При скрещивании между собой гороха полученного в 1 поколении мендель во 2 поколении получил

Обновлено: 18.09.2024

© имеет большое количество хорошо заметных альтернативных признаков:

¨ окраска венчика — белая или красная;

¨ окраска семядолей — зеленая или желтая;

¨ форма семени — морщинистая или гладкая;

¨ окраска боба — желтая или зеленая;

¨ форма боба — округлая или с перетяжками;

¨ расположение цветков или плодов — по всей длине стебля или у его верхушки;

¨ высота стебля — длинный или короткий;

© является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение;

© строение венчика цветка позволяет защитить цветок от опыления посторонней пыльцой.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель шел от простого к сложному. Свои исследования он начал с изучения закономерностей наследования всего лишь одной пары альтернативных признаков.

Моногибридное скрещивание

Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Таким образом, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака (например, белая и красная окраска венчика), а все остальные признаки организма во внимание не принимаются.

Первый закон Менделя

Классическим примером моногибридного скрещивания является скрещивание сортов гороха с желтыми и зелеными семенами (рис. 323). При скрещивании растения с желтыми и зелеными семе-

как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным. Само же явление преобладания у гибридов признака одного из родителей Г. Мендель назвал доминированием.

Позже выявленная закономерность была названа законом единообразия гибридов первого поколения, или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Второй закон Менделя

Второй закон наследственности был сформулирован Менделем при изучении гибридов второго поколения. Семена гибридов первого поколения использовались Менделем для получения второго гибридного поколения. Результаты опытов Менделя приведены в таблице.

Результаты расщепления по различным признакам в F2,

полученные в опытах Г.Менделя с горохом.

Признаки Доминантные Рецессивные Всего
число % число %
Форма семян 74,74 25,26
Окраска семядолей 75,06 24,94
Окраска семенной кожуры 75,90 24,10
Форма боба 74,68 25,32
Окраска боба 73,79 26,21
Расположение цветков 75,87 24,13
Высота стебля 73,96 26,04
Всего: 74,90 25,10

Анализ данных таблицы позволяет сделать ряд выводов:

© единообразия гибридов во втором поколении не наблюдается — часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;

© количество гибридов, несущих доминантный признак, приблизительно в 3 раза больше, чем гибридов, несущих рецессивный признак, причем это соотношение наблюдается и по каждой отдельно взятой паре, и по всей совокупности растений;

© рецессивный признак не исчезает, а лишь подавляется и проявляется во втором гибридном поколении;

© наследуются не сами признаки, а наследственные задатки, или факторы (в современной терминологии — гены), их определяющие.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям.

Таким образом, на основе скрещивания гибридов первого поколения и анализа второго был сформулирован второй закон Менделя: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

Гипотеза чистоты гамет

Для объяснения явления доминирования и расщепления гибридов второго поколения Мендель предложил гипотезу чистоты гамет. Он предположил, что развитие признака определяется соответствующим ему наследственным фактором. Один наследственный фактор гибриды получают от отца, другой — от матери. У гибридов F1 проявляется лишь один из факторов — доминантный. Однако, среди гибридов F2, появляются особи с признаками исходных родительских форм. Это значит, что наследственные факторы сохраняются в неизменном виде, а в половые клетки попадает только один наследственный фактор, то есть они "чисты" (не содержат второго наследственного фактора).

Итак, гипотеза чистоты гамет гласит: гаметы "чисты", содержат только один наследственный признак из пары.

Наследственные задатки (гены) Мендель предложил обозначать большими буквами латинского алфавита, например, доминантный — большой — А, рецессивный — маленькой — а.

Каждый организм один задаток (ген) получает от материнского организма, а другой — от отцовского, следовательно, они являются парами. Явление парности генов называют аллелизмом, парные гены — аллельными, а каждый ген пары — аллелью. Например, желтая и зеленая окраска семян гороха являются двумя аллелями (соответственно, доминантный аллель и рецессивный аллель) одного гена.

Множественный аллелизм
Цитологические основы моногибридного скрещивания

В настоящее время известно, что существуют гены, имеющие не два, а большее количество аллелей. Например, у мухи дрозофилы ген окраски глаз представлен 12 аллелями: красная, коралловая, вишневая, абрикосовая и т.д. до белой. Наличие у гена большого количества аллелей называют множественным аллелизмом. Множественный аллелизм является следствием возникновения нескольких мутаций одного и того же гена.

Поскольку в своих опытах Г. Мендель использовал растения, относящиеся к разным чистым линиям, аллельные гены этих растений одинаковы. Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными. Они могут быть гомозиготными по доминантным (АА) или по рецессивным генам (аа). Организмы, имеющие разные аллели одного гена, называются гетерозиготными (Аа).

Во времена Менделя строение и развитие половых клеток еще не было изучено. Поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время легко объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения (рис. 324).

Генетическая запись осуществляется следующим образом:

Ген Признак Желт. Зелен.

А — желтые семена; Гам.

а — зеленые семена;

Р АА х аа F1 Аа х Аа

Желт. Зелен. Желт. Желт.

F2 АА + 2Аа + аа

Желт. Желт. Зелен.

При оплодотворении гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа,то есть оба аллеля одного и того же гена. У гибридного организма во время мейоза хромосомы расходятся в разные клетки и образуется два типа гамет — 50% гамет будет нести ген А, 50% — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую клетку. А поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех типов зигот.

Для удобства расчета сочетания гамет при оплодотворении английский генетик Р.Пеннет предложил проводить запись в виде решетки, которую так и назвали — решетка Пеннета. По вертикали указываются женские гаметы, по горизонтали — мужские. В клетки решетки вписываются генотипы зигот, образовавшихся при слиянии гамет.

Из приведенной схемы видно, что образуется три типа зигот. Половина из них — гетерозиготы (несут гены Аи а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Причем желтосеменные растения одинаковы по фенотипу, но различны по генотипу: 1/3 являются гомозиготными по доминантному признаку и 2/3 — гетерозиготны.

Таким образом, учитывая цитологические основы, второй закон Менделя можно сформулировать следующим образом: при скрещивании гибридов первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.

Неполное доминирование

Явление доминирования не абсолютно. Сам Мендель столкнулся с тем, что при скрещивании крупнолистного сорта гороха с мелколистным гибриды первого поколения не повторяли признак ни одного из родительских растений. Все они имели листья средней величины, то есть выражение признака у гибридов носит промежуточный характер с большим или меньшим уклонением в сторону одного из родительских признаков.

В качестве примера рассмотрим наследование окраски плода у земляники (рис. 326). При скрещивании гомозиготных красноплодных и белоплодных сортов земляники, все первое поколение гибридов получается розовоплодным. При скрещивании гибридов получаем

расщепление в соотношении соотношении 1 красноплодная: 2 розовоплодные: 1 белоплодная. Характерно то, что при неполном доминировании расщепление по генотипу соответствует расщеплению по фенотипу, так как гетерозиготы фенотипически отличаются от гомозигот.

Анализирующее скрещивание. Генотип гороха с зелеными семенами может быть только аа. Горох с желтыми семенами может иметь генотип АА или Аа. Для того, чтобы определить генотип особи, обладающей доминантными признаками, проводят анализирующее скрещивание — скрещивают с особью, гомозиготной по рецессивным признакам.

Если исследуемая особь гомозиготна (АА), то потомство от такого скрещивания будет иметь желтые семена и генотип Аа:

АА х аа; F1 — 100% Аа.

Если исследуемая особь гетерозиготна (Аа), то она образует два типа гамет и 50% потомства будет иметь желтые семена и генотип Аа, а 50% — зеленые семена и генотип аа: Аа х аа; F1 — 50% Аа, 50% аа.

Дигибридное скрещивание

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г.Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков.

Дигибридным называют скрещивание двух организмов, отличающихся друг от друга по двум парам альтернативных признаков.

Третий закон Менделя

Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (в) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами (рис. 325). От самоопыления 15 гибридов F1 было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых.

Анализируя полученное потомство, Мендель, прежде всего, обратил внимание на то, что, наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена). Он обратил внимание на то, что расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Однако Менделя интересовал вопрос: зависит ли расщепление одной пары признаков (гладкие и морщинистые семена) от расщепления другой пары (желая окраска семян и зеленая) или эти пары тесно связаны между собой.

© 9/16 растений F2 обладали обоими доминантными признаками (гладкие желтые семена);

© 3/16 были желтыми (доминантный) и морщинистыми (рецессивный);

© 3/16 были зелеными (рецессивный) и гладкими (доминантный);

© 1/16 растений F2 обладали обоими рецессивными признаками (морщинистые семена зеленого цвета).

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (2 1 ) (желтые и зеленые семена) и дают во втором поколении два

фенотипа в соотношении 3+1, то при дигибридном они отличаются по двум парам признаков (2 2 ) и дают во втором поколении четыре фенотипа в соотношении (3+1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: (2 3 ). — восемь фенотипов в соотношении (3+1) 3 .

Четыре фенотипа скрывают девять разных генотипов: 1 — ААBB; 2 — AABb; 1 — AAbb; 2 — AaBB; 4 — AaBb; 2 — Aabb; 1 — aaBB; 2 — aaBb; 1 — aabb. Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1 ), то при при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтое гладкое семя и зеленое морщиностое семя), но и возникновение новых комбинаций признаков (желтое морщинистое семя и зеленое гладкое семя).

Проведенное исследование позволило сформулировать закон независимого комбинирования генов (третий закон Менделя): при скрещивании двух гетерозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга в соотношении 3:1 и комбинируются во всех возможных сочетаниях.

Третий закон Менделя справедлив только для тех случаев, когда анализируемые гены находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, в — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВв. При образовании гамет, из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайности расхождения хромосом в первом делении мейоза ген Аможет попасть в одну гамету с геном В или с геном в, а ген аможет объединиться с геном В или с геном в. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25 %): АВ, Aв, aB, aв. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. Все возможные сочетания мужских и женских гамет легко установить с помощью решетки Пеннета. При анализе результатов видно, что по фенотипу потомство делится на четыре группы: 9 желтых гладких: 3 желтых морщинистых: 3 зеленых гладких: 1 желтая морщинистая. Если проанализировать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых — 3:1, отношение числа гладких к числу морщинистых — 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т.е. независимо от другой пары признаков.

3 закона Менделя или менделевская генетика являются наиболее важными утверждениями о биологическом наследовании. Грегорио Мендель, монах и австрийский натуралист, считается отцом генетики. В ходе своих экспериментов с растениями Мендель обнаружил, что определенные черты наследуются по определенным закономерностям..

Мендель изучал наследование, экспериментируя с горохом от растения этого вида. Pisum Sativum он был в своем саду. Это растение было отличной тестовой моделью, потому что оно могло самоопыляться или перекрестно оплодотворяться, в дополнение к наличию нескольких признаков, которые имеют только две формы.


  • 1 История Грегора Менделя
  • 2 эксперимента Менделя
    • 2.1 Результаты экспериментов
    • 2.2 Как проводились эксперименты Менделя?
    • 2.3 Почему Мендель выбрал растения гороха?
    • 3.1 Первый закон Менделя
    • 3.2 Второй закон Менделя
    • 3.3 Третий закон Менделя
    • 4.1 Доминирующая
    • 4.2 Рецессивный
    • 4.3 Гибрид
    • 8.1 Наследие, связанное с полом

    История Грегора Менделя

    Грегор Мендель считается отцом генетики, поскольку он оставил свои три закона. Он родился 22 июля 1822 года, и, как говорят, с самого раннего возраста он находился в непосредственном контакте с природой, и это вызвало у него интерес к ботанике..

    В 1843 году он вошел в монастырь Брюнн, а через три года был рукоположен в священники. Позже, в 1851 году он решил изучать ботанику, физику, химию и историю в Венском университете..

    После обучения Мендель вернулся в монастырь, и именно там он провел эксперименты, которые позволили ему сформулировать так называемые законы Менделя..

    К сожалению, когда он представил свою работу, она осталась незамеченной, и говорят, что Мендель отказался от экспериментов по наследству.

    Тем не менее, в начале двадцатого века его работы начали получать признание, когда несколько ученых и ботаников провели аналогичные эксперименты и нашли свои исследования.

    Эксперименты Менделя

    Мендель изучил семь характеристик растения гороха: цвет семени, форму семени, положение цветка, цвет цветка, форму стручка, цвет стручка и длину стебля..


    Для экспериментов Менделя было три основных шага:

    1-путем самооплодотворения производится поколение чистых растений (гомозигот). То есть растения с фиолетовыми цветами всегда производили семена, которые производили фиолетовые цветы. Он назвал эти растения поколением P (родителей).

    2-Затем он скрестил пары чистых растений с разными чертами, и потомки их он назвал сыновьями второго поколения (F1)..

    3-Наконец, он получил третье поколение растений (F2) путем самоопыления двух растений поколения F1, то есть скрещивания двух растений поколения F1 с одинаковыми признаками.

    Результаты экспериментов

    Мендель нашел невероятные результаты своих экспериментов.

    Поколение F1

    Мендель обнаружил, что поколение F1 всегда производило одну и ту же черту, хотя у обоих родителей были разные характеристики. Например, если вы пересекли растение с фиолетовыми цветами с растением с белыми цветами, все растения-потомки (F1) имели фиолетовые цветы..

    Это потому, что фиолетовый цветок является чертой доминирующий. Поэтому белый цветок - это черта рецессивный.


    Поколение F2

    В поколении F2 Мендель обнаружил, что 75% цветов были фиолетовыми и 25% были белыми. Ему показалось интересным, что хотя у обоих родителей были фиолетовые цветы, у 25% потомства были белые цветы.

    Появление белых цветов связано с геном или рецессивным признаком, присутствующим у обоих родителей. Вот диаграмма Punnett, показывающая, что у 25% потомков было два гена "b", которые произвели белые цветы:


    Как проводились эксперименты Менделя?

    Эксперименты Менделя были проведены с растениями гороха, довольно сложная ситуация, так как каждый цветок имеет мужскую часть и женскую часть, то есть самоопыляющуюся..

    Так как же Мендель мог контролировать потомство растений? Как я мог их пересечь?.

    Ответ прост: чтобы иметь возможность контролировать потомство растений гороха, Мендель создал процедуру, которая позволила ему предотвратить самооплодотворение растений..

    Процедура состояла в том, чтобы срезать тычинки (мужские органы цветов, которые содержат пыльцевые мешочки, то есть те, которые производят пыльцу) из цветов первого растения (называемого ВВ) и посыпать пыльцу из второго растения в пестик (женский орган цветов, который находится в его центре) первого.

    Этим действием Мендель контролировал процесс оплодотворения, ситуацию, которая позволяла ему проводить каждый эксперимент снова и снова, чтобы всегда получать одно и то же потомство..

    Вот как он достиг формулировки того, что сейчас известно как законы Менделя..

    Почему Мендель выбрал горох?

    Грегор Мендель выбрал растения гороха для проведения своих генетических экспериментов, потому что они были дешевле, чем любое другое растение, и потому что время их образования очень короткое и имеет большое количество потомства.

    Потомки были важны, так как было необходимо провести много экспериментов, чтобы сформулировать свои законы..

    Он также выбрал их из-за большого разнообразия, которое существовало, среди прочего, зеленого горошка, желтого горошка, круглых стручков..

    Разнообразие было важно, потому что было необходимо знать, какие признаки могут быть унаследованы. Вот где возникает термин менделевского наследства.

    3 закона Менделя суммированы

    Первый закон Менделя


    Первый закон Менделя или закон единообразия гласит, что при скрещивании двух чистых индивидуумов (гомозигот) все потомки будут равны (однородны) по своим признакам.

    Это связано с преобладанием некоторых персонажей, их простой копии достаточно, чтобы замаскировать эффект рецессивного персонажа. Следовательно, как гомозиготные, так и гетерозиготные потомки будут иметь одинаковый фенотип (видимый признак)..


    Второй закон Менделя

    Второй закон Менделя, также называемый законом сегрегации персонажей, гласит, что при образовании гамет аллели (наследственные факторы) разделяются (сегрегируются) таким образом, что потомство получает аллель от каждого родственника..


    Третий закон Менделя

    Третий закон Менделя также известен как закон независимого разделения. При формировании гамет персонажи разных черт наследуются независимо друг от друга..

    В настоящее время известно, что этот закон не распространяется на гены на одной хромосоме, которые будут наследоваться вместе. Тем не менее, хромосомы отделяются независимо во время мейоза.


    Термины, введенные Менделем

    Мендель придумал несколько терминов, которые в настоящее время используются в области генетики, в том числе: доминантный, рецессивный, гибридный.

    доминирующий

    Когда Мендель использовал доминирующее слово в своих экспериментах, он имел в виду характер, который внешне проявлялся в человеке, был ли он только один или два из них.

    рецессивный

    Под рецессивным Мендель подразумевал, что это характер, который не проявляется вне индивидуума, потому что доминирующий характер препятствует этому. Поэтому, чтобы это преобладало, человеку необходимо будет иметь два рецессивных символа.

    гибрид

    Точно так же именно он установил использование заглавной буквы для доминантных аллелей и строчных букв для рецессивных аллелей..

    Впоследствии другие исследователи завершили свою работу и использовали остальные термины, которые используются сегодня: ген, аллель, фенотип, гомозигот, гетерозигот.

    Менделевское наследство применительно к людям

    Черты человеческих существ могут быть объяснены через менделевское наследство, пока семейная история известна.

    Необходимо знать семейную историю, так как с их помощью вы можете собрать необходимую информацию о той или иной особенности.

    Для этого создается генеалогическое древо, в котором описывается каждая из черт членов семьи, и, таким образом, можно определить, от кого они унаследованы..

    Пример наследования у кошек


    В этом примере цвет шерсти обозначается буквой B (коричневый, доминантный) или b (белый), а длина хвоста - S (короткий, доминантный) или s (длинный)..

    Когда родители гомозиготны по каждому признаку (SSbb и ssBB), их дети в поколении F1 гетерозиготны по обоим аллелям и показывают только доминантные фенотипы (SsbB).

    Если потомки спариваются друг с другом, в поколении F2 создаются все комбинации цвета меха и длины хвоста: 9 - коричневые / короткие (фиолетовые прямоугольники), 3 - белые / короткие (розовые прямоугольники), 3 - коричневый / длинный (синие прямоугольники) и 1 белый / длинный (зеленое поле).

    4 примера менделевских черт

    -альбинизмэто наследственная особенность, которая заключается в изменении выработки меланина (пигмента, которым обладают люди и который отвечает за цвет кожи, волос и глаз), поэтому во многих случаях наблюдается отсутствие Всего этого. Эта черта рецессивна.

    -Мочки свободного уха: это доминирующая особенность.

    -Мочки ушей соединены: это рецессивная черта.

    -Волосы или клюв вдовы: эта особенность относится к тому, как кончик волоса заканчивается на лбу. В этом случае это закончится вершиной в центре. Те, кто представляет эту функцию, имеют форму буквы "w" вверх ногами. Это доминирующая особенность.

    Факторы, которые меняют менделевскую сегрегацию

    Наследственность, связанная с сексом

    Наследование, связанное с полом, относится к тому, что связано с парой половых хромосом, то есть тех, которые определяют пол индивида..

    У людей есть Х-хромосомы и Y-хромосомы. У женщин есть ХХ-хромосомы, а у мужчин - Х-Y..

    Некоторые примеры наследования, связанного с полом:

    -Дальтонизм: это генетическое изменение, которое делает цвета не различимыми. Обычно вы не можете различить красный и зеленый, но это будет зависеть от степени дальтонизма, который человек представляет.

    Дальтонизм передается рецессивным аллелем, связанным с Х-хромосомой, поэтому, если мужчина наследует Х-хромосому, которая представляет этот рецессивный аллель, он будет дальтоником.

    В то время как для женщин, чтобы иметь это генетическое изменение, необходимо, чтобы они имели две измененные Х-хромосомы. Именно поэтому число женщин с дальтонизмом ниже, чем у мужчин.

    -гемофилия: это наследственное заболевание, которое, как и дальтонизм, связано с хромосомой X. Гемофилия - это заболевание, вызывающее неправильную свертываемость крови людей..

    По этой причине, если человек, страдающий гемофилией, порезан, его кровотечение будет длиться намного дольше, чем у другого человека, у которого его нет. Это происходит потому, что у вас недостаточно белка в крови, чтобы контролировать кровотечение.

    -Мышечная дистрофия Дюшенна: это рецессивное наследственное заболевание, которое связано с хромосомой X. Это нервно-мышечное заболевание, для которого характерно наличие значительной мышечной слабости, которая развивается в генерализованном и прогрессирующем виде.

    -гипертрихозЭто наследственное заболевание, присутствующее в Y-хромосоме, которое передается только от отца к ребенку мужского пола. Этот тип наследования называется голодендическим.

    Гипертрихоз - это рост лишних волос, так что у того, кто страдает, есть части тела, которые являются чрезмерно волосатыми. Это заболевание также называют синдромом оборотня, так как многие из тех, кто страдает, почти полностью покрыты волосками..

    Свидетельство и скидка на обучение каждому участнику

    УЧЕБНАЯ ДИСЦИПЛИНА: БИОЛОГИЯ
    Тема: Законы генетики, установленные Г.Менделем.

    Ознакомиться с лекционным материалом по теме

    Решить задачи по генетике.

    Задача 1 . Определите вероятность рождения светловолосых и темноволосых детей, если оба родителя гетерозиготные и темноволосые.

    Задача 2. Стандартные норки имеют коричневый мех (ген A), а алеутские– голубосерый (ген a). Какова вероятность в % рождения норки с голубовато-серым мехом при скрещивании гомозиготной норки с коричневым мехом и норки с голубовато-серым мехом?

    Задача 3. Синдактилия (сращение пальцев) – доминантный признак. Какова вероятность в % рождения детей со сросшимися пальцами, если один из родителей гетерозиготен, а второй имеет нормальную кисть?

    Задача 4 . Пятнистость у крупного рогатого скота обусловлена промежуточным наследованием. Скрестили черных коров с белыми. Определить, как пойдет расщепление в F2?

    Задача 5 . У томатов доминантный ген A обусловливает нормальную высоту растений, а ген a – карликовость. Каковы генотипы родителей, если получено 50 % растений низких и 50 % растений нормальной высоты.

    Закономерности наследования признаков

    Гибрид – организм, полученный в результате скрещивания двух форм с альтернативными (контрастными) признаками. Для опытов Г. Мендель использовал растение-самоопылитель – душистый горошек. При самоопылении был получен генетически чистый материал (чистые линии, или гомозиготы).

    Г. Мендель выделил 2 типа скрещивания – моногибридное и дигибридное.

    Моногибридное – скрещивание по одной паре альтернативных признаков. Доминантный аллельный ген A определяет развитие желтой окраски семян, а рецессивный аллельный ген a – зеленой окраски. Таким образом, развитие признака окраски семян обусловлено одной парой аллельных генов, A и a.

    Дигибридное – скрещивание по двум парам альтернативных признаков. Аллельные гены A и a определяют развитие, соответственно, желтой и зеленой окраски семян, а аллельные гены B и b – детерминируют развитие формы семян, соответственно, ген B – гладкой и ген b – морщинистой. Таким образом, развитие признаков обусловлено двумя парами аллельных генов (A и a – гены окраски; B и b – гены формы).

    Г. Мендель ввел следующую буквенную символику: P – родители; A – доминантный (подавляющий) аллель гена окраски; a – рецессивный (подавляемый) аллель гена окраски; x – скрещивание; F1,2 – гибриды первого и второго поколений; AA – доминантная гомозигота; aa – рецессивная гомозигота; Aa – гетерозигота.

    Закономерности наследования при моногибридном скрещивании

    Моногибридное скрещивание включает два этапа.

    Первый этап – скрещивание гомозиготных доминантных и гомозиготных рецессивных особей.

    P ♀AA x ♂ aa (AA – особи с желтыми семенами; aa – особи с зелеными семенами)

    F1 Aa (полное доминирование, – т. к. все особи с желтыми семенами)

    Полное доминирование – доминантный ген полностью подавляет действие рецессивного гена, и поэтому все особи имеют семена желтой окраски.

    Первый закон Г. Менделя – закон единообразия гибридов первого поколения – при скрещивании гомозиготных особей, различающихся по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения, как по генотипу, так и по фенотипу.

    Второй этап – скрещивание гибридов первого поколения, т. е. гетерозиготных особей между собой.

    F2 AA; Aa; Aa; aa (расщепление по фенотипу – 3:1).

    Второй закон Г. Менделя – закон расщепления – при скрещивании гетерозиготных особей, отличающихся по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 – по фенотипу и 1:2:1 – по генотипу.

    Г. Мендель также исследовал неполное доминирование (промежуточное наследование). Неполное доминирование встречается в том случае, когда доминантный ген не полностью подавляет действие рецессивного гена и проявляется промежуточный характер наследования. При скрещивании гомозиготных растений ночной красавицы с красными (АА) и белами (аа) цветками в первом поколении наблюдается промежуточный характер наследования, т. к. появляются особи с розовыми цветками (Aa).

    P ♀ AA x ♂ aa (AA–растения с красными цветками; aa – растения с

    G A, a белыми цветками)

    F1 Aa (растения с розовыми цветками)

    При скрещивании гетерозиготных особей с розовыми цветками между собой наблюдается расщепление в соотношении 1:2:1, как по фенотипу, так и по генотипу.

    При неполном доминировании получено: 1 часть растений с красными цветками (АА), 2 части растений с розовыми цветками (Аа) и 1 часть – с белыми цветками (аа).

    Гипотеза чистоты гамет предложена английским ученым У. Бэтсоном: пары альтернативных признаков (гены) между собой не смешиваются при образовании гамет, остаются в чистом аллельном состоянии, и в ходе мейоза в каждую гамету попадает только один ген из аллельной пары. Гипотеза чистоты гамет поясняет, что закономерности наследования признаков – результат случайного сочетания гамет, хромосом и генов.

    Моногибридное анализирующее скрещивание . Если при полном доминировании не известен генотип особи с доминантным признаком, то для его определения используют моногибридное анализирующее скрещивание. В этом случае возможны два варианта скрещиваний: 1) скрещивание доминантной гомозиготы с рецессивной гомозиготой по данной аллели, 2) скрещивание гетерозиготы с рецессивной гомозиготой.

    1) P ♀AA x ♂ aa 2) P ♀Aa x ♂ aa

    В первом случае в результате скрещивания в F1 нет расщепления, поэтому анализируемая особь – гомозигота (АА). Во втором случае в F1 наблюдается расщепление в соотношении 1:1, поэтому анализируемая особь – гетерозигота (Аа).

    Взаимодействие аллельных генов

    Взаимодействие аллельных генов в пределах одной аллели может проявляться по типу полного или неполного доминирования . Полное доминирование наблюдается, если доминантный ген полностью подавляет рецессивный ген. При этом гомо- и гетерозиготы не различимы фенотипически. Неполное доминирование проявляется в том случае, если доминантный ген не полностью подавляет рецессивный ген. При этом в первом поколении гибридов полностью не воспроизводятся признаки родителей и наблюдается промежуточное наследование.

    Например, при скрещивании черной (BB) и белой (bb) пород собак, все поколение (Bb) будет пятнистое (далматинская порода). Во втором поколении наблюдается расщепление, одинаковое по фенотипу и генотипу: 1 часть собак имеет черную окраску шерсти (BB), 2 части – пятнистую (Bb) и 1 часть – белую окраску шерсти (bb).

    Кодоминирование – такое взаимодействие аллельных генов, когда оба аллельных гена равноценны и не подавляют проявление друг друга. Пример – I A I B – IV группа крови. У людей IV группы крови в эритроцитах содержится антиген A и антиген В, их генотип – I A I B .

    Четвертая группа крови у людей обусловлена одновременным присутствием в генотипе двух кодоминантных, т. е. не подавляющих проявление друг друга генов I A и I B (I A = I B ). При этом ген I A определяет синтез в эритроцитах антигена A, а ген I B – синтез антигена B. Оба вместе кодоминантных гена детерминируют четвертую группу крови. Однако эти гены кодоминантны по отношению друг к другу, но доминантны по отношению к гену I o . Таким образом, I A = I B , но > I o.

    Сверхдоминирование – большая выраженность признака у гетерозиготных особей, чем у гомозиготных, при которой проявляется большая жизненная сила и устойчивость организма.

    Множественный аллелизм

    В популяции может встречаться более двух аллельных генов. Такое явление называется множественный аллелизм. Например, группы крови человека определяются тремя аллельными генами: I 0 , I A , I B . У гомозигот они комбинируются следующим образом: I 0 I 0 , I A I A , I B I B , а у гетерозигот – I A I 0 ,

    I B I 0 , I A I B .

    Примером множественного аллелизма также являются множественные аллели окраски шерсти у кроликов:

    кролик-альбинос – аллель а;

    гималайский кролик – аллель а1;

    кролик сплошной серой окраски – аллель а2;

    При этом, аллель сплошной серой окраски – а2 > a и а1; аллель белой окраски a а, но

    Во втором поколении наблюдается расщепление по фенотипу 3:1.

    Например, скрещивание гималайского и серого кроликов.

    Во втором поколении получено расщепление: 3 части кроликов со сплошной серой окраской (их генотипы – а2 а1; а2 а1 ; а2 а1) и 1 часть гималайских кроликов (их генотип а1 а1).

    Закономерности наследования при дигибридном скрещивании

    Дигибридное скрещивание – скрещивание особей по двум парам альтернативных признаков (окраска и форма семян). При дигибридном скрещивании мы имеем дело с разными парами аллелей. Одна такая пара содержит гены окраски семян (желтые, зеленые), а вторая – формы семян (гладкие, морщинистые). Ген A определяет желтую окраску семян; ген a – зеленую окраску семян; ген B – определяет гладкую форму семян; b– морщинистую форму семян.

    Дигибридное скрещивание включает два этапа.

    Первый этап – скрещивание исходных родительских форм – гомозиготных доминантных и гомозиготных рецессивных особей, различающихся по двум

    P ♀ AABB x ♂ aabb (AABB– растения с желтыми гладкими семенами,

    G AB, ab aabb– растения с зелеными морщинистыми

    В первом поколении получены все дигетерозиготные особи с генотипом AaBb.

    Второй этап – скрещивание дигетерозиготных особей между собой.

    P ♀ AaBb x ♂ AaBb

    F2 A – B - – 9; A –b - – 3; a – B - – 3; aabb – 1

    Все 16 генотипов второго поколения гибридов можно представить в таблице (решетка Пеннета).


    МЕНДЕЛЯ ЗАКОНЫ, основные закономерности наследования, открытые Г. Менделем. В 1856–1863 гг. Мендель провёл обширные, тщательно спланированные опыты по гибридизации растений гороха. Для скрещиваний он отбирал константные сорта|сорта (чистые линии), каждый из которых при самоопылении устойчиво воспроизводил в поколениях одни и те же признаки. Сорта|Сорта различались альтернативными (взаимоисключающими) вариантами какого-либо признака, контролируемого парой аллельных генов (аллелей). Напр., окраской (жёлтая или зелёная) и формой (гладкая или морщинистая) семян, длиной стебля (длинный или короткий) и т. д. Для анализа результатов скрещиваний Мендель применил математические методы, что позволило ему обнаружить ряд закономерностей в распределении родительских признаков у потомков. Традиционно в генетике принимают три закона Менделя, хотя сам он формулировал лишь закон независимого комбинирования.

    Первый закон Менделя — закон единообразия

    Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым (см. Доминантность, Рецессивность). Напр., при скрещивании гомозиготных (чистых) сортов гороха с жёлтой и зелёной окраской семян у всех гибридов первого поколения окраска была жёлтой. Значит, жёлтая окраска – доминантный признак, а зелёная – рецессивный. Первоначально этот закон называли законом доминирования. Вскоре было обнаружено его нарушение – промежуточное проявление обоих признаков, или неполное доминирование, при котором, однако, сохраняется единообразие гибридов. Поэтому современное название закона более точное.

    Второй закон Менделя — закон расщепления

    Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. В случае жёлтой и зелёной окраски семян их соотношение было 3:1, т. е. расщепление по фенотипу происходит так, что у 75 % растений окраска семян доминантная жёлтая, у 25 % – рецессивная зелёная. В основе такого расщепления лежит образование гетерозиготными гибридами первого поколения в равном отношении гаплоидных гамет с доминантными и рецессивными аллелями. При слиянии гамет у гибридов 2-го поколения образуется 4 генотипа – два гомозиготных, несущих только доминантные и только рецессивные аллели, и два гетерозиготных, как у гибридов 1-го поколения. Поэтому расщепление по генотипу 1:2:1 даёт расщепление по фенотипу 3:1 (жёлтую окраску обеспечивает одна доминантная гомозигота и две гетерозиготы, зелёную – одна рецессивная гомозигота).

    Третий закон Менделя — закон независимого комбинирования

    Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей|особей, отличающихся по двум и более парам|парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары|пары аллельных генов расположены в разных гомологичных хромосомах.

    Часто как один из законов Менделя приводится и закон чистоты гамет, утверждающий, что в каждую половую клетку попадает|попадает только один аллельный ген. Но этот закон был сформулирован не Менделем.

    Видео по теме : Законы менделя

    Законы менделя


    Грегора Менделя по праву считают основателем современной генетики, и горох, с которым он экспериментировал, не менее известен в научном фольклоре, чем яблоко Ньютона. Его научные изыскания в монастырском фруктовом саду|саду в городе Брюнн (сейчас Брно в Чехии), первоначально вызванные лишь интересом к земледелию, переросли в многолетнюю серию трудоёмких опытов по скрещиванию растений, в результате чего Мендель пришёл к выводу, что наследственность определяется генами.

    Его работа была несложной, но кропотливой: он надевал на цветки гороха специальные мешочки для того, чтобы каждое растение опылялось лишь тщательно отобранной пыльцой. Затем, сравнивая признаки родительских и дочерних растений, он смог вывести законы наследования.

    Классические эксперименты Менделя заключались в скрещивании двух линий гороха — высокорослой и низкорослой. Всё|Все дочерние растения первого поколения были высокими (а вовсе не низкого или среднего роста|роста, как ожидалось). Однако при последующем скрещивании растений первого поколения между собой только три четверти дочерних растений второго поколения оказались высокорослыми, оставшиеся растения были низкорослыми. Чтобы объяснить результаты этих (и многих других) экспериментов, Мендель постулировал следующее:

    — если дочерний организм получает гены, отвечающие за альтернативные признаки, то один из этих генов будет доминантным и будет экспрессироваться (т. е. кодируемый этим геном|геном признак проявится у организма), а другой будет рецессивным (т. е. не экспрессируемым).

    Как это нередко случается в истории науки, работа Менделя, законченная в 1865 году, не сразу получила должное признание у современников. Итоги его опытов были обнародованы на заседании Общества естественных наук города|города Брюнна, а затем опубликованы в журнале этого Общества, но идеи Менделя в то время не нашли поддержки. Хотя этот журнал получали более ста научных организаций всего мира, номер журнала с описанием революционной работы Менделя в течение тридцати лет пылился в библиотеках. Лишь в конце XIX века учёные, занимавшиеся проблемами наследственности, открыли для себя труды Менделя, и он смог получить (уже посмертно) заслуженное признание.


    Сегодня мы знаем, что открытые Менделем гены — это участки находящихся в клетке молекул ДНК. Согласно центральной догме молекулярной биологии, механизм действия генов состоит в том, чтобы кодировать белки|белки, которые, в свою очередь, выступая в роли ферментов, регулируют всё|все химические реакции в живых организмах.

    Читайте также: