Гидротермическую обработку проса при подготовке зерна к шелушению

Обновлено: 18.09.2024

Гидротермическую обработку (ГТО) зерна крупяных культур применяют для подготовки к переработке таких культур, как гречиха, овес, горох, пшеница, кукуруза, а также в процессе производства хлопьев, толокна, диетической муки.

Это важный этап подготовки зерна к переработке. В результате ГТО улучшаются технологические свойства зерна: облегчается отделение оболочек при шелушении, снижается дробимость ядра, улучшаются потребительские свойства крупы (сокращается длительность ее варки, каша становится более рассыпчатой, вследствие инактивации ферментов повышается стойкость крупы при хранении).

Выбор способа ГТО зависит от строения зерна, ассортимента продукции, воздействия режима обработки на изменение внешнего вида крупы и т. д. Наиболее распространены два способа ГТО: первый включает операции пропаривания, сушки и охлаждения; второй – увлажнения и отволаживания.

Первый способ ГТО (пропаривание – сушка – охлаждение) применяют при переработке гречихи, овса и гороха (рис. 25). Особенность его заключается в высокой (свыше 100 °С) температуре нагрева зерна. Пропаривание зерна способствует равномерному его увлажнению. Пар, обладая высокой проникающей способностью, не только омывает наружную поверхность зерна, но и заполняет пространство между цветковыми пленками и ядром. Так как поверхность зерна имеет более низкую температуру, чем температура пара, то он конденсируется, равномерно увлажняя как наружную поверхность зерна, так и внутренние, скрытые, поверхности, что и способствует равномерности увлажнения всей зерновки.

В результате прогрева и увлажнения в зерне происходят частичные химические преобразования, ядро пластифицируется, становится менее хрупким и меньше дробится при шелушении и шлифовании.

Пластификация ядра происходит и в результате некоторых химических преобразований. Происходят клейстеризация некоторой части крахмала, образование небольшого количества декстринов, обладающих клеящими свойствами, и т. д. После пропаривания зерно сушат в сушилках, а затем охлаждают до температуры, не превышающей более чем на 6. 8°С температуру производственного помещения. Подсушивание зерна применяют для удаления из­быточной влаги, дальнейшего повышения прочности ядра и снижения прочности цветковых пленок и оболочек. Если в процессе пропаривания овса его влажность повышается на 4. 6 %, то в процессе подсушивания она снижается на 9,0…10%. Такое резкое изменение влажности зерна под воздействием температуры приводит к значительным изменениям структурно-механических и биохимических свойств зерна. Оболочки сильно подсыхают, их влажность становится на 3. 5% меньше влажности зерна, что способствует снижению их прочности, и они легко отделяются от ядра. При этом прочность ядра повышается в результате глубоких биохимических изменений, вызванных денатурацией белков, гидролизом крахмала и повышением содержания декстринов, обладающих клеящими свойствами.


1 – сушилка; 2 – охладительная колонка; 3 – пропариватель непрерывного действия; 4 – пропариватель периодического действия; 5 – автоматические весы; I и II – исходное и обработанное зерно

Рисунок 25 – Технологическая схема гидротермической обработки зерна

Охлаждение после сушки дополнительно снижает влажность зерна и приводит к повышению хрупкости оболочек. Однако сушку и охлаждение необходимо проводить достаточно осторожно: чрезмерное подсушивание и охлаждение приводят к повышению хрупкости ядра и снижению выхода целой крупы при последующей переработке. Режимы пропаривания, сушки и охлаждения тесно связаны со способами шелушения зерна.

Охлаждение пропаренного и подсушенного крупяного зерна необходимо проводить постепенно и равномерно, без резких температурных колебаний, чтобы не вызвать увеличения в нем количества микротрещин и не увлажнить оболочки. Зерно охлаждают в аспирационных колонках. Режимы гидротермической обработки, рекомендуемые для зерна разных культур, приведены в таблице 8.

Оптимальные режимы воднотепловой обработки крупяного зерна позволяют улучшить его технологические свойства, увеличить выход крупы, снизить расход электроэнергии на производство и повысить пищевые досто­инства вырабатываемой крупы. Улучшение пищевых достоинств крупы происходит в результате увеличения количества водорастворимых веществ, содержания декстринов, повышения набухаемости крупы, сокращения продолжительности ее варки. Возрастает стойкость крупы в процессе хранения в результате снижения ферментативной активности.

Таблица 8 – Режимы гидротермической обработки гречихи, овса, гороха

Культура Параметры пропаривания Влажность зерна, %
Давление пара, МПа Длительность пропаривания, мин После пропаривания После завершения ГТО
Гречиха 0,25….0,30 18….19 12,5….13,5
Овес 0,05….0,10 3….5 16….18 10/12*….13
Горох 0,10….0,15 2….3 16….18 13,5….14,5

*В числителе – влажность зерна при последующем его шелушении в шелу­шильных поставах; в знаменателе – при шелушении в обоечных машинах и центробежных шелушителях.

Второй способ ГТО (увлажнение – отволаживание) применяют для пшеницы и кукурузы. Зерно увлажняют теплой водой (температурой 40 °С) в специальных аппаратах или обрабатывают в пропаривателях непрерывного действия при низком давлении пара. Увлажненное зерно отволаживают в бункере в течение нескольких часов. Режимы гидротермической обработки пшеницы и кукурузы приведены в таблице 9. В результате зерно приобретает повышенную пластичность, меньше дробится при шелушении. Вследствие возникающих в зерне механических напряжений наружные оболочки частично отслаиваются и легко отделяются при шелушении.

Таблица 9 – Режимы гидротермической обработки пшеницы и кукурузы

Культура Влажность зерна после увлажнения, % Длительность отволаживания, ч
Пшеница 14,5….15,0 0,5….2,0
Кукуруза* 15,0….16,0 2,0….3,0

*При производстве шлифованной крупы.

Этот способ может быть применен и для овса при условии последующего шелушения в центробежном шелушителе (шелушение однократным ударом). В этом случае зерно увлажняют до 16. 18 % и отволаживают в течение 8 ч.

Не получила распространения гидротермическая обработка зерна других культур (ячменя, проса, риса), хотя исследованиями установлена возможность ее проведения для ячменя, а также известен положительный зарубежный опыт ГТО риса. Трудности ГТО проса объясняются повышением прочности испорченных зерен в результате ее проведения. Необработанные зерна проса имеют меньшую прочность и частично разрушаются при последующем шелушении и шлифовании. После ГТО испорченные зерна разрушаются труднее и в большом количестве попадают в крупу, снижая ее качество. Трудности проведения ГТО риса связаны с пожелтением и растрескиванием ядра при увлажнении.

Под гидротермической обработкой понимают обработку зерна водой и теплом для направленного изменения (улучшения) всего технологического комплекса (мукомольных, хлебопекарных, макаронных, крупяных свойств) зерна, обеспечивающего наибольший выход готовой продукции с лучшими показателями качества и наименьшей затратой энергии.

Гидротермической обработке подвергают в основном зерно пшеницы, значительно реже зерно ржи, а также при переработке в крупу риса, овса, гречихи, кукурузы и гороха. При подготовке к переработке зерна применяют гидротермическую обработку и пропаривание. При гидротермической переработке на зерно воздействуют: вода, используемая для увлажнения зерновой массы; тепло, применяемое для прогрева зерна или его обезвоживания (сушки); длительность обработки зерна водой и теплом (пребывание в кондиционере), отволаживание в специальных бункерах; воздушная среда, в которой происходит гидротермическая обработка.

Влияние этих факторов на зерно усиливается при комплексном их воздействии. При подготовке зерна к помолу различают холодное, горячее, скоростное и вакуумное кондиционирование.

При холодном кондиционировании зерно водой температурой 18. 20 °С или подогретой до 30. 35 °С в аппаратах или моечных машинах увлажняют до 14,0. 16,5% и затем отволаживают в течение 4. 24 ч без регулирования температуры. При горячем кондиционировании используют специальные аппараты- кондиционеры. Зерно, увлажненное до 14. 16%, проходит тепловую обработку в кондиционере при температуре 45. 57 °С. Температурный режим обработки и его продолжительность (4. 12 ч) устанавливают в зависимости от реологических свойств клейковины, стекловидности и других показателей.

Горячее кондиционирование сопровождается более глубокими изменениями зерна и ускорением физико-химических и биохимических процессов по сравнению с холодным кондиционированием. Скоростное кондиционирование — это обработка зерна паром с применением специальных аппаратов (AGK), ускоряющее процессы, происходящие в зерне. На мукомольных заводах чаще используют холодное кондиционирование, реже горячее и изредка скоростное.

Кондиционирование зерна оказывает большое влияние на его мукомольное достоинство. Эндосперм становится рыхлее, оболочки эластичнее, связь их с эндоспермом ослабляется. Все это увеличивает выход и улучшает качество крупок и дунстов в драном процессе, повышает выход и качество (снижает зольность) готовой продукции, уменьшает удельный расход энергии. Воздействие воды и тепла вызывает в зерне комплексные физико-химические, коллоидные и биохимические процессы, приводящие к изменению его хлебопекарного достоинства.

Вода и тепло, применяемые при кондиционировании, создают для зерна (живой биологической системы) условия, совпадающие с теми, при которых зародыш зерна начинает расти. Это приводит к активизации его ферментных систем, к началу расщепления высокомолекулярных, до этого физиологически неподвижных веществ — начальному этапу перевода их в растворимое состояние и перемещения в зону зародыша для синтеза и формирования зачаточных тканей будущего растения.

Можно назвать две движущие силы переноса: первая — температурный градиент в теле зерновки, образуемый физическим процессом — набуханием, которое сопровождается выделением теплоты набухания, и биохимическим процессом — усилившимся процессом дыхания, генерирующим тепло; вторая — активизация щитка, выполняющего физиологическую роль передатчцг ка питательных веществ из эндосперма к пробуждающемуся зародышу через соприкасающуюся с ним систему сосущих клеток.

Биохимические процессы в зерне и зародыше, усиливающиеся при гидротермической обработке, тесно связаны с одновременно развивающимися теплофизическими явлениями. Те и другие, имея разную природу, в условиях гидротермической обработки активизируют биохимические процессы в зародыше, способствуют перемещению растворенных органических веществ.

Комплекс физико-химических и биохимических изменений тканей зерна при гидротермической обработке неоднозначно сказывается на изменении технологического достоинства зерна. Все зависит от генетических особенностей, зрелости и качества обрабатываемого зерна. Для повышения хлебопекарного достоинства наиболее часто необходимо улучшать зерно пшеницы с очень слабой или, наоборот (более редко), с очень крепкой клейковиной, т. е. в одном случае клейковину требуется укрепить, во втором — ослабить. У слабой клейковины улучшают реологические свойства, т. е. укрепляют при частичной тепловой денатурации белковых веществ, что достигается обработкой увлажненного зерна при повышенной температуре. Физические свойства крепкой клейковины улучшаются в результате частичного протеолиза белковых веществ. Этой цели наиболее полно отвечают условия холодного кондиционирования — продолжительное отволаживания при температуре 20. 35 °С.

При увлажнении зерна от 12. 13 до 17. 18% и отвола- живании в течение 24 ч наиболее сильно и в нежелательном направлении изменяются свойства слабой клейковины (упругость уменьшается, растяжимость возрастает). Это указывает на нецелесообразность применения к обработке слабой пшеницы холодного кондиционирования. Клейковина сильной пшеницы при холодном кондиционировании более устойчива, но ее качество (в результате ослабления) улучшается.

Физические свойства теста из зерна с крепкой клейковиной при использовании горячего кондиционирования ухудшаются. Реологические свойства клейковины пшеницы связывают наряду с другими факторами с количеством и соотношением сульф- гидрильных групп и дисульфидных связей. Имеются многочисленные наблюдения о большей величине отношения —SS—/SH-групп в сильной пшенице по сравнению со слабой.

При смешивании муки из зерна сильной и слабой пшеницы отношение —SS—/—SH всегда возрастает в одной и той же последовательности — с увеличением в смеси доли муки из сильного зерна и с переходом от более мягкого режима гидротермической обработки к более жесткому (фактические данные во всех случаях выше расчетных 86).

Гидротермическая обработка зерна усиливает технологический эффект смешивания муки разной хлебопекарной силы в зависимости от метода и режима. Наблюдаемое возрастание отношения —SS—/—SH (фактическое в большей степени, чем расчетное) свидетельствует о глубокой структурной перестройке и активном химическом взаимодействии белковых фракций смешиваемых партий зерна и муки.

В результате кондиционирования происходит значительное изменение активности ферментов зерна. Активность протеолити- ческих ферментов с увеличением влажности зерна и температуры повышается, но до определенного предела, а затем снижается. Оптимальные для действия протеолитических ферментов условия получены в опытах с мягкой озимой пшеницей: влажность зерна 17%, температура 50 °С и продолжительность обработки 30 мин (активность возросла при отволаживании в течение 24 ч в 1,5 раза). При более продолжительной экспозиции и повышении температуры активность протеаз постепенно уменьшается.

При влажности зерна выше 13,5. 14,5% резко возрастает (неодинаково в разных партиях пшеницы) активность глюта- матдекарбоксилазы, особенно в призародышевой части зерна. В результате содержание свободной глютаминовой кислоты уменьшается при одновременном увеличении количества *у-ами- номасляной кислоты.

изменение активности при гидротермической обработке зерна пшеницы ферментных вытяжек (J-амилазы и ^-фруктофуранозидазы. Активность ^-амилазы и р-фрук- тофуранозидазы зависит от влажности зерна. С увеличением влажности зерна повышается активность этих ферментов. Существенное влияние на их активность оказывает также температура обработки зерна.

Осахаривающая способность цельноразмолотого зерна при кондиционировании возрастает. По опытным данным, у пшеницы сорта Безостая 1 и рядовой она была соответственно (мг мальтозы на 10 г): в контроле 163 и 216, при холодном кондиционировании 220 и 264 и при горячем 300 и 336. Активность ферментов при гидротермической обработке повышается в результате увеличения их растворимости под влиянием нагрева и увлажнения зерна. Об этом свидетельствует возрастание доли азота водорастворимого белка (при холодном и горячем кондиционировании почти одинаково — примерно в два раза) при одновременном незначительном изменении процентного содержания небелкового азота в общем содержании азота.

Содержание связанных липидов в зерне при кондиционировании остается почти без изменения, проявляя слабо выраженную тенденцию к увеличению при горячем и скоростном кондиционировании. Гидротермическая обработка зерна сопровождается значительным изменением в группповом составе липидов. Опытным путем установлено, что наибольшее изменение претерпевают полярные липиды. Их содержание уменьшается, причем особенно сильно в группе связанных липидов: после холодного кондиционирования в 4 раза, горячего в 1,8 и скоростного в 2,3 раза.

Количество свободных жирных кислот заметно возрастает: это результат гидролитического расщепления прежде всего триацилглицеринов, а также и других фракций липидов. Исследователи указывают, что гидротермическая обработка зерна приводит к увеличению содержания витаминов в пшеничной муке ( 87).

Гидротермическая обработка зерна пшеницы вызывает уменьшение концентрации водорастворимых витаминов в периферийных слоях зерна и одновременно значительное возрастание их количества в зоне зародыша и небольшое — в эндосперме. Направленность в миграции водорастворимых витаминов при гидротермической обработке зерна биологически объясняется так: витамины как составная часть коферментов играют большую роль при эмбриональном пробуждении зерна.

Перемещение витаминов в зерне при обработке теплом и водой повышает их концентрацию в пшеничной муке. При нагреве зерна свыше 45. 50°С количество витаминов в муке снижается. Один из результатов гидротермической обработки — снижение зольности пшеничной муки высоких сортов: при холодном кондиционировании на 0,10. 0,12%, при горячем на 0,12. 0,15%. Это происходит по следующим причинам: гидротермическая обработка делает более эластичными оболочки, в связи с чем они с большей легкостью отделяются при размоле, снижая количество поступающих в муку высокозольных частиц; при обработке зерна водой и теплом происходит перемещение минеральных веществ вместе с растворенными питательными соединениями из периферийных слоев и эндосперма в зону зародыша ( 88).

При получении пшеницы из зерна I типа односортной муки 70%-ного выхода общее снижение зольности в результате гидротермической обработки зерна происходит на 15. 30% из-за уменьшения зольности эндосперма и на 70. 85% благодаря более полному отделению оболочек в связи с повышением их эластичности и пластичности.

Отдельные элементы, переходящие в состав золы, перемещаются по-разному. Перемещение фосфорсодержащих веществ сопровождается изменением различных форм фосфора. Содержание кислоторастворимого фосфора в целом при холодном способе обработки увеличивается больше, чем при горячем, а фосфора фитина, наоборот, при холодном кондиционировании уменьшается больше, чем при горячем. Неорганического фосфора при обоих вариантах гидротермической обработки становится больше.

Гидротермическая обработка вызывает отток фосфора из срединной и верхушечной частей и обогащение зародышевой части. В том же направлении (в зону зародыша) при холодном й горячем кондиционировании перемещаются железо и микроэлементы калий и магний.

Содержание кальция и натрия в зародыше уменьшается, и одновременно в эндосперме оно увеличивается. Иначе изменяется содержание марганца, никеля и цинка. Если при холодном кондиционировании они накапливаются в срединной части зерна при одновременном обеднении зародышевой, то при горячем кондиционировании концентрация этих микроэлементов в зародышевой части заметно повышается, а во всех остальных уменьшается. Фитин, перемещаясь в зону зародыша, под влиянием фермента фитазы гидролизуется с выделением фосфорной кислоты, вовлекаемой в многочисленные последующие превращения. Весь поступивший в эту зону магний также используется в процессах, развивающихся в пробуждающемся зародыше.

Обработка зерна паром с давлением 0,35 МПа в течение 40 с (скоростное кондиционирование) уменьшает время кондиционирования зерна в 4. 6 раз по сравнению с холодным, улучшает качество муки высшего, первого и второго сортов по цвету на 3. 4 единицы и более при снижении зольности на 0,02. 0,03%. Выход муки высоких сортов повышается на 1,5. 2,0%. Хлебопекарное достоинство зерна улучшается так же, как и при горячем кондиционировании. Наилучших результатов достигают при обработке слабой клейковины. Создается возможность более широкого и эффективного использования зерна пшеницы, в том числе с пониженным качеством.

Все сказанное о химических и технологических изменениях зерна при ГТО указывает на необходимость строго дифференцированного выбора режима кондиционирования зерна пшеницы с учетом ее исходного состояния и качества.

Нагревание или термическую обработку используют в тех случаях, когда клейковина слабая (сортовая особенность зерна, зерно поражено клопом-черепашкой, проросшее и др.)- Цель обработки заключается в том, что, нагревая зерно до температуры 55 . 65 °С, добиваются частичной денатурации белкового комплекса. В результате уменьшается гидратационная способность клейковины, она укрепляется, что приводит к улучшению ее физических свойств и, как следствие, к повышению хлебопекарного достоинства.

Разные фракции белкового комплекса при тепловом воздействии претерпевают неодинаковые изменения. Уже на этапе предварительного нагрева влажного зерна пшеницы при температуре 50 °С, еще не приводящем к денатурационной перестройке белковых веществ, наблюдаются глубокие изменения белка, различные для отдельных белковых фракций и при разных режимах сушки. Наиболее значительны они для альбуминов. Белки клейковины обладают более высокой стойкостью.

Метод улучшения технологического достоинства зерна пшеницы требует дифференцированного выбора режимов и скорости сушки с учетом исходного качества и состояния зерна с обязательной предварительной опытной проверкой. При этой проверке, исходя из состояния клейковинного комплекса, причины, вызвавшей ослабление клейковины, влажности и других показателей качества зерна, приходится устанавливать оптимальную температуру и продолжительность нагрева на небольших пробах зерна.

Метод не получил широкого производственного применения из-за сложности ведения процесса и в результате того, что неполноценное зерно улучшается только частично.

Зерно различных культур, поступающее на крупозаводы для переработки в крупу, называют крупяным. К собственно крупяным культурам, выращиваемым в России, относятся просо, гречиха и рис. Кроме того, крупу вырабатывают из ячменя, овса, гороха, чечевицы, кукурузы и пшеницы.
Зерно проса, овса, ячменя и риса покрыто цветочными пленками, гречихи — плодовыми, а гороха и чечевицы — семенными оболочками, по физическим свойствам и химическому составу мало отличающимися от цветочных пленок. Поэтому все крупяные культуры называют также и пленчатыми. Зерно, освобожденное от пленок, принято называть ядром.
Составные части зерна крупяных культур характеризуются основными структурно-механическими и физикохимическими особенностями.
Разные крупяные культуры характеризуются неодинаковой степенью прочности связи цветочных пленок с ядром. Например, у ячменя оболочка прочно срастается с ядром, а у гречихи, риса и проса это примыкание менее прочное. Опыт предприятий крупяной, промышленности показывает, что крупное зерно шелушить легче, чем мелкое.
Следует также иметь в виду, что прочность связей цветочных пленок с ядром в значительной мере определяется степенью влажности зерна — чем выше влажность, тем труднее зерно шелушить.
В процессе подготовки к переработке структурномеханические свойства зерна, неразрывно связанные с его строением, используются для того, чтобы, воздействуя на них различными технологическими приемами, изменять эти свойства, что облегчит отделение пленок при шелушении и сделает ядро более устойчивым к внешним воздействиям.
Вследствие неодинаковых структурных особенностей ядра зерна крупяных культур характеризуются различной степенью сопротивляемости воздействию рабочих органов машины.
Для технологических целей очень важно, чтобы зерновая масса состояла из одинаковых по стекловидности и мучнистости зерен, так как совместная переработка смеси тех и других зерен нарушает режим работы машин и приводит к потере ядра.
При шелушении зерна крупяных культур большое значение имеет степень влажности эндосперма, так как это обусловливает ослабление или усиление сопротивляемости его разрушению. Чем влажнее эндосперм (до установленного предела), тем легче он сохраняется от разрушения.
He менее важное значение на крупяных заводах придают сортированию зерна на фракции по крупности. Это вызвано тем, что на шелушение мелкого зерна требуется больше усилий, чем на шелушение крупного.
Ход технологического процесса в значительной степени определяет однородный состав зерновой массы (типы, сорта, крупность). Это очень важно учитывать при подсортировке помольных партий.
Одним из основных показателей качества крупяного зерна является пленчатость. Качество зерна тем выше, чем меньше его пленчатость.
При оценке технологических свойств зерновой массы ее цвет, запах и вкус дают представление о различных отклонениях от установленных норм.
Отличительной особенностью крупяного производства является многообразие видов зерна и вырабатываемой из него крупы. Кроме того, в процессе шелушения зерна стремятся сохранить в целости его ядро, подвергающееся обработке для придания ему требующегося вида и формы. Все это обусловливает сложность и разветвленность технологического процесса на крупяном заводе.
Технологический процесс на крупяном заводе включает следующие этапы: подготовку зерна к переработке; переработку зерна в крупу.
Первый этап технологического процесса осуществляется в зерноочистительном отделении крупяного завода, где предусматривается проведение следующих операций:
- очистка зерновой массы от примесей; обработка зерна до шелушения (удаление остей, гидротермическая обработка);
- предварительное сортирование.
Зерно очищают от посторонних примесей на крупяных заводах, так же как и на мукомольных заводах, на зерноочистительных машинах — сепараторах, триерах, аспирационных колонках.
Куколеотборочные и овсюгоотборочные машины применяют на крупяных заводах как для очистки зерна от примесей по длине, так и для отделения шелушеных зерен от нешелушеных при переработке овса в крупу или риса-лома от риса целого, а также при контроле наличия крупы и дробленых частиц ядра, оставшихся в лузге. Рекомендуемые размеры ячеек дисков триеров в зависимости от назначения указаны в таблице 37.


Шелушение зерна — это основная операция в производственном процессе крупяных заводов. Во время работы шелушильных машин с зерна удаляются цветочные пленки, семенные и плодовые оболочки. Главная задача шелушения — при проходе зерна через такие машины нарушить связь покровов зерна с ядром. При этом обязательно сохранение ядра в целости.

шелушение крупяных культур

Очистка и подготовка зерна к шелушению

На крупозаводы поступают разные виды зерна, его называют крупяным. К типичным культурам, которые выращиваются в России, относятся гречиха, просо и рис. Но такое сырье вырабатывают еще из:

  • пшеницы;
  • овса;
  • ячменя;
  • гороха;
  • кукурузы;
  • чечевицы.

Различные крупяные культуры имеют неодинаково прочные связи пленок с ядром. Так, у ячменя пленки накрепко срастаются с ядром, а у гречихи, проса и риса примыкание не слишком плотное. Зерно гречихи покрыто плодовыми пленками, гороха и чечевицы семенными оболочками, проса, риса, ячменя и овса цветочными пленками.

Для правильной работы шелушильных машин зерно сортируют по крупности. Это связано с тем, что на обработку мелкого зерна затрачивается больше усилий, чем на крупное. При подсортировке помольных партий также учитывают однородность состава зерновой массы.

Перед отправкой на шелушение зерна крупяных культур, его оценивают на цвет, запах и вкус. Так устанавливают различные отклонения от нормы.

Технологический процесс начинают в зерноочистительном отделении крупяного завода. Там проводят следующие операции:

  • очистка от примесей;
  • обработка зерна до шелушения (гидротермическая обработка, удаление остей);
  • предварительная сортировка.

От посторонних частиц зерно очищают на зерноочистительных машинах — аспирационных колонках, триерах и сепараторах.

Способы шелушения зерна

Способы шелушения делят на три группы в зависимости от способа воздействия на зерно рабочих элементов шелушильной машины. Классификация зависит и от вида деформации оболочек. Так, способы выделяют следующие:

  1. сжатие и сдвиг. Он вызывает размыкание и скалывание пленок с помощью вальцедекового станка, шелушильного постава, станка с резиновыми валками;
  2. трение о стальную и абразивную поверхность. При длительном воздействии происходит соскабливание оболочек;
  3. удар. Это может быть система однократного или многократного удара. Способ вызывает раскалывание оболочек. Удар сопровождается фрикционным воздействием металлической или абразивной поверхности. Работают бичевая или обоечная машины.

Агрегаты для каждого из вышеназванных процессов подбираются с учетом прочности сцепления пленок с ядром зерна.

Сортировка продуктов шелушения зерна

В итоге в результате шелушения зерна получают разные по пищевой ценности и качеству продукты. А именно:

  • ядро;
  • нешелушеное зерно;
  • мучка;
  • измельченные части ядер;
  • шелуха.

Из этого перечня наиболее ценный продукт — чистое ядро, которое после других обработок превратится в крупу. Нелущеное зерно с неотделившимися оболочками повторно направляют на шелушение, чтобы получить из них чистые ядра.

Измельченные ядра и мучку применяют при приготовлении кормов для скота. Шелуху также частично направляют на кормовые цели, а часть на технические нужды. Измельченные ядра и мучку отсеивают на просеивательных машинах. Шелуху собирают в аспирационных колонках.

Последовательно используя воздушные сепараторы и сортировочные машины, отделяют друг от друга фракции, образовавшиеся в процессе обработки зерна. Шелушение в технологии крупы — основной этап получения качественного продукта с минимальными потерями.

Факторы, влияющие на эффективность шелушения

шелушение крупяных культур

Шелушение двух разных партий зерна, даже одной культуры и на одинаковых настройках часто дает разные результаты. На выбор правильного режима шелушения влияют следующие моменты:

  • прочность ядра и степень прикрепления пленки к нему;
  • выполненность зерна;
  • крупность;
  • влажность. Особенно важна разность влажности пленок и ядра;
  • содержание в партии шелушеных зерен.

Количество дробленого ядра и мучки зависит от того, насколько прочно ядро, как легко отделяются пленки. Прочность ядра одной и той же культуры значительно колеблется. Например, прочность риса зависит от трещиноватости. Тот же показатель стекловидного проса, риса и ячменя выше, чем мучнистого.

В выполненных и крупных зернах пленки отделяются легче, чем в щуплых и мелких. Для этого некоторые культуры сортируют на фракции еще до процедуры шелушения. Так обеспечивается нужный режим обработки для каждой категории отдельно.

Большое значение при шелушении крупяных культур имеет влажность. При повышенном значении эффективность падает. Такой же эффект при пересушенном зерне. Поэтому следует соблюдать оптимальный режим влажности зерна при производстве. Она должна быть не менее 12%.

В результате шелушения в идеале нужно получить два продукта — целое ядро и лузгу. Но вследствие несовершенства процесса образуется пять фракций: ядро, дробленое ядро, мучка, недробленые зерна и шелуха.

Читайте также: