Максимальная температура нагрева зерна при проведении гидротермической обработки

Обновлено: 18.09.2024

Гидротермическая обработка (ГТО) – это обработка влагой и теплом с целью направленного изменения свойств зерна.

Зерно, поступающее на мукомольный завод, имеет невысокую влажность, что предопределяет ряд негативных для технологии свойств:

– зерно прочно и измельчение идет с повышенным расходом энергии;

– невысокая влажность оболочек предопределяет их повышенную дробимость и попадание в муку;

– разделяемые в технологии анатомические части (наружные, внутренние оболочки, эндосперм) прочно связаны, что препятствует их эффективному разделению;

– биологически активные вещества зерна сосредоточены в большом количестве по периферии, что способствует их потере в побочные продукты.

Процесс гидротермической обработки осуществляется в результате многоступенчатого воздействия на зерно влаги и тепла во времени, что и приводит к оптимизации технологических свойств, а также к улучшению питательности и перевариваемости продукции.

К параметрам воздействия или режимным параметрам процесса гидротермической обработки относят: cтепень увлажнения, время отволаживания, температурный режим воздействия.

Это наиболее общие показатели режимных параметров.

Степень увлажнения, % количественно определяется как разность между оптимальным значением влажности зерна и начальным значением влажности, %. Степень увлажнения зерна зависит от вида перерабатываемой культуры, типа технологии, качества зерна (типовой состав, стекловидность, начальная влажность и т. п.). Величина степени увлажнения колеблется в реальных условиях в пределах 3…7 %.

Время отволаживания – необходимое время для преобразования свойств увлажненного зерна. Этот параметр зависит также от вида перерабатываемого зерна, его качества, типа технологии, а также от принятого способа гидротермической обработки.

Температурный режим процесса в основном определяется целевой задачей технологии и качеством зерна. При переработке дефектного зерна пшеницы или пшеницы со слабой клейковиной рекомендуется пропаривание и т. п.

Существуют различные способы гидротермической обработки – это холодное и скоростное кондиционирование.

Холодные способы гидротермической обработки применяют при подготовке мягкой пшеницы и ржи к хлебопекарным сортовым и обойным помолам, при подготовке твердой и высокостекловидной мягкой пшеницы
к макаронным помолам, а также при подготовке к переработке пшеницы в крупу.

Сущность метода состоит в том, что зерно увлажняется водой комнатной температуры на заданную величину и определенное время отволаживается. При сортовых помолах пшеницы обязательной операцией является или мойка зерна, или мокрое шелушение, так что первое увлажнение осуществляется в этом оборудовании. При помолах ржи мойку зерна исключают, чтобы избежать нежелательного переувлажнения. При сортовых помолах высокостекловидной мягкой пшеницы в хлебопекарную и макаронную муку, а также при помолах твердой пшеницы в макаронную муку и при низкой влажности зерна технология должна включать три этапа увлажнения и отволаживания (два основных и один – перед первой измельчающей системой). При помолах низкостекловидного зерна пшеницы и влажности, увеличение которой до технологической возможно за один этап, второе основное увлажнение и отволаживание исключают из технологической схемы.

Независимо от качества зерна при всех сортовых помолах пшеницы и ржи в технологии гидротермической обработки всегда присутствует доувлажнение зерна и кратковременное отволаживание с целью пластификации оболочек перед измельчением. Необходимость этой операции объясняется тем, что при отволаживании после основных этапов увлажнения влага перемещается в глубину зерна, оболочки обезвоживаются и теряют пластичность. Режимные параметры доувлажнения и отволаживания приблизительно одинаковы для всех помолов. Степень увлажнения 0,3…0,5 % и отволаживание 0,3…0,5 часа. Такого количества влаги достаточно для пластификации оболочек, а кратковременность процесса не позволяет влаге переместиться вглубь зерна и таким образом выполнить функцию пластификатора оболочек.

Режимы основных этапов увлажнения и отволаживания диктуются, прежде всего, видом перерабатываемого зерна, типовым составом, качеством, особенно стекловидностью или твердозерностью, а также типом технологии.

В таблице 3 приведено рекомендуемое время отволаживания для зерна пшеницы при сортовых помолах.

Таблица 3 – Время отволаживания зерна пшеницы при сортовых помолах, в часах

При сортовых помолах ржи основное увлажнение и отволаживание проводят в один этап и доувлажняют перед измельчением. Рекомендуется при влажности ржи до 13,5 % принимать продолжительность отволаживания основного этапа 3…6 ч и доувлажнять зерно перед измельчением на 0,3…0,5 % при отволаживании 0,25…0,3 ч.

Скоростной метод гидротермической обработки относится к интенсивным, что связано с пропариванием зерна на начальном этапе. Наиболее эффективен метод для пшениц со слабой клейковиной и для мукомольных заводов с ограниченной вместимостью емкостей для отволаживания. Благодаря тепловому воздействию при пропаривании, а также прогреву зерна во влагоснимателе интенсифицируется влагоперенос и процесс разрыхления эндосперма зерна. В связи с этим преобразования свойств заканчивается намного быстрее, чем при обычных (холодных) способах гидротермической обработки. После пропаривания зерно кратковременно (в течение 10 мин) отволаживается в емкости с теплоизоляционными стенками. Этого времени достаточно, чтобы выровнять в некоторой степени температуру зерна и создать, таким образом одинаковые условия для зерновой массы при проведении второго увлажнения. Второе увлажнение совмещают с интенсивной обработкой поверхности зерна в моечной машине. При этом влажность зерна еще повышается, снижается его зольность, и удаляются тяжелые и легкие примеси. В результате мойки температура зерна снижается до 25…30 °С.

Отволаживание при данном способе гидротермической обработки составляет 180 мин, т. е. значительно сокращено в сравнении с холодным способом. Таким образом, в результате чередующихся увлажнений с различными температурными параметрами тепловой обработки и кратковременного отволаживания разрушается структура зерна, ослабляются связи между разделяемыми оболочками и эндоспермом. Одновременно тепловое воздействие положительно воздействует на зерно с ослабленной клейковиной.

Под гидротермической обработкой понимают обработку зерна водой и теплом для направленного изменения (улучшения) всего технологического комплекса (мукомольных, хлебопекарных, макаронных, крупяных свойств) зерна, обеспечивающего наибольший выход готовой продукции с лучшими показателями качества и наименьшей затратой энергии.

Гидротермической обработке подвергают в основном зерно пшеницы, значительно реже зерно ржи, а также при переработке в крупу риса, овса, гречихи, кукурузы и гороха. При подготовке к переработке зерна применяют гидротермическую обработку и пропаривание. При гидротермической переработке на зерно воздействуют: вода, используемая для увлажнения зерновой массы; тепло, применяемое для прогрева зерна или его обезвоживания (сушки); длительность обработки зерна водой и теплом (пребывание в кондиционере), отволаживание в специальных бункерах; воздушная среда, в которой происходит гидротермическая обработка.

Влияние этих факторов на зерно усиливается при комплексном их воздействии. При подготовке зерна к помолу различают холодное, горячее, скоростное и вакуумное кондиционирование.

При холодном кондиционировании зерно водой температурой 18. 20 °С или подогретой до 30. 35 °С в аппаратах или моечных машинах увлажняют до 14,0. 16,5% и затем отволаживают в течение 4. 24 ч без регулирования температуры. При горячем кондиционировании используют специальные аппараты- кондиционеры. Зерно, увлажненное до 14. 16%, проходит тепловую обработку в кондиционере при температуре 45. 57 °С. Температурный режим обработки и его продолжительность (4. 12 ч) устанавливают в зависимости от реологических свойств клейковины, стекловидности и других показателей.

Горячее кондиционирование сопровождается более глубокими изменениями зерна и ускорением физико-химических и биохимических процессов по сравнению с холодным кондиционированием. Скоростное кондиционирование — это обработка зерна паром с применением специальных аппаратов (AGK), ускоряющее процессы, происходящие в зерне. На мукомольных заводах чаще используют холодное кондиционирование, реже горячее и изредка скоростное.

Кондиционирование зерна оказывает большое влияние на его мукомольное достоинство. Эндосперм становится рыхлее, оболочки эластичнее, связь их с эндоспермом ослабляется. Все это увеличивает выход и улучшает качество крупок и дунстов в драном процессе, повышает выход и качество (снижает зольность) готовой продукции, уменьшает удельный расход энергии. Воздействие воды и тепла вызывает в зерне комплексные физико-химические, коллоидные и биохимические процессы, приводящие к изменению его хлебопекарного достоинства.

Вода и тепло, применяемые при кондиционировании, создают для зерна (живой биологической системы) условия, совпадающие с теми, при которых зародыш зерна начинает расти. Это приводит к активизации его ферментных систем, к началу расщепления высокомолекулярных, до этого физиологически неподвижных веществ — начальному этапу перевода их в растворимое состояние и перемещения в зону зародыша для синтеза и формирования зачаточных тканей будущего растения.

Можно назвать две движущие силы переноса: первая — температурный градиент в теле зерновки, образуемый физическим процессом — набуханием, которое сопровождается выделением теплоты набухания, и биохимическим процессом — усилившимся процессом дыхания, генерирующим тепло; вторая — активизация щитка, выполняющего физиологическую роль передатчцг ка питательных веществ из эндосперма к пробуждающемуся зародышу через соприкасающуюся с ним систему сосущих клеток.

Биохимические процессы в зерне и зародыше, усиливающиеся при гидротермической обработке, тесно связаны с одновременно развивающимися теплофизическими явлениями. Те и другие, имея разную природу, в условиях гидротермической обработки активизируют биохимические процессы в зародыше, способствуют перемещению растворенных органических веществ.

Комплекс физико-химических и биохимических изменений тканей зерна при гидротермической обработке неоднозначно сказывается на изменении технологического достоинства зерна. Все зависит от генетических особенностей, зрелости и качества обрабатываемого зерна. Для повышения хлебопекарного достоинства наиболее часто необходимо улучшать зерно пшеницы с очень слабой или, наоборот (более редко), с очень крепкой клейковиной, т. е. в одном случае клейковину требуется укрепить, во втором — ослабить. У слабой клейковины улучшают реологические свойства, т. е. укрепляют при частичной тепловой денатурации белковых веществ, что достигается обработкой увлажненного зерна при повышенной температуре. Физические свойства крепкой клейковины улучшаются в результате частичного протеолиза белковых веществ. Этой цели наиболее полно отвечают условия холодного кондиционирования — продолжительное отволаживания при температуре 20. 35 °С.

При увлажнении зерна от 12. 13 до 17. 18% и отвола- живании в течение 24 ч наиболее сильно и в нежелательном направлении изменяются свойства слабой клейковины (упругость уменьшается, растяжимость возрастает). Это указывает на нецелесообразность применения к обработке слабой пшеницы холодного кондиционирования. Клейковина сильной пшеницы при холодном кондиционировании более устойчива, но ее качество (в результате ослабления) улучшается.

Физические свойства теста из зерна с крепкой клейковиной при использовании горячего кондиционирования ухудшаются. Реологические свойства клейковины пшеницы связывают наряду с другими факторами с количеством и соотношением сульф- гидрильных групп и дисульфидных связей. Имеются многочисленные наблюдения о большей величине отношения —SS—/SH-групп в сильной пшенице по сравнению со слабой.

При смешивании муки из зерна сильной и слабой пшеницы отношение —SS—/—SH всегда возрастает в одной и той же последовательности — с увеличением в смеси доли муки из сильного зерна и с переходом от более мягкого режима гидротермической обработки к более жесткому (фактические данные во всех случаях выше расчетных 86).

Гидротермическая обработка зерна усиливает технологический эффект смешивания муки разной хлебопекарной силы в зависимости от метода и режима. Наблюдаемое возрастание отношения —SS—/—SH (фактическое в большей степени, чем расчетное) свидетельствует о глубокой структурной перестройке и активном химическом взаимодействии белковых фракций смешиваемых партий зерна и муки.

В результате кондиционирования происходит значительное изменение активности ферментов зерна. Активность протеолити- ческих ферментов с увеличением влажности зерна и температуры повышается, но до определенного предела, а затем снижается. Оптимальные для действия протеолитических ферментов условия получены в опытах с мягкой озимой пшеницей: влажность зерна 17%, температура 50 °С и продолжительность обработки 30 мин (активность возросла при отволаживании в течение 24 ч в 1,5 раза). При более продолжительной экспозиции и повышении температуры активность протеаз постепенно уменьшается.

При влажности зерна выше 13,5. 14,5% резко возрастает (неодинаково в разных партиях пшеницы) активность глюта- матдекарбоксилазы, особенно в призародышевой части зерна. В результате содержание свободной глютаминовой кислоты уменьшается при одновременном увеличении количества *у-ами- номасляной кислоты.

изменение активности при гидротермической обработке зерна пшеницы ферментных вытяжек (J-амилазы и ^-фруктофуранозидазы. Активность ^-амилазы и р-фрук- тофуранозидазы зависит от влажности зерна. С увеличением влажности зерна повышается активность этих ферментов. Существенное влияние на их активность оказывает также температура обработки зерна.

Осахаривающая способность цельноразмолотого зерна при кондиционировании возрастает. По опытным данным, у пшеницы сорта Безостая 1 и рядовой она была соответственно (мг мальтозы на 10 г): в контроле 163 и 216, при холодном кондиционировании 220 и 264 и при горячем 300 и 336. Активность ферментов при гидротермической обработке повышается в результате увеличения их растворимости под влиянием нагрева и увлажнения зерна. Об этом свидетельствует возрастание доли азота водорастворимого белка (при холодном и горячем кондиционировании почти одинаково — примерно в два раза) при одновременном незначительном изменении процентного содержания небелкового азота в общем содержании азота.

Содержание связанных липидов в зерне при кондиционировании остается почти без изменения, проявляя слабо выраженную тенденцию к увеличению при горячем и скоростном кондиционировании. Гидротермическая обработка зерна сопровождается значительным изменением в группповом составе липидов. Опытным путем установлено, что наибольшее изменение претерпевают полярные липиды. Их содержание уменьшается, причем особенно сильно в группе связанных липидов: после холодного кондиционирования в 4 раза, горячего в 1,8 и скоростного в 2,3 раза.

Количество свободных жирных кислот заметно возрастает: это результат гидролитического расщепления прежде всего триацилглицеринов, а также и других фракций липидов. Исследователи указывают, что гидротермическая обработка зерна приводит к увеличению содержания витаминов в пшеничной муке ( 87).

Гидротермическая обработка зерна пшеницы вызывает уменьшение концентрации водорастворимых витаминов в периферийных слоях зерна и одновременно значительное возрастание их количества в зоне зародыша и небольшое — в эндосперме. Направленность в миграции водорастворимых витаминов при гидротермической обработке зерна биологически объясняется так: витамины как составная часть коферментов играют большую роль при эмбриональном пробуждении зерна.

Перемещение витаминов в зерне при обработке теплом и водой повышает их концентрацию в пшеничной муке. При нагреве зерна свыше 45. 50°С количество витаминов в муке снижается. Один из результатов гидротермической обработки — снижение зольности пшеничной муки высоких сортов: при холодном кондиционировании на 0,10. 0,12%, при горячем на 0,12. 0,15%. Это происходит по следующим причинам: гидротермическая обработка делает более эластичными оболочки, в связи с чем они с большей легкостью отделяются при размоле, снижая количество поступающих в муку высокозольных частиц; при обработке зерна водой и теплом происходит перемещение минеральных веществ вместе с растворенными питательными соединениями из периферийных слоев и эндосперма в зону зародыша ( 88).

При получении пшеницы из зерна I типа односортной муки 70%-ного выхода общее снижение зольности в результате гидротермической обработки зерна происходит на 15. 30% из-за уменьшения зольности эндосперма и на 70. 85% благодаря более полному отделению оболочек в связи с повышением их эластичности и пластичности.

Отдельные элементы, переходящие в состав золы, перемещаются по-разному. Перемещение фосфорсодержащих веществ сопровождается изменением различных форм фосфора. Содержание кислоторастворимого фосфора в целом при холодном способе обработки увеличивается больше, чем при горячем, а фосфора фитина, наоборот, при холодном кондиционировании уменьшается больше, чем при горячем. Неорганического фосфора при обоих вариантах гидротермической обработки становится больше.

Гидротермическая обработка вызывает отток фосфора из срединной и верхушечной частей и обогащение зародышевой части. В том же направлении (в зону зародыша) при холодном й горячем кондиционировании перемещаются железо и микроэлементы калий и магний.

Содержание кальция и натрия в зародыше уменьшается, и одновременно в эндосперме оно увеличивается. Иначе изменяется содержание марганца, никеля и цинка. Если при холодном кондиционировании они накапливаются в срединной части зерна при одновременном обеднении зародышевой, то при горячем кондиционировании концентрация этих микроэлементов в зародышевой части заметно повышается, а во всех остальных уменьшается. Фитин, перемещаясь в зону зародыша, под влиянием фермента фитазы гидролизуется с выделением фосфорной кислоты, вовлекаемой в многочисленные последующие превращения. Весь поступивший в эту зону магний также используется в процессах, развивающихся в пробуждающемся зародыше.

Обработка зерна паром с давлением 0,35 МПа в течение 40 с (скоростное кондиционирование) уменьшает время кондиционирования зерна в 4. 6 раз по сравнению с холодным, улучшает качество муки высшего, первого и второго сортов по цвету на 3. 4 единицы и более при снижении зольности на 0,02. 0,03%. Выход муки высоких сортов повышается на 1,5. 2,0%. Хлебопекарное достоинство зерна улучшается так же, как и при горячем кондиционировании. Наилучших результатов достигают при обработке слабой клейковины. Создается возможность более широкого и эффективного использования зерна пшеницы, в том числе с пониженным качеством.

Все сказанное о химических и технологических изменениях зерна при ГТО указывает на необходимость строго дифференцированного выбора режима кондиционирования зерна пшеницы с учетом ее исходного состояния и качества.

Нагревание или термическую обработку используют в тех случаях, когда клейковина слабая (сортовая особенность зерна, зерно поражено клопом-черепашкой, проросшее и др.)- Цель обработки заключается в том, что, нагревая зерно до температуры 55 . 65 °С, добиваются частичной денатурации белкового комплекса. В результате уменьшается гидратационная способность клейковины, она укрепляется, что приводит к улучшению ее физических свойств и, как следствие, к повышению хлебопекарного достоинства.

Разные фракции белкового комплекса при тепловом воздействии претерпевают неодинаковые изменения. Уже на этапе предварительного нагрева влажного зерна пшеницы при температуре 50 °С, еще не приводящем к денатурационной перестройке белковых веществ, наблюдаются глубокие изменения белка, различные для отдельных белковых фракций и при разных режимах сушки. Наиболее значительны они для альбуминов. Белки клейковины обладают более высокой стойкостью.

Метод улучшения технологического достоинства зерна пшеницы требует дифференцированного выбора режимов и скорости сушки с учетом исходного качества и состояния зерна с обязательной предварительной опытной проверкой. При этой проверке, исходя из состояния клейковинного комплекса, причины, вызвавшей ослабление клейковины, влажности и других показателей качества зерна, приходится устанавливать оптимальную температуру и продолжительность нагрева на небольших пробах зерна.

Метод не получил широкого производственного применения из-за сложности ведения процесса и в результате того, что неполноценное зерно улучшается только частично.

Гидротермическую обработку зерна (ГТО) проводят с целью улучшения его технологических свойств, создания оптимальных условий для переработки зерна, а также для получения круп, отвечающих наивысшим требованиям по своей питательной ценности и органолептическим характеристикам.

А теперь подробно, доступно и интересно о крупе, и почему некоторые крупы при варке превращаются в клейстер.

Варка крупы наиболее сложная технологическая операция, при которой изменяются не только структурно-механические и физико-химические характеристики исходного сырья, но и создается новый в качественном отношении продукт с улучшенными потребительскими свойствами, сформированными под воздействием тепла и влаги. Варка превосходит другие стадии технологического процесса производства крупы по затратам тепловой энергии и продолжительности времени.

Проблематичность вопроса варки крупы заключается в том, что с одной стороны требуется доведение крахмальных зерен до такой степени готовности, чтобы продукт был готов к употреблению в пищу без дополнительной обработки. Однако в процессе клейстеризации крахмала под воздействием температуры и влаги подаваемого подводимого пара на поверхности крупинок образуется слой клейстера, способствующий слипанию и комкованию частичек продукта между собой.

Но при варке крупы из зерна, которое прошло предварительную гидротермическую обработку наблюдается практическое отсутствие слипаемости крупинок в конгломераты. Это объясняется тем, что при использовании предварительного ГТО зерна крахмал в зерне частично клейстеризуется и уже находится в связанном состоянии и не может поглотить такое количество воды как крахмал исходного сырья. Кроме этого белковые вещества, также находясь в денатурированном состоянии, также поглощают меньше влаги.

Кроме очевидных преимуществ ГТО зерна обеспечивает еще один важный показатель эффективности его применения - при варке крупы из зерна, прошедшего ГТО, в каше сохраняется значительно большее количество аминокислот, чем в каше, приготовленной из крупы, где зерно не подвергалось ГТО.

Итак, применение ГТО приводит к увеличению выхода крупы, к улучшению ее потребительских свойств, пищевой ценности и стойкости при хранении. Результатом процесса ГТО является увеличение прочности ядра и более легкое отделение оболочек, которые частично отслеживаются и становятся более хрупкими. Повышение прочности ядра обеспечивает увеличение выхода крупы за счет снижения образования выхода мучели при шелушении. ГТО зерна применяют при выработке крупы из гречихи, овса, кукурузы, гороха, ячменя и пшеницы.

В процессе ГТО используют увлажнители , пропариватели и сушилки . Применение указанного оборудования положительно влияет как на технологические показатели зерна. У крупы выравнивается цвет, она быстрее разваривается до однородной консистенции.

Гидротермическую обработку зерна проводят с целью улучшения его технологических свойств, создания оптимальных условий для переработки зерна, а также получения круп, отвечающих наивысшим требованиям по своей питательной ценности и органолептическим характеристикам.


Гидротермическую обработку зерна проводят с целью улучшения его технологических свойств, создания оптимальных условий для переработки зерна, а также получения круп, отвечающих наивысшим требованиям по своей питательной ценности и органолептическим характеристикам. Применение ГТО приводит к увеличению выхода крупы от 5 до 12%, к улучшению ее потребительских свойств, увеличению пищевой ценности и стойкости при хранении. Результатом процесса ГТО является увеличение прочности ядра и более легкое отделение оболочек, которые частично отслаиваются и становятся более хрупкими. Повышение прочности ядра обеспечивает увеличение выхода крупы за счет снижения образования мучели при шелушении. ГТО зерна применяют при выработке крупы из гречихи, овса, кукурузы, гороха, ячменя и пшеницы.


    – это аппарат периодического действия, предназначенный для проведения гидротермической обработки зерна избыточным давлением водяного насыщенного пара. Используется при пропаривании гречихи и овса. Пропаривание зерна улучшает его технологические свойства и повышает потребительские качества готовой продукции. В конструкции применяются шиберные задвижки ДУ-200 или ДУ-150. (пропариватель для пшеницы, ячменя и гороха) имеет то же назначение, что и ПЗ-1, но отличается непрерывной работой благодаря применению в конструкции шлюзовых затворов. Также существует разница в массе оборудования и некоторых других параметрах. предназначен для варки зерна, крупы и других сыпучих продуктов под избыточным давлением насыщенного водяного пара, непрерывно перемешивая продукт мешалкой. Может работать непрерывно либо периодически в зависимости от типа запорных устройств на загрузке и выгрузке. Используется для производства хлопьев и сушёно-варёных круп. Полностью изготовлен из пищевой нержавеющей стали.

Читайте также: