В результате отдаленной гибридизации получил новый сорт пшеницы

Обновлено: 18.09.2024

А4. Знание центров происхождения культурных растений необходимо для:

Подбора исходного материала для получения нового сорта;

Изучения движущих сил эволюции;

Создания средств защиты от вредителей;

Разработки способов защиты от действия мутагенных факторов.

А5. Назовите растения, родиной которых был Южноамериканский центр.

1) картофель, томаты, арахис;

2) рис, сахарный тростник;

3) соя, просо, чай;

4) маслины, чечевица, капуста.

А6. Назовите растения, родиной которых был Средиземноморский центр.

1) кукуруза, хлопчатник, какао, фасоль;

2) рис, сахарный тростник;

3) пшеница, рожь, виноград;

4) маслины, горох, капуста, лен.

А7. Собаки породы немецкая овчарка и собаки породы кавказская овчарка:

Разных семейств 3) одной популяции

Разных видов 4) одного вида

А8. Домашние животные, в отличие от своих диких предков, характеризуются:

В основе селекции растений лежит искусственный отбор, когда человек отбирает растения с интересующими его признаками. До XVI-XVII вв. отбор происходил бессознательно, то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последние столетия человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию, скрещивая растения с желательными признаками и в дальнейшем отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно. Например, один сорт пшеницы отличается прочным стеблем и устойчив к полеганию, а другой сорт с тонкой соломиной не заражается стеблевой ржавчиной. При скрещивании растений из двух сортов в потомстве возникают различные комбинации признаков. Но отбирают именно те растения, которые одновременно имеют прочную соломину и не болеют стеблевой ржавчиной. Так создается новый сорт.

Основные методы селекции вообще и селекции растений в частности — отбор и гибридизация.

Для перекрестноопыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Таким образом получают, например, новые сорта ржи. Эти сорта не являются генетически однородными.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестноопыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов.

Основная причина этого — переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают, выбраковываясь естественным отбором.

Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина — объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов. В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью.

В основе явления полиплоидии лежат следующие причины: каждому виду живых организмов присущ строго определенный набор хромосом. В половых клетках все хромосомы различны. Такой набор называется гаплоидным и обозначается буквой п. Клетки тела (соматические) обычно содержат двойной набор хромосом, называемый диплоидным (2n). Если хромосомы, удвоившиеся в процессе деления, не разойдутся в дочерние клетки, а останутся в одном ядре, то возникает явление кратного увеличения числа хромосом, называемое полиплоидией. В сельскохозяйственной практике широко используются триплоидная сахарная свекла, четырехплоидные клевер, рожь и твердая пшеница, а также шестиплоидная мягкая пшеница.

Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись и остаются в одном ядре. Одно из таких веществ — колхицин. Применение колхицина для получения искусственных полиплоидов является примером искусственного мутагенеза, применяемого при селекции растений.

Путем искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы. Этими же методами удалось получить новые штаммы грибов, выделяющие в 20 раз больше антибиотиков, чем исходные формы.

Сейчас в мире культивируют более 250 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза. Это сорта кукурузы, ячменя, сои, риса, томатов, подсолнечника, хлопчатника, декоративных растений.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

Отдаленная гибридизация — это метод, при котором производят скрещивание растений разных видов одного рода или даже разных родов. Существуют гибриды ржи и пшеницы, пшеницы и дикого злака эгилопс. Однако отдаленные гибриды, как правило, бесплодны, так как у них невозможен нормальный процесс созревания гамет из-за неспособности хромосом конъюгировать в профазе I мейоза.

К одному из достижений современной генетики и селекции относится преодоление бесплодия межвидовых гибридов. Впервые это удалось сделать Г. Д. Карпеченко при получении капустно-редечного гибрида. В результате отдаленной гибридизации было получено новое культурное растение — тритикале — гибрид пшеницы с рожью (лат. Triticum — пшеница и Secale — рожь). Отдаленная гибридизация широко применяется в плодоводстве.

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Методы селекции растений


1. Какая разница с генетической точки зрения между самоопылением и перекрестным опылением?
2. Что такое полиплоидия?
3. Почему большинство культурных растений размножают вегетативно?

Центры происхождения культурных растений.

Основой успеха селекционной работы в значительной степени является генетическое разнообразие исходного материала. В своей работе селекционеры стараются использовать все многообразие диких и культурных растений.

На необходимость использовать в селекции растений все видовое многообразие флоры нашей планеты указывал еще академик Николай Иванович Вавилов, выдающийся генетик и селекционер. Под его руководством были организованы научные экспедиции в разные регионы Земли для сбора образцов культурных растений, их диких предков и сородичей. В ходе экспедиций было собрано более 160 тыс. образцов разных видов и сортов растений.

В настоящее время эта уникальная коллекция хранится во Всесоюзном институте растениеводства и используется селекционерами в их практической работе. Так, известный сорт озимой пшеницы Безостая-1 был получен в результате гибридизации аргентинских пшениц из коллекции Н. И. Вавилова с отечественными сортами.

Н.И. Вавилов

Работа по созданию семенных коллекций культурных и диких растений продолжается и в наше время. Сейчас коллекция, начало которой положил Н. И. Вавилов, включает более 320 тыс. образцов.

Анализ образцов культурных растений и их диких предков, собранных в предпринятых экспедициях, позволил в свое время Вавилову установить закономерности географического распределения разновидностей и форм культурных растений, а также открыть центры древнего земледелия, где были окультурены дикие виды растений. Н. И. Вавилов выделил 8 центров происхождения культурных растений: 1) Восточноазиатский — родина сои, проса, гречихи, многих плодовых и овощных культур; 2) Южноазиатский тропический — родина риса, сахарного тростника, цитрусовых, многих овощных культур; 3) Юго-Западноазиатский — пшеница, рожь, бобовые культуры, лен, конопля, морковь, виноград и др.; 4) Переднеазиатский — родина мягкой пшеницы, ячменя, овса; 5) Среднеземноморский — родина капусты, свеклы, маслин; б) Абиссинский — родина твердой пшеницы, сорго, бананов, кофе; 7) Центральноамериканский — родина кукурузы, какао, тыквы, табака, хлопчатника; 8) Южноамериканский — родина картофеля, ананаса, хинного дерева.

Дальнейшие исследования ученых привели к установлению еще четырех центров; Австралийского, Африканского, Европейско-Сибирского и Североамериканского (рис. 94).

Закон гомологических рядов наследственной изменчивости.

Центры происхождения культурных растений

На примере злаков Н. И. Вавилов показал, что сходные признаки наблюдаются у разных видов данного семейства. Так, у пшеницы, ячменя, овса и кукурузы бывает белая, красная и черная окраска зерновок, существуют голые и пленчатые зерновки, встречаются колосья с длинными и короткими остями, безостые и с вздутиями вместо остей. В ходе последующих наблюдений было выяснено, что данный закон применим не только для растений, но распространяется на животных и микроорганизмы. Так, альбинизм встречается у всех классов позвоночных животных, короткопалость наблюдается у всех пород крупного рогатого скота, овец и собак.

Основные методы селекции растений.

Биологические особенности растений позволяют в селекционной работе с ними использовать инбридинг, полиплоидию, искусственный мутагенез, отдаленную гибридизацию и другие методы.

Отбор и гибридизация являются основными и традиционными методами селекции растений. Применяя массовый или индивидуальный отбор, селекционер не создает ничего нового, а выделяет растения с полезными качествами, уже имеющиеся в популяции. Этим методом выведены многие сорта, в том числе так называемые сорта народной селекции, например знаменитый по своим качествам сорт яблони Антоновка.

Для создания сортов растений с запрограммированными качествами ведется специальная целенаправленная работа — подбирается исходный материал, проводится гибридизация с последующим отбором.

Используя метод гибридизации с последующим отбором, селекционеры получили ценные высокоурожайные сорта пшеницы, ржи, подсолнечника, овощных, плодовых и других культур.

В разработку теории и практики селекции растений большой вклад внес ученый-селекционер Иван Владимирович Мичурин (1855— 1935), Он вывел около 300 новых сортов плодовых растений. В своих работах он широко применял скрещивание географически отдаленных форм. Так, скрещивая французский сорт груши Бере рояль с дикой уссурийской и выращивая сеянцы в условиях средней полосы России, он создал сорт Бере зимняя, сочетающий высокие вкусовые качества плодов с зимостойкостью (рис, 95). Методы, разработанные И. В. Мичуриным, успешно используются селекционерами и в настоящее время.


В селекции растений широко применяется явление гетерозиса.

Сначала выводят ряд отличающихся друг от друга чистых линий, а затем производят межлинейное скрещивание.

Выяснив, в каких случаях эффект гетерозиса проявляется наиболее сильно, используют лишь эти линии для получения гибридных семян. Эта методика применяется для получения высоких урожаев кукурузы, огурцов, томатов и других культур (рис. 96).

Методы селекции растений

Методы селекции растений

Методы селекции растений

Полиплоидию (кратное увеличение числа хромосом) издавна использовали при создании сортов пшеницы, овса, картофеля, хлопчатника, плодовых, декоративных и других культур. Полиплоидные растения появлялись в популяциях случайно в результате естественных мутаций. В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы.

Большинство их неперспективны, но отдельные формы служат ценным материалом для гибридизации и отбора. Полиплоидные растения могут отличаться более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Использование метода полиплоидии позволило селекционерам получить ценные сорта сахарной свеклы, ржи, гречихи, фасоли и других культур (рис. 97).

Отдаленная гибридизация позволяет в одном организме совместить признаки, характерные для растений разных видов и даже родов. Получать такие формы из-за нескрещиваемости родителей и бесплодия гибридов очень сложно. Стерильность гибридов связана с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у отдаленных гибридов известный генетик Георгий Дмитриевич Карпеченко еще в 1924 г. предложил использовать метод полиплоидии, работая с гибридами редьки и капусты.

Сочетание отдаленной гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдаленных гибридов. В результате многолетних работ академика Н. В. Цицина и его сотрудников были получены многолетние пшенично-пырейные гибриды. Для получения сорта тритикале, сочетающего многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах), применялась следующая схема:

Р: пшеница (2n = 42) х рожь (2n = 14)
G : n = 21
F1 2n = 28 (все непарные)
G: Мейоз нарушен, гибрид стерилен, нормальных гамет нет.
Обработка колхицином приводит к удвоению числа хромосом,
F1 :(колхицированное): 2n = 56
G : n = 28
F2, F3, , Fn : 2n= 56 (тритикале)

У таких гибридов в клетках содержится полный диплоидный набор хромосом обоих родителей, поэтому их хромосомы конъюгируют друг с другом и мейоз проходит нормально.

С помощью метода отдаленной гибридизации с последующим получением полиплоидных форм были выведены новые перспективные сорта картофеля, табака и других культур.

Методами отдаленной гибридизации и радиационного мутагенеза созданы перспективные сорта хлопчатника. Химический мутагенез лежал в основе получения многих новых сортов кукурузы, пшеницы, риса, овса, подсолнечника.

Методы клеточной инженерии.

Методы клеточной инженерии.

Селекционеры все шире начинают применять для получения новых сортов растений методы клеточной инженерии. В качестве примера можно привести работу по соматической гибридизации двух видов картофеля: культурного — Solanum tuberosum и дикого Solanum chacoense (рис. 98). Для гибридизации использовались протопласты (греч. protos — первый и греч. plastos — вылепленный, образованный) — клетки, полностью лишенные клеточной стенки (оболочки) и имеющие только клеточную мембрану, которая ограничивает цитоплазму с различными органоидами.

Полученный соматический гибрид в сравнении с родительскими формами имел промежуточные характеристики по форме листа, величине клубней, но отличался большей мощностью куста и высотой стеблей, благодаря чему и был включен в дальнейшую практическую селекционную работу (рис. 99).

Картофель

Метод вегетативного размножения культурой тканей широко применяется в селекции для быстрого размножения новых перспективных сортов растений.

В различных регионах нашей страны созданы научно-исследовательские институты и селекционные станции, которые проводят работы по выведению и районированию новых сортов растений. Эта работа играет важнейшую роль в повышении урожайности сельскохозяйственных культур и обеспечении населения продовольствием.
Центры происхождения культурных растений. Закон гомологических рядов наследственной изменчивости.

1. Какие методы применяются в селекции растений?
2. Какое значение для селекции имеет открытие закона гомологических рядов наследственной изменчивости?
3. Почему межлинейные гибриды сохраняют ценные признаки при вегетативном размножении и теряют их при семенном?
4. Почему селекционеры стремятся Получить растения-полиплоиды?
5. Какая методика позволяет преодолеть стерильность межвидовых (межродовых) гибридов?

Онлайн библиотека с учениками и книгами, плани-конспекти уроковс Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Ответ. Опыление — необходимое условие для процесса оплодотворения, протекающего в цветке. Пыльца из пыльников так или иначе переносится на рыльце цветка. Различают два типа опыления — самоопыление и перекрестное опыление. Если пыльца переносится в пределах данного цветка или данной особи, то в этом случае происходит самоопыление. Различают разные формы самоопыления: автогамию, когда рыльце опыляется пыльцей того же цветка, гейтопогамию (соседствениое опыление), когда рыльце опыляется пыльцой других цветков той же особи, и, наконец, клейстогамию, когда самоопыление происходит в закрытых, нераспускающихся цветках. Эти разные формы самоопыления в генетическом отношении вполне равноценны.

Если перенос пыльцы осуществляется между цветками разных особей, то в этом случае происходит перекрестное опыление. Перекрестное опыление — основной тип опыления цветковых растений. В цветках весьма обычны специальные устройства морфологического и физиологического характера, предотвращающие или по крайней мере ограничивающие самоопыление. Таковы двудомность, дихогамия, самонесовместимость, гетеростилия и др. Однако в них имеются также приспособления к самоопылению, способствующие последнему в том случае, когда перекрестное опыление по каким-либо причинам не произойдет. Иначе говоря, цветок допускает возможость не только перекрестного опыления, но и самоопыления.

Перекрестное опыление осуществляется следующими способами: с помощью насекомых (энтомофилия), птиц (орнитофилия), летучих мышей (хироптерофилия) или агентов неживой природы — ветра (анемофилия) и воды (гидрофилия). В соответствии с этим можно говорить о биотическом и абиотическом опылении.

Перекрестное опыление обусловливает обмен генами и интеграцию мутаций, поддерживает высокий уровень гетерозиготности популяции, определяет единство и целостность вида. Это создает широкое поле для деятельности естественного отбора.

Обоеполость и энтомофильность цветка представляют первичное явление. В цветках первых покрытосеменных наряду с весьма примитивной энтомофилией, вероятно, осуществлялось также самоопыление. Обоеполость цветка способствовала самоопылению, поскольку приспособления к ограничению его еще не были развиты. Разделение полов в цветке ограничивает или вполне исключает самоопыление. Оно привело к образованию разных половых типов цветковых растений

2. Что такое полиплоидия?

Ответ. Полиплоидия - наследственное изменение, связанное с кратным увеличением основного числа хромосом в клетках организма. Полиплодия широко распространена у растений. Обычно у полиплоидных растений более крупные размеры, повышенное содержание ряда веществ, лучшая устойчивость к неблагоприятным условиям внешней среды и т. п. Различают два типа полиплоидов: аутополиплоиды и аллополиплоиды.

3. Почему большинство культурных растений размножают вегетативно?

Ответ. Вегетативный способ размножения – в настоящее время единственный путь закрепления у растений ценных сортовых свойств, которые отбирались и накапливались человеком в процессе многовековой культуры. Чистые сорта, ценящиеся своими качествами (окраска, махровость, запах и т. п.) , представляется возможным сохранить только при вегетативном размножении. Именно в этом кроется существенное отличие вегетативного размножения от семенного. Вегетативно размноженные растения цветут скорее, чем выращенные из семян.

Вегетативное размножение - размножение растений происходит при помощи вегетативных органов: ветвей, корней, побегов, листьев или их частей. При этом генетических изменений не происходит. Новое растение несет в себе всё от материнского. Успех вегетативного размножения зависит от многочисленных факторов: природы растения (сортовые особенности, возраст) , внешних условий (субстрат, тепло, влага, доступ воздуха, свет) .

При вегетативном размножении не происходит слияния клеток, новые особи появляются из образований на вегетативных частях растения (луковицы, усы на стеблях, почки на корнях, и др.) , или напрямую из вегетативных органов или их частей (частей корня, стебля, листьев) . При вегетативном размножении развитие нового организма продолжается с того этапа, на котором остановилось развитие органа, или его части, которая была взята для размножения. Так, например, при половом размножении многолетние растения часто зацветают только через десятки лет (многие древесные породы) ; при вегетативном размножении этих растений, вступивших в пору плодоношения, новые растения зацветают в первый или второй год.

Вопросы после § 65

1. Какие методы применяются в селекции растений?

Ответ. Биологические особенности растений позволяют в селекционной работе с ними использовать инбридинг, полиплоидию, искусственный мутагенез, отдаленную гибридизацию и другие методы.

Отбор и гибридизация являются основными и традиционными методами селекции растений. Применяя массовый или индивидуальный отбор, селекционер не создает ничего нового, а выделяет растения с полезными качествами, уже имеющиеся в популяции. Этим методом выведены многие сорта, в том числе так называемые сорта народной селекции, например знаменитый по своим качествам сорт яблони Антоновка.

Для создания сортов растений с запрограммированными качествами ведется специальная целенаправленная работа – подбирается исходный материал, проводится гибридизация с последующим отбором.

Используя метод гибридизации с последующим отбором, селекционеры получили ценные высокоурожайные сорта пшеницы, ржи, подсолнечника, овощных, плодовых и других культур.

В разработку теории и практики селекции растений большой вклад внес ученый-селекционер Иван Владимирович Мичурин (1855–1935). Он вывел около 300 новых сортов плодовых растений. В своих работах он широко применял скрещивание географически отдаленных форм. Так, скрещивая французский сорт груши Бере рояль с дикой уссурийской и выращивая сеянцы в условиях средней полосы России, он создал сорт Вере зимняя, сочетающий высокие вкусовые качества плодов с зимостойкостью. Методы, разработанные И. В. Мичуриным, успешно используются селекционерами и в настоящее время.

В селекции растений широко применяется явление гетерозиса. Сначала выводят ряд отличающихся друг от друга чистых линий, а затем производят межлинейное скрещивание. Выяснив, в каких случаях эффект гетерозиса проявляется наиболее сильно, используют лишь эти линии для получения гибридных семян. Эта методика применяется для получения высоких урожаев кукурузы, огурцов, томатов и других культур.

Полиплоидию (кратное увеличение числа хромосом) издавна использовали при создании сортов пшеницы, овса, картофеля, хлопчатника, плодовых, декоративных и других культур. Полиплоидные растения появлялись в популяциях случайно в результате естественных мутаций. В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы. Большинство их неперспективны, но отдельные формы служат ценным материалом для гибридизации и отбора. Полиплоидные растения могут отличаться более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Использование метода полиплоидии позволило селекционерам получить ценные сорта сахарной свеклы, ржи, гречихи, фасоли и других культур.

Отдаленная гибридизация позволяет в одном организме совместить признаки, характерные для растений разных видов и даже родов. Получать такие формы из-за нескрещиваемости родителей и бесплодия гибридов очень сложно. Стерильность гибридов связана с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у отдаленных гибридов известный генетик Георгий Дмитриевич Карпеченко еще в 1924 г. предложил использовать метод полиплоидии, работая с гибридами редьки и капусты.

Сочетание отдаленной гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдаленных гибридов. В результате многолетних работ академика Н. В. Цицина и его сотрудников были получены многолетние пшенично-пырейные гибриды. Для получения сорта тритикале, сочетающего многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах), применялась следующая схема:

У таких гибридов в клетках содержится полный диплоидный набор хромосом обоих родителей, поэтому их хромосомы конъюгируют друг с другом и мейоз проходит нормально.

С помощью метода отдаленной гибридизации с последующим получением полиплоидных форм были выведены новые перспективные сорта картофеля, табака и других культур.

Методами отдаленной гибридизации и радиационного мутагенеза созданы перспективные сорта хлопчатника. Химический мутагенез лежал в основе получения многих новых сортов кукурузы, пшеницы, риса, овса, подсолнечника.

2. Какое значение для селекции имеет открытие закона гомологических рядов наследственной изменчивости?

На примере злаков Н. И. Вавилов показал, что сходные признаки наблюдаются у разных видов данного семейства. Так, у пшеницы, ячменя, овса и кукурузы бывает белая, красная и черная окраска зерновок, существуют голые и пленчатые зерновки, встречаются колосья с длинными и короткими остями, безостые и с вздутиями вместо остей. В ходе последующих наблюдений было выяснено, что данный закон применим не только для растений, но распространяется на животных и микроорганизмы. Так, альбинизм встречается у всех классов позвоночных животных, короткопалость наблюдается у всех пород крупного рогатого скота, овец и собак.

3. Почему межлинейные гибриды сохраняют ценные признаки при вегетативном размножении и теряют их при семенном?

Ответ. При вегетативном размножении сохраняется гибридный геном, так как увеличение размера и размножение идет за счет обычного митотического деления клеток (обычный рост) без изменения генома и, следовательно, признаков.

При семенном размножении сначала идет мейотическое деление (редукционное), изменяющее набор генов (остается только половина хромосом). Затем опыление и образуется клетка с новым набором генов. Образуется семя, в котором зародыш состоит из клеток с новым геномом. Следовательно организм приобретает новые свойства.

4. Почему селекционеры стремятся получить растения-полиплоиды?

Ответ. Растения-полиплоиды чаще характеризуются крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам окружающей среды и другими хозяйственно полезными качествами. Они представляют собой важный источник изменчивости и могут быть использованы как исходный материал для селекции и создания высокоурожайных сортов растений. Среди наиболее важных сельскохозяйственных культур полиплоиды - пшеница, хлопчатник, сахарный тростник, банан, картофель, подсолнечник. Красивые садовые цветы (хризантемы, георгины) - также полиплоидные.

Искусственно полиплоидные растения получают при помощи колхицина - алкалоид, который угнетает образование митотического веретена в результате нарушения образований микротрубочек. Встречаются полиплоиды и в природных популяциях. Большинство растений способно к вегетативному размножению и поэтому эффективно воспроизводятся в полиплоидном состоянии.

5. Какая методика позволяет преодолеть стерильность межвидовых (межродовых) гибридов?

Ответ. Для преодоления стерильности гибридов первого поколения применяют различные методы, из которых можно выделить два главных: 1) возвратные скрещивания, 2) удвоение числа хромосом у гибридных растений для получения аллополиплоида.

Применение возвратных скрещиваний основано на том, что женские гаметы гибрида обычно обладают большей жизнеспособностью, чем мужские. Использование для опыления гибрида нормальной пыльцы одной из родительских форм позволяет получить семена для дальнейшей работы. С этой же целью гибриды первого поколения можно опылять пыльцой третьего родственного вида, например: (рожь x пшеница) x пырей; (рожь x пырей) x пшеница; (пшеница x пырей) x рожь.

Наиболее надежным методом преодоления стерильности межвидовых и межродовых гибридов F1 является удвоение у них числа хромосом. Поскольку у полученных таким путем амфидиплоидов каждый тип хромосом представлен парой, то мейоз протекает сравнительно нормально с образованием жизнеспособных гамет, содержащих по одному геному скрещиваемых видов. Преодолению несовместимости разных видов и стерильности их гибридов могут способствовать и некоторые другие приемы, например создание благоприятных условий во время цветения растений, применение физиологически активных веществ, химических мутагенов и других факторов.

Количество завязывающихся семян на гибридных растениях F1 зависит также от общего числа цветков, которое можно увеличить созданием наиболее благоприятных условий для формирования генеративных органов, а также путем вегетативного размножения растений. Разработаны достаточно эффективные способы клонирования разных видов растений, в том числе злаковых, например риса и др.

Использование новых методов биотехнологии значительно расширяет возможности практического использования отдаленной гибридизации. К числу таких методов может быть отнесена культура пыльников, зародышей, слияния протопластов.

Читайте также: