверла, такого, которое известно нам и по сей день. До этого для изготовления сверла, скручивали заостренный плоский профиль.

В описании, запатентованного Стивеном Морзе спирально м сверле, нет никаких упоминаний об особой форме хвостовика, но по какой-то причине Бюро стандартов США внесло коническую форму в национальные стандарты. Считается, что изобретатель, запатентовав новую конструкцию сверла, направил опытные образцы в Бюро патентов, где была замечена и по достоинству оценена эта особенность.

Впоследствии была создана компания по производству, получившая его имя и занимавшаяся изготовлением инструмента для машиностроения. К концу 19 века компания серьезно расширилась и стала одним из ведущих производителей инструмента того времени. Произведенный ей продукт поставлялся во многие страны мира, в том числе и в Россию. За время ее существования было запатентовано еще несколько изобретений, но, ни одно из них не было связано с коническим исполнением хвостовиков инструмента. Так же есть сведения, что через какое-то время после основания сам изобретатель по неизвестным причинам покинул компанию, при этом его имя в названии сохранилось.

Так же известно еще несколько изобретателей с фамилией Морзе, живших в США в то время. И, возможно, автором этого изобретения является кто-то из них, но никакой информации, подтверждающей эту версию, нет. Поэтому официальным изобретателем конической формы хвостовика инструмента считается именно Стивен Эмброуз Морзе.

Особенности конструкции и основные типы конусов Морзе

Есть версия, что коническая конструкция появилась в результате постепенной эволюции токарного, фрезерного и сверлильного инструмента в результате изучения влияния износа инструмента на его характеристики и качество выпускаемых деталей. Было замечено, что в процессе работы инструмент с цилиндрическим хвостовиком изнашивался и начинал проворачиваться в кулачках, возникали биения и отклонения инструмента.

Наиболее оптимальной формой, позволяющей с максимальной точностью закрепить инструмент в станке, обеспечить быструю смену инструмента без отклонений, а так же обеспечить подачу СОЖ (смазочно-охлаждающей жидкости) к рабочей части инструмента является конус.

В процессе развития технологий машиностроения появился так называемый метрический конус, который отличается от своих предшественников постоянной конусностью и угловыми размерами. Его конусность составляет 1:20, уклон – 1°51’56”, а угол – 1°51’51”, тогда как до этого конусность была переменной и варьировалась от 1:19,002 до 1:20,047.


Согласно классификации, принятой в ГОСТах СССР конусы Морзе принято разделять на малые, большие и общего применения.

Исходя из особенностей конструкции, на сегодняшний день различают три типа конусов Морзе:

  1. Гладкий;
  2. С резьбой;
  3. С лапкой.

Выпадение инструмента из шпинделя предотвращается самой конической формой хвостовика и отверстия в шпинделе или оправке. Дополнительно крепление хвостовика с лапкой в шпинделе происходит за счет вхождения лапки в специальный паз, резьбового – за счет резьбы в торце хвостовика.

Так же изготавливают инструмент с дополнительными пазами и отверстиями для подведения СОЖ. Это наиболее актуально для современных станков с ЧПУ.

Преимущества конуса Морзе

Кроме возможности быстрой смены инструмента и прочного закрепления его в станке, избегая смещения, а соответственно и перенастройки станка конус Морзе дает еще ряд преимуществ.

Во-первых, применение конуса Морзе привело к значительному уменьшения размеров хвостовика инструмента без потери надежности его закрепления в станке.

Во-вторых – придает дополнительный упор по оси крепления при меньшей длине инструмента по сравнению с цилиндрическим хвостовиком.

В-третьих – существенно снижает вероятность заклинивания инструмента в шпинделе.

инструмент с конусом

Системы обозначения конусов Морзе

В России и странах ближнего зарубежья до сих пор принято классифицировать все виды конусов Морзе согласно советским ГОСТам. В них указаны основные параметры (конусность, длина, диаметры наружного и внутреннего конусов) для каждого вида конусов Морзе.

Даже сейчас, когда во всем мире производство инструмента регламентируется международными стандартами ISO и DIN, обозначения ГОСТ обозначения в нашей стране не потеряли свою актуальность. Более того, старые ГОСТы постоянно дорабатываются и совершенствуются.

Таблица инструментальных конусов Морзе

Так же существуют госты на отдельные виды инструмента, в которых применена эта конструктивная особенность. Например, ниже приведена таблица обозначений оправок с конусом Морзе для сверлильных патронов (ГОСТ 2682-86).

таблица размеров

В соответствие с современными международными стандартами конусы Морзе подразделяются на 8 видов, обозначаемых маркировкой МТ и цифрами от 0 до 7 (например: МТ3), в Германии принята маркировка МК

Укороченные конусы Морзе

В процессе развития станкостроения появились станки, в которых размеры патронов под инструмент оказались меньше длины стандартных конусов Морзе, что создавало большие проблемы с подбором инструмента и установкой его в станок. Для таких станков был разработан отдельный вид укороченных конусов Морзе.

Главной особенностью таких конусов является то, что при сохраненном большем диаметре и конусности, длина хвостовика была уменьшена. При этом, укороченные конусы, благодаря сохранению своей формы, ни в чем не уступают стандартным. Они позволяют так же надежно закреплять инструмент и так же быстро производить его замену.

Конус Морзе – это одно из самых распространенных средств для закрепления инструмента на станке. Свое название данный инструмент получил в честь знаменитого инженера Стивена Морзе, жившего в XIX веке. Сегодня для правильного выбора размеров этого изделия применяют дробные числа. Существует несколько стандартизованных значений, различающихся углами наклона и размерами.

Область применения конуса Морзе – это машиностроение. С его помощью можно быстро и очень точно закрепить режущий инструмент. Для этого конус Морзе крепится в станке в специальном отверстии или патроне, а в него в свою очередь вставляется например сверло. Такой способ крепежа гарантирует наиболее точное центрирование и последующую обработку. Также с его помощью можно подавать к обрабатываемой детали или режущему инструменту смазочно-охлаждающую жидкость.

Конус Морзе

Габариты и элементы конуса Морзе

Отличительной чертой одного конуса Морзе от другого являются размеры. Существуют несколько их видов и в соответствии с ГОСТом каждый имеет определенный номер и аббревиатуру. Чтобы измерить его, необходимо воспользоваться калибровкой, а лучше всего специальной таблицей, которая позволит рассчитать размеры до микрона. В зависимости от станка, на котором будет проводиться обработка детали, следует выбирать например резец, сверло, а затем вид изобретения Стивена Морзе.

С развитием машиностроительной отрасли возникла потребность в расширении модельного ряда конусов Морзе. Для этого был разработан метрический конус, который не имел особых конструктивных отличий от своего предшественника. Его конусность равнялась 1:20, при этом угол 2°51’51″, а уклон 1°25’56″. Метрические конусы позволили создать большой выбор инструмента для различных станков и операций. Классифицируются они на две категории: большие и малые. Большие обозначаются, например № 120, 200, и цифры соответствуют наибольшему диаметру метрического конуса.

Размеры конуса Морзе

Размеры конуса Морзе

Инструментальный конус представляет собой конический хвостовик какого-нибудь режущего инструмента и коническое отверстие в шпинделе или бабке такого же диаметра. Его функция заключается в быстрой смене режущего инструмента и сохранении высокой точности при центрировании и закреплении.

Применяется в основном в станках с ЧПУ, потому что устраняет ряд недостатков обычного конуса Морзе.

  • заклинивание хвостовиков в шпинделе гораздо меньше;
  • меньшие размеры;
  • улучшенный упор по оси;
  • простота закрепления;
  • автоматическая смена режущего инструмента.

В наши дни конусы Морзе изготавливают в соответствие с международным стандартом ISO и DIN. В России система стандартизации объединяет в один класс как просто конусы Морзе, так и метрические и инструментальные. Информацию о них можно получить в ГОСТ 25557-82. Ситуация с единым ГОСТом сложилась из-за того, что конусы Морзе со времен СССР пользуются в нашем государстве большой популярностью, а параллельно с этим появилось много новых.

Конусы Морзе распределены по 8 категориям. За рубежом это МТ0, МТ1, МТ2, МТ3, МТ4, МТ5, МТ6, МТ7. В Германии такая же нумерация, но буквенное обозначение МК. В нашей стране и на постсоветском пространстве КМ0, КМ1, КМ2, КМ3, КМ4, КМ5, КМ6 и №80.

Укороченный конус

Как показало время, некоторые конусы Морзе зарубежного производства неудобны в эксплуатации по причине большой длины. На этот случай был разработан ряд укороченных изделий, имеющий 9 размеров.

Наилучшие разновидности конусов на сегодняшний день

В наши дни особой популярностью, благодаря своему качеству, пользуются инструментальные конусы Морзе компаний HSK, Capto и Kennametal. Хорошая устойчивость к изменениям температуры и соответствие жестким требованиям в станкостроении позволило конусам Морзе этих брендов стать лидерами рынка.

HSK – это полые инструменты с конусностью 1:10. Обозначаются буквой латинского алфавита и цифрой, обозначающей больший диаметр фланца. Главной особенностью таких изделий является быстрая замена инструмента, что очень важно в станках с ЧПУ.

HSK 63

Инструментальные конусы Capto соответствуют международному стандарту ISO и являются высококлассной продукцией. Продукция дорогостоящая из-за сложности изготовления, но высокая точность позволит минимизировать брак на производстве при использовании на станках этих инструментов. Особенность конструкции не позволяет им провернуться во время работы станка, происходит самозаклинивание. Жесткость соединения продукции компании Capto – это основное их преимущество перед другими конкурентами

Продукция Kennametal менее распространена, но так же отлично справляется со своим предназначением.

Продукция компаний B&S, Jacobs и Jarno распространены в основном в США, так как не имеют подтверждения международных стандартов и создаются соответственно для американского рынка, где пользуются большим спросом.

Компания Bridgerport Machines разработала модель R8 для цанговых зажимов на своем оборудовании. Но затем изобретение было доработано и выпущено на международный рынок. Эффективность этого средства вызвала в свое время фурор и стали появляться всевозможные аналоги. На сегодняшний день компания выпускает только один вид исполнения такого механизма.

R8

Инструментальный конус 7:24 широко применяем в станках с ЧПУ, где смена инструмента происходит автоматически. Являясь инструментальным, он обладает рядом преимуществ перед обычным и поэтому так популярен в станкостроении. Существует множество его разновидностей. Во многих странах разработаны собственные стандарты к нему и поэтому между собой модели 7:24 от разных производителей не заменяют друг друга.

Конус 1:50 также широко применим в машиностроительной отрасли, если требуется дополнительно скрепить два изделия с резьбовым соединением. Для этого у модели 1:50 есть специальный штифты, которые необходимо вставить в обрабатываемые изделия, предварительно просверлив в тех отверстия в соответствующих местах.

Основные сведения о хвостовиках и их обозначение

Существует несколько видов исполнения инструментального конуса. Он может содержать резьбу, лапку или обходиться без них.

В его торце может быть нарезана резьба, которую делают для закрепления инструмента на шпинделе с использованием штревеля. Это специальный шток, предотвращающий выпадение инструмента. Также с его помощью изделие можно извлечь, если его случайным образом заклинит в шпинделе.

Если хвостовик изготовлен с лапкой, то она удерживает инструмент в шпинделе за счет того, что закреплена в специальном пазу. Лапка имеет два предназначения, с ее помощью легче достать изделие из шпинделя, а также создается жесткая фиксация и не будет проворачивания.

Также можно встретить исполнение с несколькими канавками и отверстиями. Они имеют разную глубину и размеры. Их задача – подводить к режущему инструменту смазочно-охлаждающую жидкость.

Хвостовики инструмента бывают различной конструкции и обозначаются буквенным кодом. Ниже приведена их расшифровка:

  • BI – внутренний, имеется паз;
  • ВЕ – наружный, имеется лапка;
  • AI – внутренний, имеется отверстие по оси;
  • АЕ – наружный, имеется отверстие по оси с резьбой;
  • BIK – внутренний, имеются паз и отверстие для подачи смазочно-охлаждающей жидкости (СОЖ);
  • ВЕК – наружный, имеется лапка и отверстие для подачи СОЖ;
  • AIK – внутренний, содержит отверстия по оси и для подачи СОЖ;
  • АЕК – наружный, содержит отверстие по оси с резьбой и отверстие для подачи СОЖ.

Наружный и внутренний соответствуют своим названиям. В зависимости от используемого инструмента, следует выбирать исполнение наружное или внутреннее.

Укороченные конусы Морзе

В некоторых ситуациях размеры конуса Морзе через чур большие и в таком случае следует пользоваться укороченными вариантами.

B12 и B16

Представленные ниже названия означают, что конус был укорочен:

  • B7 — до 14 мм;
  • B10 — до 18 мм;
  • B12 — до 22 мм;
  • B16 — до 24 мм;
  • B18 — до 32 мм;
  • B22 — до 45 мм;
  • B24 — до 55 мм;
  • B32 — до 57 мм;
  • B45 — до 71 мм;

Цифра в названии информирует о размере диаметра новой части конуса. Подробные данные можно взять из соответствующего ГОСТа.


ГОСТ 25557-82
(CT СЭВ 147-75)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Tapers for cutting tools. Basic dimensions

Дата введения 1984-01-01

Постановлением Государственного комитета СССР по стандартам от 28 декабря 1982 г. N 5172 срок введения установлен с 01.01.84

ПЕРЕИЗДАНИЕ. Август 1983 г.

1. Настоящий стандарт распространяется на инструментальные метрические конусы и конусы Морзе.

Стандарт полностью соответствует СТ СЭВ 147-75.

2. Основные размеры инструментальных метрических конусов и конусов Морзе должны соответствовать указанным на черт.1, 2 и в таблице.

НАРУЖНЫЕ КОНУСЫ


С резьбовым отверстием



ВНУТРЕННИЕ КОНУСЫ

Для конусов с лапкой


Для конусов с резьбовым отверстием


Наимено- вание конуса



* Размеры , и являются теоретическими и зависят от диаметра и номинальных размеров , и .


** Диаметр лапки может по длине превышать размер при условии, что .

Пример условного обозначения конуса Морзе 3, степени точности АТ8:

Морзе 3 АТ8 ГОСТ 25557-82

То же, метрического конуса 160, степени точности АТ7:

Метр. 160 АТ7 ГОСТ 25557-82

3. Неуказанные размеры концов конусов с резьбовым отверстием - по ГОСТ 14034-74.


Конус Морзе, предложенный изобретателем Стивеном Морзе является наиболее применяемым способом крепления инструмента. Существующее подразделение на восемь размеров, от КМ0 до КМ7, и девять размеров укороченных позволяют применять конический хвостовик для различного режущего инструмента, оснастки и приспособлений. Конусность при этом варьируется в соотношении от 1:19,002 (при угле 1°25′43″) до 1:20,047 (угол при этом соотношении равен 1°30′26″).

КМ7 отечественным ГОСТом 25557-82 не рекомендуется к применению и вместо него применяется метрический конус № 80, например в отверстии шпинделя некоторых токарных станков.
Типоразмер конуса в качестве хвостовика инструмента зависит от способа установки и предназначения последнего, и бывает как укороченным, так и Конусы Морзе или с лапкой.

Метрические конусы

Для расширения диапазона конусов Морзе как в меньшую, так и в большую сторону была выбрана конусность 1:20 с углом 1°25′56″ с обозначением типоразмера по наибольшему диаметру. В итоге в ряду конусов схожих по конструкции с Морзе присутствуют как маленькие метрические конуса №4 и №6, так и большие №80, №100, №120, №160, №200.

Конусы Морзе и метрические с резьбовым отверстием

Для надёжной фиксации инструмента, как например фрез, применяется конус Морзе с внутренним резьбовым отверстием. Фиксирование (затягивание) выполняется с помощью штревеля, или болтом, если инструмент устанавливается в переходную втулку. Данная конструкция также способствует быстрой и удобной замене инструмента путём выжимания конусного хвостовика.

Основные размеры наружных инструментальных метрических и Морзе конусов с резьбовым отверстием

Основые размеры наружных инструментальных метрических и Морзе конусов с резьбовым отверстием

Конусы Морзе и метрические с лапкой

Конструкция шпинделей сверлильных, сверлильно-фрезерных, и некоторых типов других станков для надёжной фиксации режущего инструмента и предотвращения проворачивания имеет паз для лапки конуса. Сквозное поперечное отверстие предназначено для установки в паз клина, и нетрудного извлечения конусной оправки инструмента.

Основные размеры наружных инструментальных метрических и Морзе конусов

Основые размеры наружных инструментальных метрических и Морзе конусов с лапкой

Диаметры D1 и d1 являются теоретически-расчётными и зависят от номинальных размеров D, a и l.

Основные размеры внутренних инструментальных метрических и Морзе конусов

Основые размеры внутренних инструментальных метрических и Морзе конусов с лапкой

Укороченные конусы Морзе

По причине избыточности длины конуса Морзе при некотором его применении, был образован стандарт укороченных конусов. В обозначении конуса находится значение наибольшего диаметра образованного после уменьшения длины при сохранении соотношения. Таким образом девять типоразмеров укороченных конусов, В7, В10, В12, В16, В18, В22, В24, В32, В45 получили распространение при установке сверлильных патронов и другого инструмента.

Значения диаметров D1 и d1 являются теоретически-расчётными и зависят от номинальных размеров D и L.

Читайте также: