Клетки эпидермиса листа описание

Обновлено: 19.09.2024

Содержание

Описание

Эпидермис - это самый внешний слой клеток первичного тела растения. В некоторых более ранних работах клетки эпидермиса листа рассматривались как специализированные паренхима клетки [1] но устоявшееся современное предпочтение уже давно состоит в том, чтобы классифицировать эпидермис как кожную ткань, тогда как паренхима классифицируется как наземная ткань. [2] Эпидермис является основным компонентом системы кожных тканей листьев (схематически показано ниже), а также стеблей, корней, цветов, фруктов и семян; это обычно прозрачный (В эпидермальных клетках меньше хлоропластов или они полностью отсутствуют, за исключением замыкающих клеток.)

Клетки эпидермиса структурно и функционально изменчивы. Большинство растений имеют эпидермис толщиной в один слой клеток. Некоторые растения любят Фикус эластичный и Пеперомия, которые имеют периклинальное клеточное деление в протодерме листьев, имеют эпидермис с множеством слоев клеток. Эпидермальные клетки тесно связаны друг с другом и обеспечивают механическую прочность и защиту растений. Стенки клеток эпидермиса надземных частей растений содержат Cutin, и покрыты кутикула. Кутикула снижает потери воды в атмосферу, иногда покрывается воск в гладких листах, гранулах, пластинах, трубках или нитях. Слои воска придают некоторым растениям беловатый или голубоватый цвет поверхности. Поверхностный воск действует как барьер для влаги и защищает растение от сильного солнечного света и ветра. [3] Нижняя сторона многих листьев имеет более тонкую кутикулу, чем верхняя сторона, а листья растений из сухого климата часто имеют утолщенную кутикулу для экономии воды за счет уменьшения транспирации. [ нужна цитата ]

Эпидермальная ткань включает несколько типов дифференцированных клеток: эпидермальные клетки, замыкающие клетки, вспомогательные клетки и эпидермальные волоски (трихомы). Эпидермальные клетки самые многочисленные, крупные и наименее специализированные. Обычно они более удлиненные у листьев однодольные чем в тех из двудольные.

Трихомы или волосы вырастают из эпидермиса у многих видов. В корневом эпидермисе эпидермальные волосы, называемые корневые волоски распространены и специализируются на поглощении воды и минеральных питательных веществ.

У растений с вторичный рост, эпидермис корней и стеблей обычно заменяется перидермой под действием пробка камбий.

Комплекс стомы


Эпидермис листа и стебля покрыт порами, называемыми устьица (петь., стома), часть комплекс стомы состоящий из пор, окруженных с каждой стороны хлоропластами. замыкающие клетки, и от двух до четырех вспомогательные ячейки в которых отсутствуют хлоропласты. Комплекс устьиц регулирует обмен газов и водяного пара между наружным воздухом и внутренней частью листа. Обычно устьиц больше над абаксиальным (нижним) эпидермисом листа, чем над (адаксиальным) верхним эпидермисом. Исключение составляют плавающие листья, у которых большая часть устьиц или все они находятся на верхней поверхности. Вертикальные листья, как у многих травы, часто имеют примерно одинаковое количество устьиц на обеих поверхностях. Стома ограничена двумя замыкающими клетками. Замыкающие клетки отличаются от клеток эпидермиса по следующим аспектам:

  • На вид замыкающие клетки имеют бобовидную форму, а эпидермальные клетки имеют неправильную форму.
  • Замыкающие клетки содержат хлоропласты, поэтому они могут производить пищу путем фотосинтеза (эпидермальные клетки наземных растений не содержат хлоропластов).
  • Защитные клетки - единственные клетки эпидермиса, которые могут производить сахар. Согласно одной теории, на солнечном свете концентрация ионов калия (K +) увеличивается в замыкающих клетках. Это вместе с образующимися сахарами снижает водный потенциал в замыкающих клетках. В результате вода из других клеток попадает в замыкающие клетки путем осмоса, поэтому они набухают и становятся тургучными. Поскольку замыкающие клетки имеют более толстую целлюлозную стенку на одной стороне клетки, то есть на стороне вокруг устьичной поры, набухшие замыкающие клетки изгибаются и открывают устьица.

Ночью сахар расходуется, и вода покидает замыкающие клетки, поэтому они становятся вялыми, а устьичные поры закрываются. Таким образом они уменьшают количество водяного пара, выходящего из листа.

Дифференцировка клеток в эпидермисе


Сканирующий электронный микроскоп изображение Никотиана Алата эпидермис листа, показывая трихомы (волосовидные придатки) и устьица (прорези в форме глаз, видны при полном разрешении)

Эпидермис растений состоит из трех основных типов клеток: ячейки тротуара, замыкающие клетки и их вспомогательные ячейки, которые окружают устьица и трихомы, иначе известные как листовые волоски. Эпидермис лепестков также образует разновидность трихом, называемых конические ячейки. [ нужна цитата ]

Трихомы развиваются на определенной фазе во время лист разработка под контролем двух основных спецификаций трихом гены: ТТГ и GL1. Процесс может контролироваться гормоны растений гиббереллины, и даже если не полностью контролировать, гиббереллины, безусловно, влияют на развитие листовых волосков. GL1 причины эндорепликация, тиражирование ДНК без последующего деление клеток а также расширение клеток. GL1 включает экспрессию второго гена образования трихом, GL2, который контролирует заключительные стадии образования трихомов, вызывающих разрастание клеток.

Arabidopsis thaliana использует продукты тормозящий гены, контролирующие формирование паттерна трихом, например ТТГ и ПЫТАТЬСЯ. Продукты этих генов будут распространяться в боковой клеток, предотвращая их образование трихом и в случае ПЫТАТЬСЯ способствуя образованию ячеек дорожного покрытия.

Экспрессия гена MIXTA, или его аналог у других видов, позже в процессе клеточная дифференциация вызовет образование конических клеток над трихомами. MIXTA это фактор транскрипции.

Формирование устьичного рисунка - это гораздо более контролируемый процесс, так как стома влияет на удержание воды растением и дыхание возможности. Вследствие этих важных функций дифференцировка клеток с образованием устьиц также зависит от условий окружающей среды в гораздо большей степени, чем другие типы эпидермальных клеток.

Устьица - это поры в эпидермисе растения, которые окружены двумя замыкающими клетками, которые контролируют открытие и закрытие отверстия. Эти замыкающие клетки, в свою очередь, окружены вспомогательные ячейки которые обеспечивают вспомогательную роль для замыкающих клеток.

Устьица начинаются как устьичные меристемоиды. [ требуется разъяснение ] Процесс варьируется между двудольные и однодольные. Считается, что интервал существенно случайный в двудольных точках мутанты действительно показывают, что он находится под какой-то формой генетического контроля, но он больше контролируется у однодольных, где устьица возникает из определенных асимметричные деления клеток протодермы. Меньшая из двух произведенных клеток становится замыкающими материнскими клетками. Соседние эпидермальные клетки также будут асимметрично делиться, образуя вспомогательные клетки.

Поскольку устьица играют такую ​​важную роль в выживании растений, сбор информации об их дифференциации с помощью традиционных методов генетических манипуляций затруднен, поскольку устьичные мутанты, как правило, неспособны выжить. Таким образом, управление процессом недостаточно изучено. Некоторые гены были идентифицированы. TMM считается, что контролирует время спецификации инициации устьиц и ФЛП считается, что участвует в предотвращении дальнейшего деления замыкающих клеток после их образования.

Условия окружающей среды влияют на развитие устьиц, в частности, их плотность на поверхности листа. Считается, что гормоны растений, такие как этилен и цитокины, контролировать реакцию развития устьиц на условия окружающей среды. Накопление этих гормонов, по-видимому, вызывает увеличение плотности устьиц, например, когда растения хранятся в закрытых помещениях.

Лист является важным органом любого растения. Основные функции листа — фотосинтез и транспирация. Строение листа характеризуется наличием черешка и листовой пластинки. Внешне черешок похож на стебель, однако по происхождению он все же является частью листа.

Лист по строению предполагает наличие кожицы, которой покрыта поверхность любого листа. Кожица является защитой от различных повреждений, высыхания и попадания внутрь болезнетворных бактерий.

Строение кожицы листа характеризуется тем, что ее клетки плотно примыкают друг к другу: это объясняется тем, что они являются покрывной тканью. Почти все клетки в листах не имеют цвета и прозрачные, поэтому свет без проблем проникает через поверхность листка в клетку. Как видим, строение листьев и строение клетки листа напрямую связаны с функциями листьев и формируют их особенности.

Начинают изучать клеточное строение листа в 6 классе школы.Контент.

Характеристика эпидермиса

Эпидермис — это то, чем лист покрыт снаружи.

Эпидермис является живой тканью листа и может состоять из одного или нескольких слоев клеток.

Такие клетки листа обычно не отличаются хорошо дифференцированными хлоропластами. Клетки соединены между собой достаточно плотно, благодаря чему эпидермис защищает ткани листа от чрезмерной потери воды и играет важную роль в осуществлении листом функции механической опоры.

Эпидермис имеет особенность в виде различных выростов на внешней поверхности клеток: волосков, кутикул, шипиков.

Также стоит упомянуть устьица листа, которые находятся между клетками эпидермиса. Основная функция устьиц — осуществление водо- и газообмена растения с окружающей средой. Эта функция выполняется, в том числе, за счет особенностей строения устьица листа.

Характеристика мезофилла

Мезофилл — основная ткань, которая размещается между верхним и нижним эпидермисом.

Она представляет собой фотосинтезирующую ткань: в нее входят живые клетки с большим количеством хлоропластов.

Мезофилл делится на губчатую и палисадную паренхиму. Последняя включает клетки, расположенные перпендикулярно к поверхности эпидермиса — они напоминают ряд столбиков (столбчатая паренхима). У клеток палисадной паренхимы призматическая форма, эти клетки удлинены. Расположение палисадной паренхимы — под эпидермисом. При этом у одних растений она располагается только в верхней стороне листа, а у других — с обеих сторон.

Разделение или дифференциация мезофилла основана на виде растения и специфике его выращивания. При ярком освещении хорошее развитие получает палисадная паренхима.

Злаковые умеренной зоны не имеют деления на палисадную и губчатую паренхимы.

Эти две ткани устроены по-разному, так как они отвечают за разные функции. И здесь мы найдем ответ на вопрос, как строение листа обеспечивает его фотосинтезирующие функции.

Палисадная паренхима является высокоспециализированной тканью и выполняет функцию фотосинтеза. Это логично, ведь большинство хлоропластов располагаются именно в этой ткани и концентрируются около стенок клетки — так они лучше освещаются и снабжаются углекислым газом.

Губчатая паренхима помимо функции фотосинтеза (хоть и в меньшей степени) выполняет запасающую функцию: в клетках листа скапливается запасной крахмал.

Характеристика проводящей ткани

Проводящая ткань листа включает сосудисто-волокнистые пучки: они сконцентрированы в жилках. По этим пучкам в лист попадает вода, насыщенная питательными веществами, и отводятся продукты фотосинтеза.

Проводящая ткань пластинки и черешка листа и проводящая система стебля образуют единое целое. Строение жилки листа может характеризоваться как одним пучком, так и целой группой пучков, тесно между собою сомкнутых.

Сосудисто-волокнистые пучки основных жилок листа отличаются типичным строением. По мере раздробления пучков сосуды и ситовидные трубки уменьшаются. В едва заметных разветвлениях жилок нет флоэмы. Ксилема также упрощается: в ней отсутствует трахея, сокращается количество трахеид. На концах жилок — одиночные трахеиды.

То, насколько крепкая листовая пластинка, зависит от развития системы механических тканей. В нее входят:

  • склеренхимные обкладки пучков;
  • тяжи механической ткани. Они размещаются против проводящих пучков и смыкаются позади склеренхимных обкладок;
  • каменистые клетки;
  • опорные клетки и др.

Функции устьица и его строение

Устьице по форме напоминает щель, которая располагается между двумя клетками со специфическим строением.

Эти клетки серповидные, между собой они смыкаются противоположными концами (замыкающие клетки). Они существенно отличаются от других клеток эпидермиса: по форме и наличию хлоропластов.

Устьица располагаются с нижней части листовой пластинки. Однако есть растения, у которых оно расположено в верхней части (злаки, капуста).

Устьица водных растений располагаются только в верхней стороне пластинки.

Число устьиц на листьях растений варьируется от 40 до 600 (на один квадратный миллиметр).

Листья с параллельным жилкованием (такие есть у хвойных растений) размещаются параллельными рядами. У других растений какого-либо конкретного порядка нет.

Устьица открываются по разным причинам:

  • для осуществления газообмена;
  • для фотосинтеза и дыхания листа;
  • для контроля над водным балансом.

То, как осуществляется устьичное движение, определяется особенностями структуры замыкающих клеток, а также изменениями их тургорного давления. Неравномерное утолщение оболочек — отличительная характеристика строения замыкающих клеток устьиц. Это приводит к тому, что задняя стенка замыкающей клетки с увеличением тургора выпячивается в сторону щели, поскольку эта стенка отличается большей эластичностью и небольшой толщиной. При этом передняя стенка выпрямляется и становится вогнутой, а вся клетка изгибается в противоположную от щели сторону. Происходит открытие устьица.

Тургорное давление замыкающих клеток меняется в связи с большими затратами энергии. Регуляция осмотического давления замыкающих клеток осуществляется при помощи органических кислот, одновалентных катионов, в частности — калия.

Когда одновалентные катионы поступают в вакуоль замыкающих клеток, то осмотический потенциал последних увеличивается. В эти клетки поступает вода, и устьице открывается. Снижение осмотического давления происходит в результате выхода осмотических активных веществ из вакуолей в цитоплазму замыкающих клеток или из вообще из клетки. Устьице закрывается.

Поддержание электронейтральности замыкающих клеток при открытых устьицах обеспечивается образованием органических анионов.

Процесс поступления воды в клетку

Поступление воды в клетку — непростой процесс, который обусловлен множеством факторов.

Вся система коллоидов цитоплазмы принимает активное участие в поглощении воды.

Сосущая сила — сила насасывания клеткой воды.

Есть опыт, который помогает понять, как происходит поступление воды в живую клетку, а также показывает полупроницаемость и эластичность цитоплазмы.

К оборотной стороне покровного стекла, вплотную к нему, подносят фильтровальную бумагу: она оттягивает воду до того момента, пока раствор селитры полностью ее не заменит, входя под покровное стекло.

Спустя определенное время даже при небольшом увеличении микроскопа можно обнаружить отхождение протопласта от оболочки клетки. Такой процесс называется плазмолизом.

Далее протопласт округляется и размещается в середине клетки или возле одной из ее стенок. Происходит это после его отделения от всей внутренней поверхности оболочки. В результате происходит заполнение пространства между протопластом и оболочками клетки раствором плазмолитика.

Как клетка листа испаряет воду

Транспирация — испарение воды растениями.

Воду испаряет вся поверхность растения, но особенно интенсивно — лист.

Есть два вида транспирации:

  1. Кутикулярная. В этом случае воду испаряет вся поверхность листа.
  2. Устьичная. Испарение осуществляется через устьице листа.

Транспирация важна тем, что благодаря ей внутрь листа поступает углекислый газ, а это — основа углеродного питания растения. Кроме того, благодаря транспирации лист не перегревается.

Содержание

Описание

Эпидермис - это самый внешний слой клеток первичного тела растения. В некоторых более ранних работах клетки эпидермиса листа рассматривались как специализированные паренхима клетки [1] но устоявшееся современное предпочтение уже давно состоит в том, чтобы классифицировать эпидермис как кожную ткань, тогда как паренхима классифицируется как наземная ткань. [2] Эпидермис является основным компонентом системы кожных тканей листьев (схематически показано ниже), а также стеблей, корней, цветов, фруктов и семян; это обычно прозрачный (В эпидермальных клетках меньше хлоропластов или они полностью отсутствуют, за исключением замыкающих клеток.)

Клетки эпидермиса структурно и функционально изменчивы. Большинство растений имеют эпидермис толщиной в один слой клеток. Некоторые растения любят Фикус эластичный и Пеперомия, которые имеют периклинальное клеточное деление в протодерме листьев, имеют эпидермис с множеством слоев клеток. Эпидермальные клетки тесно связаны друг с другом и обеспечивают механическую прочность и защиту растений. Стенки клеток эпидермиса надземных частей растений содержат Cutin, и покрыты кутикула. Кутикула снижает потери воды в атмосферу, иногда покрывается воск в гладких листах, гранулах, пластинах, трубках или нитях. Слои воска придают некоторым растениям беловатый или голубоватый цвет поверхности. Поверхностный воск действует как барьер для влаги и защищает растение от сильного солнечного света и ветра. [3] Нижняя сторона многих листьев имеет более тонкую кутикулу, чем верхняя сторона, а листья растений из сухого климата часто имеют утолщенную кутикулу для экономии воды за счет уменьшения транспирации. [ нужна цитата ]

Эпидермальная ткань включает несколько типов дифференцированных клеток: эпидермальные клетки, замыкающие клетки, вспомогательные клетки и эпидермальные волоски (трихомы). Эпидермальные клетки самые многочисленные, крупные и наименее специализированные. Обычно они более удлиненные у листьев однодольные чем в тех из двудольные.

Трихомы или волосы вырастают из эпидермиса у многих видов. В корневом эпидермисе эпидермальные волосы, называемые корневые волоски распространены и специализируются на поглощении воды и минеральных питательных веществ.

У растений с вторичный рост, эпидермис корней и стеблей обычно заменяется перидермой под действием пробка камбий.

Комплекс стомы


Эпидермис листа и стебля покрыт порами, называемыми устьица (петь., стома), часть комплекс стомы состоящий из пор, окруженных с каждой стороны хлоропластами. замыкающие клетки, и от двух до четырех вспомогательные ячейки в которых отсутствуют хлоропласты. Комплекс устьиц регулирует обмен газов и водяного пара между наружным воздухом и внутренней частью листа. Обычно устьиц больше над абаксиальным (нижним) эпидермисом листа, чем над (адаксиальным) верхним эпидермисом. Исключение составляют плавающие листья, у которых большая часть устьиц или все они находятся на верхней поверхности. Вертикальные листья, как у многих травы, часто имеют примерно одинаковое количество устьиц на обеих поверхностях. Стома ограничена двумя замыкающими клетками. Замыкающие клетки отличаются от клеток эпидермиса по следующим аспектам:

  • На вид замыкающие клетки имеют бобовидную форму, а эпидермальные клетки имеют неправильную форму.
  • Замыкающие клетки содержат хлоропласты, поэтому они могут производить пищу путем фотосинтеза (эпидермальные клетки наземных растений не содержат хлоропластов).
  • Защитные клетки - единственные клетки эпидермиса, которые могут производить сахар. Согласно одной теории, на солнечном свете концентрация ионов калия (K +) увеличивается в замыкающих клетках. Это вместе с образующимися сахарами снижает водный потенциал в замыкающих клетках. В результате вода из других клеток попадает в замыкающие клетки путем осмоса, поэтому они набухают и становятся тургучными. Поскольку замыкающие клетки имеют более толстую целлюлозную стенку на одной стороне клетки, то есть на стороне вокруг устьичной поры, набухшие замыкающие клетки изгибаются и открывают устьица.

Ночью сахар расходуется, и вода покидает замыкающие клетки, поэтому они становятся вялыми, а устьичные поры закрываются. Таким образом они уменьшают количество водяного пара, выходящего из листа.

Дифференцировка клеток в эпидермисе


Сканирующий электронный микроскоп изображение Никотиана Алата эпидермис листа, показывая трихомы (волосовидные придатки) и устьица (прорези в форме глаз, видны при полном разрешении)

Эпидермис растений состоит из трех основных типов клеток: ячейки тротуара, замыкающие клетки и их вспомогательные ячейки, которые окружают устьица и трихомы, иначе известные как листовые волоски. Эпидермис лепестков также образует разновидность трихом, называемых конические ячейки. [ нужна цитата ]

Трихомы развиваются на определенной фазе во время лист разработка под контролем двух основных спецификаций трихом гены: ТТГ и GL1. Процесс может контролироваться гормоны растений гиббереллины, и даже если не полностью контролировать, гиббереллины, безусловно, влияют на развитие листовых волосков. GL1 причины эндорепликация, тиражирование ДНК без последующего деление клеток а также расширение клеток. GL1 включает экспрессию второго гена образования трихом, GL2, который контролирует заключительные стадии образования трихомов, вызывающих разрастание клеток.

Arabidopsis thaliana использует продукты тормозящий гены, контролирующие формирование паттерна трихом, например ТТГ и ПЫТАТЬСЯ. Продукты этих генов будут распространяться в боковой клеток, предотвращая их образование трихом и в случае ПЫТАТЬСЯ способствуя образованию ячеек дорожного покрытия.

Экспрессия гена MIXTA, или его аналог у других видов, позже в процессе клеточная дифференциация вызовет образование конических клеток над трихомами. MIXTA это фактор транскрипции.

Формирование устьичного рисунка - это гораздо более контролируемый процесс, так как стома влияет на удержание воды растением и дыхание возможности. Вследствие этих важных функций дифференцировка клеток с образованием устьиц также зависит от условий окружающей среды в гораздо большей степени, чем другие типы эпидермальных клеток.

Устьица - это поры в эпидермисе растения, которые окружены двумя замыкающими клетками, которые контролируют открытие и закрытие отверстия. Эти замыкающие клетки, в свою очередь, окружены вспомогательные ячейки которые обеспечивают вспомогательную роль для замыкающих клеток.

Устьица начинаются как устьичные меристемоиды. [ требуется разъяснение ] Процесс варьируется между двудольные и однодольные. Считается, что интервал существенно случайный в двудольных точках мутанты действительно показывают, что он находится под какой-то формой генетического контроля, но он больше контролируется у однодольных, где устьица возникает из определенных асимметричные деления клеток протодермы. Меньшая из двух произведенных клеток становится замыкающими материнскими клетками. Соседние эпидермальные клетки также будут асимметрично делиться, образуя вспомогательные клетки.

Поскольку устьица играют такую ​​важную роль в выживании растений, сбор информации об их дифференциации с помощью традиционных методов генетических манипуляций затруднен, поскольку устьичные мутанты, как правило, неспособны выжить. Таким образом, управление процессом недостаточно изучено. Некоторые гены были идентифицированы. TMM считается, что контролирует время спецификации инициации устьиц и ФЛП считается, что участвует в предотвращении дальнейшего деления замыкающих клеток после их образования.

Условия окружающей среды влияют на развитие устьиц, в частности, их плотность на поверхности листа. Считается, что гормоны растений, такие как этилен и цитокины, контролировать реакцию развития устьиц на условия окружающей среды. Накопление этих гормонов, по-видимому, вызывает увеличение плотности устьиц, например, когда растения хранятся в закрытых помещениях.

Клеточное строение листа (схема) функции и свойства клеток

Человек с трудом может представить, что клеточное строение листа – это сложная система. Любой организм живой природы состоит из мельчайших клеточек.

Каждая их группа имеет свои особенности, выполняет определенные функции и отвечает за определенные процессы.

Какие клетки образуют листовую пластину

В анатомии листовой пластины есть множество клеток, различных по форме и размеру.

Клеточное строение листа (схема) функции и свойства клеток

Сверху и снизу находится кожица – эпидермис. Внутри размещена мякоть. На нижней поверхности имеются устьица.

Какую функцию выполняют жилки листа

Жилкование – это вид распределения жилок по листу. Жилки – это трубки в листьях. Они выполняют 2 функции – проводящую и опорную. В первом случае их можно сравнить с кровеносными сосудами человека. Они разносят вещества по всему организму.

Клеточное строение листа (схема) функции и свойства клеток

Жилки бывают 2-х видов: ситовидные трубки и сосуды. По ситовидным трубкам от листьев к другим органам движутся вещества, образованные путем фотосинтеза.

По сосудам от корней из земли в другие части растения попадают растворенные в воде минеральные вещества. Иногда сосуды называют древесиной, а ситовидные трубки лубом.

По жилкованию листья разделяют на несколько типов. Ниже представлена таблица с примерами и кратким описанием.

Тип жилкования Пояснение Пример
Перистое В середине находится главная жилка, от которой отходят боковые. Камелия, яблоня, береза
Дуговидное Главные жилки образуют дуги от одного края до другого. Жилки второго порядка являются поперечными. Подорожник, ландыш
Пальчатое Главные жилки отходят от одной точки у основания листа. Кленовый лист, герань
Параллельное Главные жилки идут от основания до конца листа почти параллельно. Тростник, пшеница
Вильчатое или дихотомическое Все жилки выглядят одинаковыми по толщине. Папоротник

Сами трубки покрыты механической тканью, которая выполняет защитную функцию.

Какое строение имеют клетки мякоти листа

Клеточное строение листа (схема) функции и свойства клеток

Мякоть состоит из 2-х типов клеток. Они образуют столбчатую и губчатую ткани.

Столбчатая расположена в верхней части. Она представляет собой ряды столбиков, плотно прижатых друг к другу.

Губчатая ткань находится ниже. Она имеет рыхлую структуру и содержит много пространства, заполненного воздухом. Эти пространства называют межклетниками. Через губчатую ткань испаряется вода, и происходит газообмен.

Обратите внимание: у листьев, находящихся в хорошей освещенности, больше слоев столбчатой ткани и лучше развита губчатая ткань, чем у листьев теневых растений.

В каких клетках листа особенно много хлоропластов

Хлоропласты представляют собой двумембранные пластиды зеленого цвета, слегка расплющенные в длине. Их размер может варьироваться от 2 мкм до 50 мкм.

Клеточное строение листа (схема) функции и свойства клеток

В этих пластидах содержится хлорофилл. Он играет важную роль в процессе фотосинтеза, в результате которого выделяется кислород. Больше всего хлоропластов содержится в столбчатой ткани, т. к. она находится на поверхности, а значит, лучше всего освещена. На свету и происходит фотосинтез.

У высших растений в составе одной клетки может содержаться от 10 до 30 пластид. Однако, большое количество хлоропластов не входит в состав водорослей. У них бывает один хлоропласт на одну клетку. Но есть удивительные исключения. В клетках палисадной ткани махорки обнаружено около 1000 пластид.

Это интересно: теневые растения обычно имеют темно-зеленый цвет, потому что содержат больше хлорофилла, чем световые. Это нужно, для того чтобы при недостатке света было больше возможностей для фотосинтеза.

Какое значение имеет кожица листа

Кожица – это наружный слой. Она защищает от высыхания и повреждения. Кожицу можно легко подцепить иглой и снять. Тогда будет возможность увидеть, что она прозрачная. Благодаря этому свет легко проникает внутрь.

Клеточное строение листа (схема) функции и свойства клеток

Сверху кожицы находится восковой слой. Он нужен для предотвращения потери воды. Чем толще восковой слой, тем меньше будет испаряться воды.

Рисунок и описание внутреннего строения листа

Клеточное строение листа (схема) функции и свойства клеток

Здесь представлен срез листа. На схеме хорошо видны клетки кожицы и мякоти.

Свойства клеток устьица листа

В нижней части в нескольких местах кожицы образованы небольшие отверстия, расположенные между замыкающими клетками. Это отверстие называются устьицем. Оно является форточкой листа.

Клеточное строение листа (схема) функции и свойства клеток

Замыкающие клетки периодически открываются и закрываются, благодаря чему происходит газообмен и испарение воды. При недостатке влаги устьице закрыто, и открывается оно только с поступлением воды.

Количество устьиц на поверхности листа огромно. Оно может достигать 500 только на 1 кв. мм.

У растений, живущих на поверхности воды, устьица расположены на верхней части листа. У большинства наземных растений – на нижней. Но встречаются и такие растения, у которых устьица находятся и наверху, и внизу. К ним относятся дуб, берёза, липа, ромашка, паприка, шалфей и др.

Из представленной статьи мы узнали, каково строение листа. Благодаря слаженной работе всех клеток и работе каждой отдельной клетки, образуется кислород, которым мы дышим.

Читайте также: