Зеленые растения поглощают световую энергию и преобразуют ее в механическую

Обновлено: 15.09.2024

Какова роль зелёных растений в обеспечении энергией живых организмов на нашей планете.

Роль зелёных растений в обеспечении энергией живых

организмов на нашей планете

Как известно, основным источником энергии на земле является солнце. Но люди и животные не способны напрямую использовать солнечную энергию, потому что в их организмах отсутствуют системы, с помощью которых энергия потреблялась бы в такой форме, как она есть. Поэтому солнечная энергия попадает в организм человека или животного в качестве полезной энергии только через вещества, производимые растениями.

Кроме этого растения насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения этим способом запасенной в них химической энергии аэробными клетками.

Ежегодно зелёные растения синтезируют большое количество органического вещества, поглощают около 600 млрд т углекислоты, выделяют в атмосферу 400 млрд т свободного кислорода. Благодаря фотосинтезу ежегодно запасается огромное количество преобразованной солнечной энергии.

Накопление энергии – очень важное для живой природы явление, обусловленное фотосинтезом зеленых растений. Органические вещества – отличный энергоноситель.

Созданные с участием хлорофилла и солнечного света углеводы, а также образованные в растениях белки и жиры содержат в себе много энергии. Особенно много ее в крахмале и различных сахарах.

Многие растения, такие как сахарный тростник, сахарная свекла, лук, горох, кукуруза, виноград, финик, запасают сахара в стеблях, корнях, луковицах, плодах и семенах. Именно сахара служат главным источником энергии для всех живых существ, так как легко могут стать одним из наиболее активных соединений в любой живой клетке. Постоянно поглощая энергию в виде солнечного излучения, растения ее накапливают. Из-за огромного количества зеленых растений на Земле энергии в биосфере становится все больше. Человек широко пользуется газом, нефтью, углем, дровами – все эго органические вещества, которые выделяют при сгорании энергию, некогда занесенную в зеленых растениях.

Можно сделать вывод, что существование растений играет очень важную и необходимую роль для выживания живых существ на земле. Поступившая из космоса энергия солнечных лучей, запасенная зелеными растениями в углеводах, жирах и белках, обеспечивает жизнедеятельность всего живого мира – от бактерий до человека.

РЕбята!!помогите))))) надо ответить на вопросы ПРАВИЛЬНО или НЕ ПРАВИЛЬНО. 1.Зелёные растения, поглощая солнечную энергию, образуют органические соединения. 2. На полях после уборки урожая поглощенные растениями минеральные вещества не возвращаются в почву. 3. Зелёные растения поглощают энергию солнечного света. 4.Роль зелёных растений называют космической только потому, что они из космоса получают энергию солнечного света. 5.Поступившая из космоса энергия солнечного света запасается зелёными растениями в виде углеводов, жиров и белков. 6. С появлением на Земле зелёных растений образовался атмосферный кислород. 7. Кислород- вещество, необходимое для фотосинтеза и дыхания растений. 8.Дыхание- это расщепление органических веществ на неорганические и высвобождение энергии. 9. Водный ток в растении зависит только от всасывающей способности корневых волосков. ЗАРАНЕЕ спасибо)))))

Листья под лучами солнца, фотосинтез

Фотосинтез – это процесс, используемый растениями, водорослями и некоторыми бактериями для превращения солнечного света, углекислого газа (CO2) и воды в пищу (сахар) и кислород. Вот обзор общих принципов фотосинтеза и связанных с ним исследований, которые помогут разработать чистые виды топлива и источники возобновляемой энергии.

Виды фотосинтетических процессов

Существует два вида фотосинтетических процессов: кислородный фотосинтез и аноксигенный фотосинтез. Оба они следуют очень похожим принципам, но кислородный фотосинтез является наиболее распространенным и наблюдается у растений, водорослей и цианобактерий.

Кислородный фотосинтез действует как противовес дыханию, поглощая CO2, производимый всеми дышащими организмами, и повторно вводя кислород в атмосферу.

Между тем, аноксигенный фотосинтез использует доноры электронов, которые не являются водой и не производят кислород. Этот процесс обычно происходит у бактерий, таких как зелёные серобактерии и фототрофные пурпурные бактерии. (1)

Уравнение фотосинтеза

Хотя оба вида фотосинтеза являются сложными и многоступенчатыми, общий процесс можно аккуратно резюмировать в виде химического уравнения.

Уравнение кислородного фотосинтеза:

6CO2 + 12H2O + Световая энергия → C6H12O6 + 6O2 + 6H2O

Здесь 6 молекул углекислого газа (CO2) соединяются с 12 молекулами воды (H2O), используя энергию света. Конечным результатом является образование одной молекулы углевода (C6H12O6 или глюкозы) вместе с 6 молекулами кислорода и 6 молекулами воды.

Точно так же различные реакции аноксигенного фотосинтеза можно представить в виде единой обобщенной формулы:

CO2 + 2H2A + световая энергия → [CH2O] + 2A + H2O

Как происходит обмен диоксида углерода и кислорода?

Устьица листа

Устьица являются привратниками листа, обеспечивая газообмен между листом и окружающим воздухом. (Изображение предоставлено: Уолдо Нелл / 500px / Getty Images)

Растения поглощают CO2 из окружающего воздуха и выделяют воду и кислород через микроскопические поры на своих листьях, называемые устьицами. Устьица служат воротами газообмена между внутренней частью растений и внешней средой.

Когда устьица открываются, они пропускают СО2; однако, когда устьица открыты, они выделяют кислород и позволяют выйти водяным парам. Чтобы уменьшить потерю воды, устьица закрываются, но это означает, что растение больше не может получать CO2 для фотосинтеза. Этот компромисс между увеличением количества CO2 и потерей воды представляет собой особую проблему для растений, растущих в жарких и засушливых условиях.

Как растения поглощают солнечный свет для фотосинтеза?

Растения содержат особые пигменты, поглощающие световую энергию, необходимую для фотосинтеза.

Хлорофилл является основным пигментом, используемым для фотосинтеза и придающим растениям зеленый цвет. Хлорофилл поглощает красный и синий свет для использования в фотосинтезе и отражает зеленый свет. Хлорофилл – большая молекула, для производства которой требуется много ресурсов; как таковой, он разрушается к концу жизни листа, и большая часть азота (один из строительных блоков хлорофилла) всасывается обратно в растение. Когда осенью листья теряют свой хлорофилл, другие пигменты листьев, такие как каротиноиды и антоцианы, начинают проявлять свой истинный цвет. В то время как каротиноиды в основном поглощают синий свет и отражают желтый, антоцианы поглощают сине-зеленый свет и отражают красный. (3, 4)

С бактериями ситуация немного иная. В то время как цианобактерии содержат хлорофилл, другие бактерии, например, пурпурные бактерии и зелёные серобактерии, содержат бактериохлорофилл, поглощающий свет для аноксигенного фотосинтеза.

Где в растении происходит фотосинтез?

Для фотосинтеза растениям нужна энергия солнечного света

Для фотосинтеза растениям нужна энергия солнечного света. (Изображение предоставлено: Shutterstock)

Фотосинтез происходит в хлоропластах, типе пластид (органеллы с мембраной), которые содержат хлорофилл и в основном обнаруживаются в листьях растений. Двумембранные пластиды в растениях и водорослях известны как первичные пластиды, в то время как мультимембранные пластиды, обнаруженные в планктоне, называются вторичными пластидами. (6)

Хлоропласты похожи на митохондрии, энергетические центры клеток, тем, что у них есть собственный геном или набор генов, содержащихся в кольцевой ДНК. Эти гены кодируют белки, необходимые для органелл и фотосинтеза. (7)

Внутри хлоропластов находятся пластинчатые структуры, называемые тилакоидами, которые отвечают за сбор фотонов света для фотосинтеза. Тилакоиды уложены друг на друга в столбцы, известные как граны. Между гранами находится строма – жидкость, содержащая ферменты, молекулы и ионы, в которой происходит образование сахара. (8)

В конечном итоге световая энергия должна быть передана комплексу пигмент-белок, который может преобразовать ее в химическую энергию в форме электронов. В растениях световая энергия передается пигментам хлорофилла. Преобразование в химическую энергию осуществляется, когда пигмент хлорофилла изгоняет электрон, который затем может перейти к соответствующему получателю.

Пигменты и белки, которые преобразуют энергию света в химическую энергию и запускают процесс переноса электронов, известны как реакционные центры.

Реакции фотосинтеза растений делятся на две основные стадии: те, которые требуют присутствия солнечного света (светозависимые реакции), и те, которые не требуют наличия солнечного света (светонезависимые реакции). В хлоропластах протекают оба типа реакций: светозависимые реакции в тилакоиде и светонезависимые реакции в строме.

Светозависимые реакции

Когда растение поглощает солнечную энергию, ему сначала необходимо преобразовать ее в химическую энергию.

Когда фотон света попадает в реакционный центр, молекула пигмента, такая как хлорофилл, высвобождает электрон.

Светонезависимые реакции: восстановительный пентозофосфатный цикл

Восстановительный пентозофосфатный цикл, или цикл Кальвина

Во-первых, CO2 соединяется с рибулозо-1,5-бисфосфатом (РуБФ), который является пятиуглеродным акцептором. Затем он расщепляется на две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). Реакция катализируется ферментом РуБФ-карбоксилаза/оксигеназа, также известным как рубиско.

Вторая стадия цикла Кальвина включает преобразование 3-ФГК в трехуглеродный сахар, называемый глицеральдегид-3-фосфатом (Г3Ф) – в процессе используются АТФ и НАДФН. Наконец, в то время как одни молекулы Г3Ф используются для производства глюкозы, другие рециркулируют обратно, чтобы получить РуБФ, который используется на первом этапе для принятия CO2. На каждую молекулу Г3Ф, которая производит глюкозу, пять молекул рециркулируют с образованием трех акцепторных молекул РуБФ.

Фотодыхание

Рубиско может иногда связывать кислород вместо СО2 в цикле Кальвина, который тратит энергию – процесс, известный как фотодыхание. Фермент развился в то время, когда уровни CO2 в атмосфере были высокими, а кислород был редким, поэтому у него не было причин проводить различие между ними. (10, 11)

Фотодыхание представляет собой особенно большую проблему, когда устьица растений закрыты для экономии воды и поэтому больше не поглощают CO2. У рубиско нет другого выбора, кроме как вместо этого восстанавливать кислород, что, в свою очередь, снижает фотосинтетическую эффективность растения. Это означает, что будет производиться меньше пищи растения (сахара), что может привести к замедлению роста и, следовательно, к уменьшению размеров растений.

Это большая проблема для сельского хозяйства, так как меньшие растения означают меньший урожай. На сельскохозяйственную отрасль оказывается растущее давление с целью повышения продуктивности растений, чтобы прокормить постоянно растущее население Земли. Ученые постоянно ищут способы повысить эффективность фотосинтеза и уменьшить частоту неэффективного фотодыхания.

Виды фотосинтеза

Существует три основных вида фотосинтетических путей: C3, C4 и CAM. Все они производят сахар из CO2, используя цикл Кальвина, но каждый путь немного отличается.

Три основных вида фотосинтетических путей – это C3, C4 и CAM

Три основных типа фотосинтетических путей – это C3, C4 и CAM. Большинство растений используют фотосинтез C3, включая рис и хлопок. (Изображение предоставлено: Эндрю ТБ Тан / Getty Images)

C3-фотосинтез

Большинство растений используют C3-фотосинтез, включая зерновые (пшеница и рис), хлопок, картофель и сою. C3-фотосинтез назван в честь трехуглеродного соединения, называемого 3-фосфоглицериновой кислотой (3-ФГК), которое он использует во время цикла Кальвина. 3-ФГК образуется, когда рубиско фиксирует CO2, образуя трехуглеродное соединение. (12)

C4-фотосинтез

Такие растения, как кукуруза и сахарный тростник, используют C4-фотосинтез. В этом процессе используется промежуточное соединение, состоящее из четырех атомов углерода (называемое оксалоацетатом), которое превращается в малат. Затем малат транспортируется в проводящий пучок, где он разрушается и выделяет CO2, который затем фиксируется рубиско и превращается в сахара в цикле Кальвина (точно так же, как фотосинтез C3). Растения C4 лучше приспособлены к жаркой и сухой окружающей среде и могут продолжать удерживать углерод, даже когда их устьица закрыты (поскольку у них есть умное решение для хранения), что снижает их риск фотодыхания. (13)

CAM-фотосинтез

Кислотный метаболизм толстянковых (CAM) обнаруживается у растений, адаптированных к очень жарким и сухим условиям, таких как кактусы и ананасы. Когда устьица открываются для поглощения CO2, они рискуют потерять воду во внешнюю среду. Из-за этого растения адаптировались в очень засушливых и жарких условиях. Одна из адаптаций – CAM, при котором растения открывают устьица ночью (когда температура ниже и потеря воды менее опасна). CO2 попадает в растения через устьица, фиксируется в оксалоацетат и превращается в малат или другую органическую кислоту (как в пути C4). Затем CO2 доступен для светозависимых реакций в дневное время, и устьица закрываются, что снижает риск потери воды. (14)

Как фотосинтез может бороться с изменением климата

Фотосинтезирующие организмы – это возможное средство для производства экологически чистого топлива, такого как водород. Группа исследователей из Университета Турку в Финляндии изучила способность зеленых водорослей производить водород. Зеленые водоросли могут выделять водород в течение нескольких секунд, если они сначала подвергаются воздействию темных анаэробных (бескислородных) условий, а затем подвергаются воздействию света. Как сообщается в их исследовании 2018 года, опубликованном в журнале Energy & Environmental Science, исследователи разработали способ продлить производство водорода зелеными водорослями до трех дней. (15)

Ученые также добились успехов в области искусственного фотосинтеза. Например, группа исследователей из Калифорнийского университета в Беркли разработала искусственную систему для улавливания CO2 с использованием нанопроволоки или проводов диаметром в несколько миллиардных долей метра. Проволока проникает в систему микробов, которые уменьшают CO2 в топливо или полимеры, используя энергию солнечного света. Команда опубликовала свой дизайн в 2015 году в журнале Nano Letters. (16)

В 2016 году члены этой же группы опубликовали исследование в журнале Science, в котором описана еще одна искусственная фотосинтетическая система, в которой специально сконструированные бактерии использовались для создания жидкого топлива с использованием солнечного света, воды и CO2. В общем, растения могут использовать только около одного процента солнечной энергии и использовать ее для производства органических соединений во время фотосинтеза. Напротив, искусственная система исследователей смогла использовать 10% солнечной энергии для производства органических соединений. (17)

В 2019 году исследователи написали в Journal of Biological Chemistry, что цианобактерии могут повысить эффективность фермента рубиско. Ученые обнаружили, что эти бактерии особенно хороши в концентрации СО2 в своих клетках, что помогает предотвратить случайное связывание рубиско с кислородом. Понимая, как бактерии достигают этого, ученые надеются внедрить этот механизм в растения, чтобы повысить эффективность фотосинтеза и снизить риск фотодыхания. (18)

Непрерывные исследования природных процессов помогают ученым в разработке новых способов использования различных источников возобновляемой энергии, а использование силы фотосинтеза является логическим шагом для создания экологически чистых и углеродно-нейтральных видов топлива.

КАКИЕ утверждения верны?
1)зеленые растения,поглощая солнечную энергию образуют органические содинения

2)На полях после уборки урожая поглощенные растениями минеральные вещества не возвращаются в почву.

3)С помощью хлорофилла из углекислого газа и воды в листе образуются органические вещества (сахара).

4) Автотрофы-организмы, способные самостоятельно синтезировать органические вещества из неорганических.

5) Зелёные растения поглощают энергию солнечного света и преобразуют её в энергию химических связей.

6)Роль зелёных растений называют космической потому, что они из космоса получают энергию солнечного света.

7)Поступившая из космоса энергия солнечного света запасается зелёными растениями в виде углеводов, жиров и белков.

8)С появлением на Земле зелёных растений образовался атмосферный кислород.

9)Кислород-вещество, необходимое для фотосинтеза и дыхания растений.

10)Дыхание-это расщепление органических веществ на неорганические, и высвобождение энергии.

11)Водный ток в растении зависит от всасывающей способности корневых волосков.

Читайте также: